
Towards Higher Quality Software Vulnerability Data

Using LLM-based Patch Filtering

Charlie Dila, Hui Chenb, Kostadin Damevskia,∗

aVirginia Commonwealth University, Richmond, Virginia, USA
bCUNY Brooklyn College, Brooklyn, New York, USA

Abstract

High-quality vulnerability patch data is essential for understanding vulnera-
bilities in software systems. Accurate patch data sheds light on the nature of
vulnerabilities, their origins, and effective remediation strategies. However,
current data collection efforts prioritize rapid release over quality, leading
to patches that are incomplete or contain extraneous changes. In addition
to supporting vulnerability analysis, high-quality patch data improves auto-
matic vulnerability prediction models, which require reliable inputs to predict
issues in new or existing code.

In this paper, we explore using large language models (LLMs) to filter vul-
nerability data by identifying and removing low-quality instances. Trained
on large textual corpora including source code, LLMs offer new opportuni-
ties to improve data accuracy. Our goal is to leverage LLMs for reasoning-
based assessments of whether a code hunk fixes a described vulnerability.
We evaluate several prompting strategies and find that Generated Knowl-
edge Prompting, where the model first explains a hunk’s effect, then assesses
whether it fixes the bug, is most effective across three LLMs. Applying this
filtering to the BigVul dataset, we show a 7–9% improvement in prediction
precision for three popular vulnerability prediction models. Recall declines
slightly, 2–8%, across models, likely reflecting the impact of reduced dataset
size.

Keywords: Vulnerability Patch Quality, Automatic Vulnerability
Prediction, Large Language Models

∗Corresponding author
Email addresses: ndil@vcu.edu (Charlie Dil), hui.chen@brooklyn.cuny.edu (Hui

Chen), kdamevski@vcu.edu (Kostadin Damevski)

Preprint submitted to Journal of Systems and Software July 22, 2025

1. Introduction

A wide range of government and industry initiatives, such as the Na-
tional Vulnerability Database (NVD) [1], Snyk Vulnerability Database [2],
and GitHub Security Advisories [3], aim to collect and disseminate informa-
tion about vulnerabilities. However, these data sources primarily focus on
rapidly sharing details about newly found vulnerabilities, which differs from
the needs of researchers seeking large datasets for building machine learning
models or gathering empirical evidence. Despite significant manual efforts by
research groups to curate high-quality historic datasets from these vulnera-
bility databases, challenges remain. These datasets are either limited in size
or suffer from significant data quality issues, highlighting an urgent need for
automated collection high-quality, large-scale software vulnerability data.

Large Language Models (LLMs) have become pivotal in harnessing artifi-
cial intelligence for a variety of purposes. Through unsupervised training on
vast text corpora, LLMs exhibit emergent reasoning capabilities [4, 5, 6].
These models are interacted with via textual prompts that describe the
desired task in natural language. To leverage LLMs for sophisticated rea-
soning tasks, researchers often employ intricate prompting strategies, which
guide the LLM through a sequence of incremental reasoning steps. A num-
ber of prompting strategies have been proposed, including few-shot prompt-
ing, chain-of-thought prompting, and generated knowledge prompting, a re-
cent technique that enhances LLM reasoning on downstream tasks by first
prompting language models to generate relevant background knowledge or
context, which is then integrated into the task [7].

In this paper, we investigate the following Research Questions (RQs):

RQ1: Is advanced prompting of LLMs an effective approach for filtering
software patch data for improving data quality?

We employed LLMs to identify extraneous hunks, contiguous blocks of
modified lines in a file, that do not contribute to fixing the bug. These
extraneous hunks can result from incorrectly linked patches or unrelated
changes that are tangled with the fix. This RQ is to test the LLMs’ ability
to filter out these low quality patches. We evaluated the performance of
LLMs using various prompting techniques to examine patch changesets (or
diffs). We found that generated knowledge prompting with GPT-4 is the
most effective approach for patch filtering.

2

RQ2: Does filtered software vulnerability patch data improve the performance
of automated software vulnerability prediction?

We hypothesize that the filtered software vulnerability via our approach
can improve downstream applications of the data, such as software vulner-
ability prediction. Thus, for this RQ, we gauge the downstream impact of
LLM-filtered vulnerability patch data. We compared the performance of
popular software vulnerability prediction models trained on an unfiltered
dataset to that of models trained on datasets filtered using an LLM. We
observed consistent improvements in certain predictive performance metrics,
namely, precision and AUC-PR, despite the overall smaller size of the filtered
datasets. However, recall was generally lower in the filtered dataset, which
is expected since filtering likely removes some relevant instances along with
the noise.

In summary, the contributions of this paper are:

• a novel LLM-based vulnerability data filtering approach based on gen-
erative knowledge prompting;

• an understanding of the capability of combinations of LLMs and prompt-
ing strategies for vulnerability patch assessment and filtering through
extensive evaluation;

• enhanced performance of vulnerability prediction models based on the
filtered data;

• insights on the trade-off between dataset size and increased recall

While this work is motivated by challenges in vulnerability dataset qual-
ity, we use a manually-annotated bug-fix dataset for RQ1 to validate the
effectiveness of LLM-based filtering, due to the absence of reliable hunk-level
vulnerability annotations. We then apply the best-performing method to
vulnerability data in RQ2 to assess its impact on real-world vulnerability
prediction. A replication package containing our scripts, prompts, and rel-
evant data is available at: https://github.com/charliedil/LLM_based_

patch_filtering

2. Motivating Example

Software repositories are updated via changesets. Each changeset con-
sists of a set of hunks, i.e., contiguous blocks of lines that have undergone

3

https://github.com/charliedil/LLM_based_patch_filtering
https://github.com/charliedil/LLM_based_patch_filtering

addition, removal, or modification within a file [8]. This granular unit of
change encapsulates specific modifications, serving as a coherent unit within
the overall changeset. Typically, a hunk is computed by employing a diff
algorithm, such as the Myers algorithm [9], which systematically compares
differences between two file versions. This algorithm isolates sections with
differing lines, grouping these differences into hunks and including contex-
tual lines surrounding the changes to enhance readability and ensure accurate
patching or merging processes.

In this paper, we are interested in determining whether hunks in a change-
set are related to patching a security vulnerability or not. We operate at the
hunk level since hunks are more easily comprehensible to developers as they
group changes in adjacent lines and provide context, unlike individual lines
which can often be too granular.

In Figure 1, we present several hunks from a single security patch. This
patch is linked in the National Vulnerability Database (NVD), a comprehen-
sive resource on software vulnerabilities that sometimes includes URLs to
patches, which often serves as a key resource for curating security vulnera-
bility data for training Software Vulnerability Prediction models. The CVE
identifier that the NVD associates with this patch is CVE-2022-23472. For
brevity, we include only a subset of hunks from this changeset. The patch up-
dates the Passeo package to use the Secrets package instead of the Random
package for enhanced security. The NVD describes this vulnerability as fol-
lows indicating the source of the security vulnerability, i.e., the dependent
Python’s random library is not a cryptographically secure random number
generator:

Passeo is an open source python password generator. Versions
prior to 1.0.5 rely on the python ‘random‘ library for random
value selection. The python ‘random‘ library warns that it should
not be used for security purposes due to its reliance on a non-
cryptographically secure random number generator. As a result
a motivated attacker may be able to guess generated passwords.
This issue has been addressed in version 1.0.5. Users are advised
to upgrade. There are no known workarounds for this vulnerabil-
ity.

The first hunk (lines 1-7) implements the change described by replacing
the import statement for Random with Secrets. The second hunk (lines 8-33)
replaces any use of the logic for using random to generate passwords, which

4

1 @@ -1,7 +1,7 @@

2 -import random

3 import string

4 import hashlib

5 import requests

6 +import secrets

7

8 @@ -9,24 +9,28 @@ def __init__(self):

9 def generate(length , numbers=False , symbols=False , uppercase=False ,

lowercase=False , space=False , save=False):

10 password = ’’

11 - if numbers:

12 - password += string.digits

13 - if symbols:

14 - password += string.punctuation

15 - if uppercase:

16 - password += string.ascii_uppercase

17 - if lowercase:

18 - if uppercase:

19 - raise ValueError(’Uppercase and lowercase are both true ,

please make one of them false.’)

20 - password += string.ascii_lowercase

21 - if space:

22 + if numbers is True:

23 + password += secrets.choice(string.digits)

24 + if symbols is True:

25 + password += secrets.choice(string.punctuation)

26 + if lowercase and uppercase == True:

27 + raise ValueError(’Uppercase and lowercase are both true , please

make one of them false.’)

28 +

29 + if uppercase is True:

30 + password += secrets.choice(string.ascii_uppercase)

31 + if lowercase is True:

32 + password += secrets.choice(string.ascii_lowercase)

33

34 @@ -47,27 +51,51 @@ def strengthcheck(password):

35 elif y == None:

36 StrengthCheckQuiz[’Pwned ’] = ’1/3: FAIL: An error has occurred ,

please try again.’

37 if length < 8:

38 - StrengthCheckQuiz[’Length ’] = ’2/3: FAIL: Your password is too

short , it is recommended to make it longer.’

39 + StrengthCheckQuiz[

40 + ’Length ’] = ’2/3: FAIL: Your password is too short , it is

recommended to make it longer.’

Figure 1: Hunks related to patching CVE-2022-23472.

5

is also implementing the change described. The third and final hunk (lines
34-40) adjusts the formatting of the code, just changing the whitespace.

The first and second hunks are part of the fix for this patch, but the
third hunk is not relevant as it is just changing the whitespace. Often,
import statements would also not be relevant, but in this case, since the
problem is with the package itself, it is relevant. Noisy hunks like the third
hunk can lead to Software Vulnerability Prediction models learning incorrect
information, which we hypothesize will lead to a degradation in performance.

With our approach, we filter at the hunk-level the noisy hunks using LLMs
to see if we can boost the performance of popular Software Vulnerability
Prediction models.

3. Effectiveness of LLM-Based Data Filtering (RQ1)

Here, we discuss the experiments conducted to answer RQ1: Is advanced
prompting of LLMs an effective approach for filtering software patch data
for improving data quality? We begin by describing the dataset, which was
chosen to ensure the high quality necessary for effectively evaluating data
filtering techniques. This is followed by an overview of the metrics and
techniques used. We then present the results, discuss their implications, and
conduct an error analysis. Finally, we consider human-in-the-loop approaches
as a potential future extension to improve the filtering process.

3.1. Datasets

For RQ1, we required a pre-filtered dataset where extraneous hunks in a
commit, which are not part of the specific fix, were labeled. The Tangled
Commits Dataset is manually validated by software engineers, which should
ensure high quality [10]. Although it is not specifically related to vulnerabil-
ities, it is suitable for our purposes, as bug fixes are closely related.

The choice of a bug-fix dataset is necessitated by the lack of high-quality
annotated vulnerability data at the hunk level. Most existing vulnerability
datasets are collected automatically using heuristics and suffer from a high
degree of labeling errors. Prior studies, such as Tan et al., have demonstrated
significant inaccuracies in these datasets, making them unreliable for fine-
grained tasks like vulnerability detection [11]. Furthermore, these datasets
do not provide annotations at the hunk level, making them unsuitable for
our analysis

6

The Tangled Commits Dataset has also been used to train models that
detect vulnerability-related code at the line level [12]. In the absence of large-
scale, high-quality vulnerability datasets, several recent studies have relied on
bug-fix datasets as proxies for security-related tasks [13, 14]. Several studies,
such as Shin et al., Yang et al., and Lomio et al. empirically show that
bug-fix datasets, when characterized by traditional software metrics such as
complexity, code churn, and fault history, can predict software vulnerabilities
with comparable effectiveness to vulnerability-specific datasets [15, 16, 17].

3.1.1. Tangled Commits Dataset

This dataset consists of changes from code hunks containing bug-fixes
manually labeled at the line-level by individuals who either had an under-
graduate degree in Computer Science or a related field or proven proficiency
in Java programming. Manual annotation is likely to result in a higher qual-
ity data source than automated data curation, which often relies on simple
heuristics that invariable introduce noise [18, 19, 20]. The current version of
the dataset is a sample of a larger dataset, SmartSHARK MongoDB Release
2.2, which uses 98 Java projects. This dataset is substantial with a plethora
of information, but we specifically were looking for manually labeled hunks
with issue descriptions [10]. Therefore, we randomly sampled up to 40 hunks
from each project that had non-empty labels and issue IDs, sometimes sam-
pling fewer than 40 when fewer hunks were available. We further filtered
these to include only hunks with issue IDs that contained an issue descrip-
tion. After applying these filters, we ultimately sampled hunks from a set
of 29 projects, resulting in a total of 1,093 hunks. If any line in a hunk is
labeled as a bug-fix, we label the entire hunk as a bug-fix; otherwise, we label
it as not a bug-fix. In our final sample, the data was relatively balanced with
507 hunks labeled as bug-fixes, and 586 were labeled as not bug-fixes.

3.2. Metrics

We formulate whether to filter out a hunk as a binary classification prob-
lem, i.e., whether a hunk contains (at least one of) the changes that fix the
bug. We use metrics popular metrics for binary classification: Precision,
Recall, F1-score and Accuracy, which we can compute beginning from a con-
fusion matrix obtained from using a decision threshold. The confusion matrix
consists of True Positives (TP), False Positives (FP), False Negatives (FN),
and False Positives (FP).

7

3.2.1. Precision

Precision is the ratio of true positive observations to the total predicted
positive observations.

Precision =
TP

TP + FP

3.2.2. Recall

Recall is the ratio of true positive observations to all observations in the
class yes.

Recall =
TP

TP + FN

3.2.3. F1-Score

F1-score is the harmonic mean of Precision and Recall.

F1-score = 2 ∗ Recall ∗ Precision

Recall + Precision

Since Precision and Recall are decision-threshold dependent, we can obtain
superior Precision or Recall by selecting a decision threshold often at the
cost of the other. F1-score presents a more faithful representation of the
classifier’s performance as it counters this manipulation.

3.2.4. Accuracy

Accuracy is the ratio of true positive and true negatives to total predic-
tions.

Accuracy =
TP + TN

TP + TN + FP + FN

3.3. LLMs

For this research, we chose the most popular open source and closed
source generative LLMs available, at the time of writing: Llama3, GPT-4,
and CodeLlama.

3.3.1. Llama3

Llama3 is a free, open source transformer model developed by Meta that
uses decoders. It was trained on over 15 trillion tokens from various pub-
lic sources. The training data for Llama3 has about four times as much
code as Llama2. We utilize the 70B parameter version of this model with a
temperature of 0.

8

3.3.2. GPT-4

GPT-4 is a paid, closed source transformer model developed by OpenAI
that also uses decoders. It was trained on roughly 13 trillion tokens. As it
is closed source, the specific sources of training data are not known to the
public. The specific version of this model we used for our experiments was
GPT-4o. We used a temperature of 0 for this model, as well.

3.3.3. CodeLlama

CodeLlama is a free, open source transformer model developed by Meta
that also uses decoders. It is based on Llama2 and trained with the task of
code infilling, among other tasks depending on the variant of CodeLlama. For
our experiments, we utilize the 70B version of CodeLlama with a temperature
of 0.

3.3.4. DeepSeek-R1

DeepSeek-R1 is a free, open source transformer model developed by DeepSeek,
which is based on DeepSeek-V3-Base. We opt to use this model instead
DeepSeek-Coder-V2, which targets coding tasks, due to its better perfor-
mance on LiveCodeBench [21], an evaluation benchmark for multiple code
tasks, including self-repair and code generation. We specifically use DeepSeek-
R1-Distill-Qwen-32B due to hardware constraints.

3.4. Techniques

Prompting techniques provide a structured approach for querying an
LLM, and they have been shown to significantly impact model performance
across tasks. In our experiments, we applied several prompting techniques.
To ensure alignment with our dataset, we adjusted the prompts based on the
specific problem domain, using ”bug” or ”vulnerability” terminology as ap-
propriate. This adjustment reflects the use of the Tangled Commits Dataset,
which, as previously discussed, provides labeled bug hunks.

3.4.1. Zero-shot Prompting

The simplest and most widely used prompt type is the zero-shot prompt,
where no examples are included in the prompt. A straightforward question,
such as “Is this a software bug or vulnerability?” exemplifies a zero-shot
prompt. Our zero-shot prompt structure partially incorporates the instruc-
tions given to the human annotators of the Tangled Commits Dataset. The
specific zero-shot prompt used in our experiment is as follows:

9

Bug description: <insert description> The following code hunk is part
of a larger commit intended to fix the above [bug/vulnerability]. Code
hunks that only contain changes to whitespace, documentation, tests are
not [bug-fixes/vulnerability fixes]. Code hunks that perform refactoring or
unrelated changes do not qualify as [bug-fixes/vulnerability fixes].

Evaluate the code hunk below and determine if it contains a fix to the
described [bug/vulnerability]: <insert hunk>

Please respond with ”yes” or ”no” only. Do not provide any
more information or explanations. Format your response as follows:
{”ans”:”<Answer>”}

3.4.2. Few-shot Prompting

A popular type of prompting, few-shot prompting involves providing
a number of labeled examples to indicate the desired output and its for-
mat. For our task, we included one example for each common change
type, i.e., tests, whitespace, comments, refactoring, unrelated changes, and
bug/vulnerability-fixes. Each example included a description and corre-
sponding label. A listing of our few-shot prompt structure is shown below.

The following code hunk is part of a larger commit intended to fix the above
bug. Code hunks that only contain changes to whitespace, documentation,
tests are not bug fixes. Code hunks that perform refactoring or unrelated
changes do not qualify as bugfixes.
Evaluate the code hunk below and determine if it contains a fix to the
described bug. Please respond with ”yes” or ”no” only. Do not provide
any more information or explanations. Format your response as follows:
{”ans”:”<Answer>”}
Description: <example description 1>
Hunk: <example hunk 1>
<example label 1>
Description: <example description 2>
Hunk: <example hunk 2>
<example label 2>
...

Description: <example description 6>

10

Hunk: <example hunk 6>
<example label 6>
Description: <insert description>
Hunk: <insert hunk>

3.4.3. Chain-of-Thought Prompting

Chain-of-Thought (CoT) prompting traditionally employs few-shot prompt-
ing to illustrate examples of sequential reasoning. However, CoT prompting
can also be implemented through alternative approaches, including zero-shot
prompting. The most straightforward zero-shot CoT approach involves ap-
pending the phrase “Let’s think step-by-step” to the end of the prompt, a
technique shown to outperform standard zero-shot prompts [22].

In this paper, we utilize a variant of zero-shot CoT prompting by re-
questing a summary of changes alongside a label, thereby guiding the model
to exhibit a sequential reasoning process similar to “showing its work”. We
chose a zero-shot variant of CoT, inspired by prompting strategies described
in a recent blog post on prompting [23]. The specific prompt we used for our
study is shown below.

The following code hunk is part of a larger commit intended to fix
the above bug. Code hunks that only contain changes to whitespace,
documentation, tests are not bug fixes. Code hunks that perform
refactoring or unrelated changes do not qualify as bugfixes. Please provide
a summary of the changes that were implemented within the hunk.

Based on the summary, answer with yes or no whether it is rel-
evant to fixing a bug. Provide your response in json format:
{”summary”:”<Summary>”,”ans”:”<Answer>”} Hunk: <insert hunk>

3.4.4. Generated Knowledge Prompting

Generated Knowledge Prompting leverages few-shot prompting to pro-
duce relevant knowledge based on specific inputs. This generated knowledge
is subsequently applied to a target question. To facilitate knowledge genera-
tion, we use the same examples provided in the few-shot prompt, each paired
with manually generated knowledge we crafted from these examples. The
knowledge structure first details specific syntactic modifications, followed by

11

an explanation of the classification or impact of the change. For example,
one instance of manually generated knowledge is: ”This change renames the
variable spyStream to spy. This reflects a variable renaming, categorizing it
as a refactoring code change.”

In accordance with our approach, we use few-shot prompting to guide the
Large Language Model (LLM) in generating knowledge for the hunk we aim
to label. We repeat this generation process three times, each iteration pro-
ducing a unique knowledge set. Then, we prompt the model three additional
times, incorporating one of the generated knowledge instances, a description
of the problem the hunk addresses, and the hunk itself. This process outputs
a label and a confidence score for each iteration, resulting in three label-score
pairs. We select the label with the highest confidence score. Listings of our
prompt structures for both the knowledge generation and answer generation
steps are provided below.

Your job is to generate Knowledge for a given Hunk using the Description.

Description: <example description 1>
Hunk: <example hunk 1>
Knowledge: <example knowledge 1>
Description: <example description 2>
Hunk: <example hunk 2>
Knowledge: <example knowledge 2>
...

Description: <example description 6>
Hunk: <example hunk 6>
Knowledge: <example knowledge 6>
Description: <insert description>
Hunk: <insert hunk>
Knowledge:

Using the knowledge provided, answer the question given.

The following code hunk is part of a larger commit intended to fix the
following [bug/vulnerability]. Code hunks that only contain changes to
whitespace, documentation, tests are not [bug-fixes/vulnerability fixes].
Code hunks that perform refactoring or unrelated changes do not qual-

12

ify as [bug-fixes/vulnerability fixes]. Evaluate the code hunk below and
determine if it contains a fix to the described [bug/vulnerability].
Description: <insert description>
Knowledge: <insert knowledge>
Hunk: <insert hunk>
Please respond with ”yes” or ”no” and a confidence score on a scale from
0 to 1. Do not provide any more information or explanations. Format your
response as follows: {”ans”:<Answer>, ”conf”:<Confidence Score>}

3.5. Results

To address RQ1, we conducted an evaluation of the prompting techniques
(Generated Knowledge, Zero-shot, Few-shot, and Chain-of-Thought) across
the selected models: Llama3, GPT4, CodeLlama, and DeepSeek-R1. The
labels from the Tangled Commits Dataset, specifically at the hunk level,
served as the ground truth for these evaluations. For each combination of
model and prompting technique, we calculated the precision, recall, F1 score,
and accuracy, with the results presented in Table 1.

Across the models, Generated Knowledge Prompting yielded the high-
est scores in most metrics, demonstrating superior effectiveness in capturing
relevant features for classification. For both Llama3 and GPT4, Generated
Knowledge Prompting achieved the highest accuracy (0.75 for Llama3 and
0.74 for GPT4) and the highest F1 score, showcasing its capability in these
models to generalize well to unseen data. In GPT4, Generated Knowledge
also achieved the highest recall at 0.77, indicating a strong capacity for iden-
tifying true positive cases within this model.

Interestingly, CodeLlama’s performance deviated from this pattern, where
Chain-of-Thought (CoT) Prompting outperformed Generated Knowledge Prompt-
ing in recall (0.85) and F1 score (0.60). This suggests that CoT prompting
is better suited to CodeLlama’s training objectives. However, CodeLlama’s
overall weak performance, despite being optimized for code-related tasks,
indicates that code infilling pretraining may not translate well to tasks re-
quiring reasoning over patch relevance.

For DeepSeek-R1, zero-shot prompting performed best, achieving the
highest accuracy (0.67) and F1 score (0.58). In contrast, Generated Knowl-
edge Prompting underperformed, with an accuracy of 0.53 and an F1 score of
0.28. This suggests that DeepSeek-R1 performs somewhat better with direct
classification rather than knowledge-enhanced reasoning. This aligns with

13

Table 1: RQ1 Results

Model Prompting Precision Recall F1 Accuracy

Llama3

Gen. Knowledge 0.81 0.60 0.69 0.75
Zero-shot 0.71 0.52 0.60 0.68
Few-shot 0.83 0.23 0.37 0.62
COT 0.63 0.65 0.64 0.66

GPT4

Gen. Knowledge 0.71 0.77 0.73 0.74
Zero-shot 0.81 0.51 0.62 0.71
Few-shot 0.69 0.61 0.65 0.69
COT 0.62 0.64 0.63 0.65

CodeLlama

Gen. Knowledge 0.67 0.00 0.01 0.54
Zero-shot 0.32 0.04 0.07 0.52
Few-shot 0.53 0.17 0.26 0.54
COT 0.46 0.85 0.60 0.47

DeepSeek-R1

Gen. Knowledge 0.49 0.20 0.28 0.53
Zero-shot 0.71 0.48 0.58 0.67
Few-shot 0.00 0.00 0.00 0.54
COT 0.57 0.40 0.47 0.58

DeepSeek-R1’s ”mixture of experts” approach, activating specific subsets of
its parameters based on the input, which allows for efficient adaptability to
various tasks in a zero-shot setting.

3.6. Implications

Out of all the LLMs, CodeLlama and DeepSeek-R1 performed the poorest
for this task, overall. CodeLlama is based on Llama2, which is not trained
on as much code as Llama3, which explains why Llama3 performed better.
Additionally, CodeLlama is fine-tuned with the task of code infilling, which
may not be related enough to the task of identifying bug-fixes. DeepSeek-R1
was primarily intended for tasks requiring logical inference, mathematical
reasoning, and real-time problem-solving. The type of code classification
task the is the focus of this paper is likely out of its trained expertise.

Generated Knowledge Prompting is typically used in the domain of com-
monsense reasoning. In the original study [7], Generated Knowledge Prompt-
ing is compared against vanilla prompting, random knowledge, related knowl-
edge, self-talk [24], retrieval-based knowledge, and few-shot prompting. In
contrast, Chain-of-Thought Prompting [25] has been applied to a variety
of tasks, most relevantly to math word problems and commonsense reason-

14

ing, and it is typically compared against vanilla prompting. Both of the
original studies on Chain-of-Thought Prompting and Generated Knowledge
Prompting conduct experiments on the Commonsense QA dataset [26]. How-
ever, because the models used in these experiments are different, the results
and gains are not directly comparable. It is noted, however, that Chain-of-
Thought Prompting results show less improvement on this dataset compared
to others, such as math word problem datasets. This suggests that Gen-
erated Knowledge Prompting may be more suitable for qualitative tasks,
whereas Chain-of-Thought Prompting may better serve quantitative tasks.
Our task, between the two, leans towards the qualitative side, so Generated
Knowledge is more appropriate, explaining its higher results compared to
Chain-of-Thought Prompting.

While our best-performing configuration (GPT-4 with generated knowl-
edge prompting) achieves 75% accuracy and 0.73 F1 score on hunk-level
filtering, these results are competitive with state-of-the-art systems. For in-
stance, ActiveClean, a recent traditional ML-based approach for line-level
patch filtering, reports F1 scores of 70–74% on Java datasets and 70.23%
on C code, but it requires explicit feature engineering and iterative label-
ing via active learning [12]. Our approach achieves similar results without
handcrafted features and with minimal supervision.

Overall, these findings imply that for tasks requiring contextual under-
standing within code—such as bug fix classification or code refactoring detec-
tion—Generated Knowledge Prompting may provide more accurate results,
especially with models like Llama3 and GPT4 that are pre-trained on diverse
data.

3.7. Error Analysis

To understand what are the types of hunks that are still difficult to classify
as bug-fix related, we investigate what types of errors that were made by the
best performing configuration: Generated Knowledge Prompting with GPT-
4. To this end, we randomly sampled 30 misclassified hunks from each of
the false positive and false negative groups, i.e., a total of 60 hunks. The
first author conducted a systematic analysis of each hunk to determine the
likely root causes for the error. In cases where the classification was unclear
or involved a borderline case, the author discussed the instance with another
author until both reached an agreement. Both of the authors have advanced
training in computer science, including expertise in secure programming.

15

Of the 30 false negatives, all but one of the errors were due to incorrect an-
notations in the dataset. Several of these, labeled as bug-fixes, were actually
whitespace changes, unrelated modifications, or documentation updates. A
common annotation error was labeling the addition of a blank line as a bug-
fix. While most of these incorrect annotations were among the 30 false neg-
atives, one was found in the 30 false positives. This false positive involved a
hunk labeled as non-bug-fix, but it actually included part of a fix for a concur-
rency issue. Specifically, it addressed a ConcurrentModificationException
that occurred multiple threads sharing a Java class loader, which should have
been supported. The reason for these misannotations could be that approxi-
mately 7.9% of the labeled lines in the Tangled Commits dataset were unin-
tentionally mislabeled and 14.3% of production code lines had no consensus
among annotators [10].

The next most common error in 19 of the 60 samples was with unre-
lated changes, i.e., changes that did not fix a bug in the code, among the
false positives. This is expected as unrelated changes often bring functional
changes, which can be difficult to distinguish from bug-fixes. One example
of an unrelated change that was misclassified was the following:

1 + if (this == obj) return true;

The description for this explained that ”...the workaround is to provide a
comparator”. However, the change above is unrelated to this description.

Another phenomenon we observed was GPT-4 identifying another issue
in the code that was fixed in the patch. This did not happen often, only
occurring in 4 out of the 60 samples, among the false positives. We can find
these occurrences by reading the generated knowledge. For example:

Knowledge: This hunk modifies the behavior of a map implemen-
tation to correctly track the ”dirty” state of its entries. Previ-
ously, the code would mark an entry as dirty whenever a new
value was put into the map, regardless of whether the new value
was different from the old value. The updated code removes the
key from the ‘keyStates‘ map first, then checks if the new value
is different from the old value. If they are different (or if the old
value is null), it marks the entry as dirty. This change ensures

16

that only genuinely modified entries are marked as dirty, improv-
ing performance by reducing unnecessary dirty state tracking.

This knowledge appears to be talking about a hunk that is a bug-fix, but the
description is about leaking input streams, so in reality this is a unique case
of an unrelated change, where the change is an unrelated bug-fix.

Another uncommon issue was with the descriptions provided to the model.
In 2 out of the 60 samples, from the false positives, the description did not
provide enough relevant details to be useful to the LLM. For example:

During reading the Ivy source code, I stumbled on this possible
issue. Please, see the attached patch.

Descriptions like these provide no input to the LLM as to what the issue is
and can lead to unrelated changes being labeled as bug-fixes.

There were very few mistakes regarding refactoring. This is easier to
identify compared to unrelated changes, so logically it follows that there
would be only a small amount of mistakes with this compared to unrelated
changes. Out of the 60 instances of mistakes, only two were refactoring
changes labeled as bug-fixes. A common example of refactoring is updating
code to reflect a change in name of a variable or function.

3.8. Human-in-the-Loop Dataset Curation

One avenue for improving software patch filtering is through joint hu-
man and LLM filtering. Prior studies have explored annotation schemes
that combine automated approaches with some level of human involvement.
Human-in-the-loop strategies can enhance predictive performance [12, 27]
and improve explainability [28]. For instance, INSPECTOR uses assistive
labeling to produce various scores for rating automatically generated anno-
tations, which human annotators can manually verify when scores fall below
a certain threshold [29]. Similarly, our approach generates confidence scores
for final labels. Setting a threshold for confidence scores could ensure that
labels with lower confidence are verified by a human annotator, potentially
increasing the reliability of the filtering process.

4. Impact of Cleaned Data on Vulnerability Prediction (RQ2)

Next, we discuss the experiments conducted to answer RQ2: Does fil-
tered software vulnerability patch data improve the performance of automated

17

software vulnerability prediction? We start by describing the BigVul dataset,
which is one of the most popular patch datasets available today. This is
followed by an outline of the metrics and the recent popular Software Vul-
nerability Prediction models we experimented with. We then present our
findings, discuss their implications, and perform an error analysis.

4.1. Dataset

For RQ2, we require a large-scale dataset focused on software vulnerabil-
ities to evaluate the impact of data cleaning on software vulnerability predic-
tion. We use the popular software vulnerabilities dataset BigVul [30], which
contains vulnerable and non-vulnerable (clean) functions extracted from the
NVD, to assess the efficacy of our chosen filtering method for training a
prediction model.

The dataset is split into five folds, ensuring that functions from the same
commit do not appear across different folds. We prepare two versions of the
dataset: (1) a filtered version using Generative Knowledge Prompting (our
best-performing method from RQ1) and (2) an unfiltered version. We train
software vulnerability prediction models on four of the filtered or unfiltered
folds and evaluate on a held-out, filtered test set.

4.2. Methodology

Using the aforementioned BigVul dataset, we experiement with training
different popular software vulnerability prediction models on the filtered and
unfiltered data. Specifically, we chose LineVul [31], CodeBERT [32], and
CodeT5 [33]. While LineVul is a technique that is specific for software vul-
nerability prediction, CodeBERT and CodeT5 are general language models
for source code. Therefore, CodeBERT and CodeT5’s configuration in our
experiments, as described below, follows that of recent research on software
vulnerability prediction [18]; we train both models for 10 epochs with a learn-
ing rate of 2× 10−7.

4.2.1. LineVul

LineVul is a deep neural network based model that is based on Code-
BERT, a pre-trained model specifically designed for programming languages.
LineVul first identifies vulnerable functions and then identifies specific lines
that are vulnerable using the underlying language model’s attention mech-
anism [34]. LineVul was recently evaluated as one of the best-performing
models among various vulnerability prediction approaches [35]. We use the

18

default parameters for LineVul, without setting the random seed, and train
for 10 epochs. We use the validation set F1 to pick the best checkpoint to
compute the metrics on the test set.

4.2.2. CodeBERT

A deep neural network based model that is designed for programming
languages. The architecture of CodeBERT is the same transformer-based
architecture as RoBERTa-base [36]. It is pre-trained on CodeSearchNet [37],
a bimodal and unimodal dataset of code and natural language. There are two
training objectives used. The first is Masked Language Modeling (MLM),
which where some individual tokens are masked and the goal is to predict
what was masked. This first objective is done with only the bimodal data.
The second is Replaced Token Detection (RTD). This objective is similar
to the MLM objective, but instead of just masking, it replaces the masked
input with some corrupt input, generated by a generator. To do this, it
uses both the unimodal and bimodal portions of the dataset. We add a
classification head, consisting of two linear layers, on top of this model to
map the generated representations to a label: vulnerable or not vulnerable.

4.2.3. CodeT5

CodeT5 is a deep neural network based model that is similar to Code-
BERT in the sense that it is also a pre-trained model designed for program-
ming languages, but the underlying model here is T5, and encoder-decoder
based transformer model, whereas CodeBERT is encoder-only. CodeT5 is
pre-trained on CodeSearchNet [37]. During training, it is introduced to
both code and a combination of code and natural language. The training
tasks used are Masked Span Prediction (MSP), Identifier Tagging (IT), and
Masked Identifier Prediction (MIP). MSP is similar to MLM, but in this
case, sequences or spans of tokens are masked. IT is, as the name implies,
predicting whether a code token is an identifier or not. Finally, MIP is simi-
lar to MLM as well, except only identifier tokens are masked. We again add
a classification head, consisting of two linear layers, on top of this model to
map the generated representations to a label: vulnerable or not vulnerable.

4.3. Metrics
We will use the metrics from RQ1 (i.e., precision, recall, F1-score, and

accuracy) again in RQ2. For details on these metrics, refer to Sections 3.2.1,
3.2.2, 3.2.3, and 3.2.4. We also leverage two additional metrics aimed at
imbalanced data.

19

4.3.1. Matthews Correlation Coefficient (MCC)
MCC measures the correlation between predicted and actual values.

MCC =
TN · TP − FN · FP√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)

4.3.2. AUC-ROC

AUC-ROC is the area under the receiver operator characteristic curve.
The curve itself shows the tradeoff between the True Positive Rate (TPR)
and the False Positive Rate (FPR), and the area under this curve is a single
numerical value to represent this. 1.0 represents perfect classification, and
0.5 is at the level of random guessing. Because it considers TPR and FPR, it
is better than accuracy for problems with class imbalances, like ours. TPR
is the same as recall, defined in 3.2.2, FPR is defined as follows.

FPR =
FP

FP + TN

4.3.3. AUC-PR

AUC-PR is similar to AUC-ROC, in that it is also area under the curve.
In this case, instead of measuring the tradeoff between FPR and TPR, we
measure the tradeoff between precision and recall. This is useful in the case
where datasets are imbalanced such that the majority class is the negative
class. Precision is defined earlier in 3.2.1, and recall is defined earlier in 3.2.2.

P-values are calculated using the Mann-Whitney U-test, which we use
because our data is not normally distributed, but the shape of the distribution
of the data is similar. This test ranks all data points, then, using this, a
Mann-Whitney U-test statistic is calculated.

4.4. Results

For this research question, we evaluate the model’s performance with
precision, recall, F1, MCC, Accuracy, AUC-ROC, and AUC-PR. In general,
we note that the most sophisticated method, LineVul [31], performs higher
than the other models we experiment with. The difference in accuracy is
smaller than the difference in other metrics.

Most notably, LineVul trained on the unfiltered and filtered data performs
at an average precision of 0.668 and 0.715 respectively, whereas CodeBERT
performs at 0.475 and 0.511, and CodeT5 performs at 0.532 and 0.578. Also
of note is the difference in terms of F1. LineVul performs at a 0.754 average

20

for both versions. CodeBERT performs at 0.556 and 0.573 in terms of F1,
and CodeT5 performs at a 0.594 and 0.616 in terms of F1. Performance for
these two models is lower than the reported results on the original BigVul
dataset in the PrimeVul study [18]; however we notice that CodeT5 still
performs at a slightly higher F1 than CodeBERT.

For LineVul specifically, there is a significant increase in precision when
training using the filtered datasest (+7.19%). With this comes a significant
drop in recall (-7.96%). Although, the drop in recall is lower on CodeBERT
(-2.89%) and CodeT5 (-3.17%) when compared against LineVul. Because the
drop is lower, the F1 increases slightly for those two models, with CodeBERT
increasing by 3.06% and CodeT5 increasing by 3.70%; however, the increase
in for CodeBERT is statistically insignificant. For LineVul, it remains the
same. MCC decreases slightly with the filtered LineVul model (-1.07%), but
for the other filtered models it increases slightly. Specifically, CodeBERT
increases by 3.80% in MCC, and CodeT5 increases by 4.53% in MCC. Accu-
racy slightly increases for LineVul, CodeBERT, and CodeT5 with increases
of 0.20%, 0.63%, 0.62% respectively, with the increase in the LineVul model
being statistically insignificant; conversely, AUC-ROC slightly decreases for
CodeBERT and CodeT5 by 0.47% and 0.12% respectively, but these values
are not statistically significant. There is a 9.25% gain in AUC-PR for Line-
Vul, but for the other models it is much less, at 2.16% for CodeBERT and
1.42% for CodeT5. Overall, the largest gains we observe are in precision, and
the largest losses we see are in recall, to a lesser degree.

For CodeBERT, the training times showed a slight reduction when using
the filtered dataset. On average, training on the unfiltered dataset took
35,807 ± 972 seconds, while training on the filtered dataset required 35,097
± 1,034 seconds. This corresponds to a 1.98% decrease in training time.
Notably, this reduction occurs despite the dataset size remaining unchanged,
suggesting that correcting the labels of hunks leads to a slightly more efficient
learning process for vulnerability prediction models.

4.5. Implications

We observe the biggest gains in precision and the biggest drop in recall.
This leads to an overall slight increase in F1, which is different from what was
observed in the PrimeVul study [18], where the F1 significantly dropped on
the PrimeVul dataset due to the original dataset’s quality and exact copies
being present, which inflated performance.

21

Table 2: Comparison of Software Vulnerability Prediction models using Filtered and Un-
filtered training data.
Model Training Data Precision Recall F1 MCC Accuracy AUC-ROC AUC-PR

LineVul

Unfiltered 0.668± 0.033 0.867± 0.025 0.754± 0.023 0.748± 0.021 0.976± 0.003 0.948± 0.017 0.692± 0.030
Filtered 0.716± 0.033 0.798± 0.033 0.754± 0.019 0.740± 0.019 0.978± 0.003 0.948± 0.014 0.756± 0.031

+/- +7.19% -7.96% 0.00% -1.07% +0.20% 0.00% +9.25%

p-value 5.9e− 05 6.3e− 11 8.40e− 02 3.27e− 02 1.09e− 01 1.24e− 01 1.92e− 08

CodeBERT
Unfiltered 0.475± 0.027 0.761± 0.024 0.556± 0.023 0.658± 0.024 0.955± 0.005 0.844± 0.019 0.835± 0.005
Filtered 0.511± 0.038 0.739± 0.023 0.573± 0.028 0.683± 0.023 0.961± 0.005 0.84± 0.02 0.853± 0.011

+/- +7.58% -2.89% +3.06% +3.80% +0.63% -0.47% +2.16%

p-value 1.67e− 3 1.45e− 2 5.02e− 2 1.96e− 3 3.16e− 3 2.67e− 1 1.13e− 4

CodeT5
Unfiltered 0.532± 0.022 0.756± 0.027 0.594± 0.017 0.706± 0.014 0.964± 0.004 0.842± 0.02 0.846± 0.006
Filtered 0.578± 0.022 0.732± 0.028 0.616± 0.014 0.738± 0.014 0.97± 0.003 0.841± 0.02 0.858± 0.01

+/- +8.65% -3.17% +3.70% +4.53% +0.62% -0.12% +1.42%

p-value 1.18e− 5 1.86e− 2 1.41e− 3 3.51e− 6 1.41e− 4 9.83e− 1 4.27e− 3

By relabeling the mislabeled functions using our approach, we are effec-
tively teaching the models to be more selective than before, which naturally
leads to an increase in precision. A natural tradeoff with precision going up
is recall going down. We attribute the drop in recall to the fact that filtering
significantly reduced the proportion of vulnerable functions in the dataset
from 6.2% to 4.4%. This approximately 29% reduction makes the data even
more imbalanced, which may have caused the trained vulnerability prediction
models to become overly conservative. If the models become more selective,
they are more prone to missing vulnerabilities. The gains in precision being
greater than the drop in recall suggests that the filtering accomplishes more
than reducing the number of positives; it adds to the quality of the dataset.
If it was just reducing the number of positives, then the precision would not
outweigh the recall, and the F1 would not increase.

The implications of our approach extend to improving vulnerability dataset
quality while reducing reliance on costly and non-scalable manual validation.
Public vulnerability sources, such as the National Vulnerability Database
(NVD), often contain incomplete or incorrect information [11, 38]. Man-
ual validation improves data quality but is slow, expensive, and requires
familiarity with different software projects [39]. LLM-based patch filtering
can remove mislabeled or extraneous patches, improving the reliability of
vulnerability prediction models while reducing manual effort. By leverag-
ing contextual reasoning, we observe that our approach improves precision
without significantly reducing relevant data, leading to improvements vul-
nerability prediction model performance. This introduces and approach for
security teams to curate high-quality datasets at scale, improve automated
vulnerability detection, and reduce false positives, allowing them to address
real security threats more effectively.

22

4.6. Error Analysis

To understand the types of errors that the models trained on the filtered
dataset make compared to the models trained on the unfiltered dataset, we
examine the false negatives and false positives predicted from the models
trained on the filtered dataset. Specifically, we look at cases where these
predictions differed from the models trained on the unfiltered dataset. We
randomly sample 30 false positives and 30 false negatives, i.e. a total of 60
samples from one of the folds from the LineVul experiments since this model
performed higher than the other models as observed earlier. When classifying
the reasons for the error, when provided, we analyze the summary, commit
message, and the specific changes to the code.

Among the 30 false negatives, we found only 13 actual errors in predic-
tion. False negatives in this case are when the filtered model predicts not
vulnerable and the ground truth is vulnerable. The types of these errors
varied greatly, but some examples include overflows, heap corruption, etc.
The rest of the 17 errors with the false negatives involved incorrect original
annotation, that was not able to be filtered with our method.

One very common type of annotation error was unrelated changes being
labeled as positives in the original annotation, making up 13 out of the 30
false negatives. These changes often included the addition of features, not
fixes to vulnerabilities. An example is the following:

1 void PaletteTool :: RegisterToolInstances(PaletteToolManager* tool_manager) {

2 tool_manager ->AddTool(base:: MakeUnique <CaptureRegionAction >(tool_manager)

);

3 tool_manager ->AddTool(base:: MakeUnique <CaptureScreenAction >(tool_manager)

);

4 tool_manager ->AddTool(base:: MakeUnique <CreateNoteAction >(tool_manager));

5 + tool_manager ->AddTool(base:: MakeUnique <MagnifierMode >(tool_manager));

6 }

In this example from Chromium, this function is a part of adding a partial
magnifier to the software. This is adding a feature, not fixing a software
vulnerability, so it is an unrelated change.

Another case we observed was bugfixes. These differ from vulnerabilities
as they do not inherently cause a security risk. There were only four cases
of bugfixes in the false negatives. These required us to examine both the
commit messages and code. The commit messages, particularly, were very
indicative of whether a change was bugfix or not. An example of such a
commit message is the following:

23

Make NotifyHeadersComplete the last call in the function.
BUG=82903 ...

With regards to the false positives, all 30 sampled were all errors with
the predictions, not the dataset. Upon examining each sample’s function, we
found these functions were unchanged in the patch. With our approach, we
filter the positive samples and, when applicable, relabel them to negative.
Interestingly, upon further investigation, it appears that all 30 of these sam-
ples are labeled from the original annotation, not from our filtering of the
positive labeled samples.

5. Related Work

We organize the research related to this paper into four different cate-
gories: 1) vulnerability data curation and filtering techniques; 2) recent soft-
ware vulnerability prediction techniques; 3) LLMs for Software Engineering
tasks; and 4) applications of prompting to related tasks.

The majority of vulnerability patch datasets directly curate data from
the National Vulnerability Database (NVD) or similar public sources. The
research community has diligently contributed to curating multiple vulner-
ability patch datasets [40, 41, 42, 43, 44, 45, 46, 20, 47]. However, the cur-
rent set of curated datasets do not limit the noise and error present in the
NVD. Therefore, the quality of vulnerability patch datasets is a pressing
concern. One way to enhance dataset quality is through manual curation,
as exemplified by the SAP dataset, which is curated by developer teams at
SAP [46]. However, manual methods face scalability issues due to the exten-
sive manual review required. Manual patch review is time-consuming even
for software security experts as they are usually unfamiliar with the spe-
cific software projects that are patched. An alternative to enhancing dataset
quality without the scalability issues presented by manual curation is to filter
the datasets using semi-automated curation techniques. An example of this
is using active learning [12, 27] to identify key instances to manually label.
There are also fully-automated curation techniques, typically also using deep
learning [48, 19, 49, 50].

The field of software vulnerability prediction addresses the demand for
detecting and/or classifying vulnerabilities before they are discovered and
exploited. Software vulnerability prediction tends to follow trends and de-
velopments in Natural Language Processing, as code is ultimately text. Thus,

24

modern software vulnerability prediction models predominantly use deep
learning. There are a number of different architectures that are used for
software vulnerability prediction, including Convolutional Neural Networks
(CNNs) [51, 52, 53], Recurrent Neural Networks (RNNs) [54, 55, 56, 57],
Graph Neural Networks (GNNs) [58, 59, 60, 61], and Transformers [31, 62].

Large Language Models (LLMs) are increasingly applied across diverse
software engineering tasks, offering new capabilities for automation. In re-
quirements engineering, LLMs support use cases such as eliciting, analyzing,
and even partially generating software requirements [63]. In code generation,
they assist in producing boilerplate code, implementing common patterns,
and accelerating prototyping workflows [64]. For program repair, LLMs are
used to generate candidate patches, fix common bugs, and suggest alterna-
tives informed by training data [65]. In test case generation, LLMs help by
creating unit and integration tests from function signatures or docstrings,
enabling broader coverage with minimal manual input [66]. They are also
applied in defect prediction to analyze historical code and commit patterns
to forecast likely fault-prone components [67]. In vulnerability prediction,
LLMs have been leveraged to detect potential security flaws in codebases,
enhancing traditional static analysis methods [18]. Despite this range of ap-
plications, effective deployment of LLMs still faces challenges in reliability,
alignment with developer intent, and the need for verification of their output.

Deep learning methods are data-hungry, and large amounts of reliable
data are not always available for software vulnerability prediction and other
related fields. Generative LLMs like Llama and GPT provide an alterna-
tive by using prompting to extract relevant patterns and provide additional
context. Some examples of where prompting is used in relation to software
vulnerability tasks include software vulnerability prediction and software vul-
nerability repair. Prompting for software vulnerability prediction varies in
approach. Chain-of-Thought prompting is very popular among advanced
prompting techniques. This is used both in the zero-shot form [68, 69] and in
the few-shot form [70]. Another approach implemented by some is to prompt-
tune, as opposed to manually choosing prompts and examples [71] For vul-
nerability repair using prompting, once again Chain-of-Thought prompting
is used [70] along with specialized zero-shot prompting [72]. Recently, Yu
Nong et al. introduced LLMPatch, an automated patch generation system
that harnesses pre-trained LLMs and adaptive chain-of-thought prompting
to fix vulnerabilities [73]. Similarly, VRpilot uses a chain-of-thought prompt
for automatic vulnerability repair. The LLM reasons about vulnerable code,

25

and then iteratively refines the patch based on external feedback (compiler
errors, sanitizer outputs, test results) [74].

Prompting has been used for a few related software vulnerability related
tasks, but not extensively and not for data curation on software vulnerability
datasets specifically. Our work aims to address this gap by investigating
the potential of using different prompting techniques and LLMs for filtering
noisy data, and ultimately, identifying the impact of said filtering on the
performance of a Deep Learning model on the task of software vulnerability
prediction.

6. Threats to Validity

LLMs have many hyperparameters that can introduce bias into experi-
ments, creating a threat to internal validity. Particularly, there is one hyper-
parameter known as temperature which changes the randomness or creativity
of responses. To mitigate this, we set the temperature to 0 to reduce vari-
ance as much as possible. For Generated Knowledge Prompting in RQ1, we
generate knowledge three times, use each knowledge to generate a label and
confidence score, and pick the label with the highest confidence. This way,
we address the variance in the generated knowledge.

In RQ1, the best and chosen approach to use on RQ2 had an accuracy of
0.74, which suggests that the filtration may worsen the quality of the dataset
we test with in RQ2, creating a threat to construct validity. From our error
analysis in RQ1, though, we approximate that half of the errors were due to
mislabeling in the dataset, so the quality of the data after filtering with our
method is of higher quality than the metrics may make it seem.

Because we observe numerous instances where the data has been anno-
tated incorrectly, it is unclear whether the predictions marked as correct are
predicting on mislabeled data, introducing a threat to internal validity. How-
ever, this dataset is considered the gold standard for annotation, considering
it was manually annotated. We believe that the incorrect annotations we
encountered were exceptions.

For RQ1, we use a bug-fix dataset to determine the best prompting strat-
egy for filtering. However, this is on a bug-fix dataset, not a software vul-
nerability dataset. The same approach on one task may not have the same
performance on the other task, even if those tasks are similar, creating a
threat to internal validity. We modify our prompts slightly to be more ap-
plicable to the task it is addressing, as we discuss earlier.

26

LLMs are known to hallucinate, which could introduce incorrect filtering
decisions. To mitigate this, we use structured prompts that constrain re-
sponses and focus on factual reasoning. Additionally, LLMs are pre-trained
on open-source data, potentially including open-source vulnerability datasets,
which could bias their performance. While this may improve their familiar-
ity with software patches, it also risks data leakage, which we attempt to
minimize by testing across multiple LLMs with different architectures.

In RQ2, we only run our experiments on a few models. It is possible
that on other models, the conclusions we make will not hold, introducing a
threat to external validity. However, the results across these models were
consistent in terms of performance change when training with the filtered or
unfiltered dataset, which suggests that this will hold even on different models.
Additionally, these models are popular for software vulnerability prediction.

Finally, the sampling of the data itself is a threat to external validity, as
it cannot be confirmed that the data sampled will be representative of future
vulnerabilities. The dataset we use samples across multiple different projects
to mitigate the bias that would be introduced by just using one.

7. Conclusions

This paper explored the efficacy of using LLMs for improving the quality
of software vulnerability patch data. To investigate this, we employed var-
ious prompting strategies to guide LLMs in filtering noisy patches, applied
the most effective approach, Generated Knowledge Prompting, to the BigVul
dataset, and evaluated the impact of this filtered data on the performance
of three popular automated vulnerability prediction models. Our findings
demonstrated that Generated Knowledge Prompting significantly enhances
the precision of filtering, resulting in a 7-8% in precision (while recall drops)
and marginal improvement in accuracy across popular models such as Line-
Vul, CodeBERT, and CodeT5. Overall, our results highlight the potential of
LLMs, particularly when guided by effective prompting strategies, to not only
refine the quality of vulnerability patch data but also improve the reliability
and precision of downstream vulnerability prediction models.

However, there are areas for further investigation. Our error analysis
revealed that while precision improved, there was a slight trade-off in re-
call. This suggests that further refinement in LLM prompting strategies,
LLM fine tuning, or integration of human-in-the-loop processes could help
mitigate these limitations. Additionally, future research could explore the

27

application of other advanced LLMs to enhance both the filtering process
and the interpretative accuracy of vulnerability patches in diverse software
engineering contexts. Our approach could also be extended to filter other
types of noise, addressing additional data quality attributes like consistency
and completeness, as highlighted by Croft et al. [39]. This study provides an
initial attempt at leveraging LLMs in software vulnerability data curation,
offering a promising avenue for future empirical research to refine and expand
upon these findings across different datasets and prediction models.

References

[1] National Vulnerability Database, https://nvd.nist.gov/ (2024).

[2] Snyk Vulnerability Database, https://security.snyk.io/ (2024).

[3] GitHub Advisory Database, https://github.com/advisories (2024).

[4] S. Yao, D. Yu, J. Zhao, I. Shafran, T. Griffiths, Y. Cao, K. Narasimhan,
Tree of thoughts: Deliberate problem solving with large language mod-
els, Advances in Neural Information Processing Systems 36 (2024).

[5] M. Besta, N. Blach, A. Kubicek, R. Gerstenberger, M. Podstawski,
L. Gianinazzi, J. Gajda, T. Lehmann, H. Niewiadomski, P. Nyczyk,
et al., Graph of thoughts: Solving elaborate problems with large lan-
guage models, in: Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 38, 2024, pp. 17682–17690.

[6] L. LUO, Y.-F. Li, R. Haf, S. Pan, Reasoning on graphs: Faithful and
interpretable large language model reasoning, in: The Twelfth Interna-
tional Conference on Learning Representations, 2024.

[7] J. Liu, A. Liu, X. Lu, S. Welleck, P. West, R. L. Bras, Y. Choi, H. Ha-
jishirzi, Generated knowledge prompting for commonsense reasoning
(2022). arXiv:2110.08387.
URL https://arxiv.org/abs/2110.08387

[8] A. Alali, H. Kagdi, J. I. Maletic, What’s a typical commit? a char-
acterization of open source software repositories, in: 2008 16th IEEE
International Conference on Program Comprehension, 2008, pp. 182–
191. doi:10.1109/ICPC.2008.24.

28

https://nvd.nist.gov/
https://security.snyk.io/
https://github.com/advisories
https://arxiv.org/abs/2110.08387
http://arxiv.org/abs/2110.08387
https://arxiv.org/abs/2110.08387
https://doi.org/10.1109/ICPC.2008.24

[9] E. W. Myers, Ano(nd) difference algorithm and its variations, Algorith-
mica 1 (1–4) (2023) 251–266. doi:10.1007/BF01840446.

[10] S. Herbold, A. Trautsch, B. Ledel, A. Aghamohammadi, T. A. Ghaleb,
K. K. Chahal, T. Bossenmaier, B. Nagaria, P. Makedonski, M. N. Ah-
madabadi, K. Szabados, H. Spieker, M. Madeja, N. Hoy, V. Lenar-
duzzi, S. Wang, G. Rodŕıguez-Pérez, R. Colomo-Palacios, R. Verdec-
chia, P. Singh, Y. Qin, D. Chakroborti, W. Davis, V. Walunj, H. Wu,
D. Marcilio, O. Alam, A. Aldaeej, I. Amit, B. Turhan, S. Eismann, A.-
K. Wickert, I. Malavolta, M. Sulir, F. Fard, A. Z. Henley, S. Kourtzani-
dis, E. Tuzun, C. Treude, S. M. Shamasbi, I. Pashchenko, M. Wyrich,
J. Davis, A. Serebrenik, E. Albrecht, E. U. Aktas, D. Strüber, J. Erbel,
Large-scale manual validation of bug fixing commits: A fine-grained
analysis of tangling (2020). arXiv:2011.06244.

[11] X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, M. Yang, Lo-
cating the Security Patches for Disclosed OSS Vulnerabilities with
Vulnerability-Commit Correlation Ranking, in: Proceedings of the 2021
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’21, 2021, pp. 3282–3299, event-place: Virtual Event, Republic of
Korea.

[12] A. K. Joshy, M. S. Alam, S. Sharmin, Q. Li, W. Le, Activeclean: Gen-
erating line-level vulnerability data via active learning (2023). arXiv:

2312.01588.
URL https://arxiv.org/abs/2312.01588

[13] Z. Chen, S. Kommrusch, M. Monperrus, Neural transfer learning for re-
pairing security vulnerabilities in c code, IEEE Transactions on Software
Engineering 49 (1) (2023) 147–165. doi:10.1109/TSE.2022.3147265.

[14] J. Chi, Y. Qu, T. Liu, Q. Zheng, H. Yin, SeqTrans: Automatic
Vulnerability Fix Via Sequence to Sequence Learning , IEEE
Transactions on Software Engineering 49 (02) (2023) 564–585.
doi:10.1109/TSE.2022.3156637.
URL https://doi.ieeecomputersociety.org/10.1109/TSE.2022.

3156637

[15] Y. Shin, L. Williams, Can traditional fault prediction models be used

29

https://doi.org/10.1007/BF01840446
http://arxiv.org/abs/2011.06244
https://arxiv.org/abs/2312.01588
https://arxiv.org/abs/2312.01588
http://arxiv.org/abs/2312.01588
http://arxiv.org/abs/2312.01588
https://arxiv.org/abs/2312.01588
https://doi.org/10.1109/TSE.2022.3147265
https://doi.ieeecomputersociety.org/10.1109/TSE.2022.3156637
https://doi.ieeecomputersociety.org/10.1109/TSE.2022.3156637
https://doi.org/10.1109/TSE.2022.3156637
https://doi.ieeecomputersociety.org/10.1109/TSE.2022.3156637
https://doi.ieeecomputersociety.org/10.1109/TSE.2022.3156637

for vulnerability prediction?, Empirical Software Engineering 18 (2013)
25–59.

[16] L. Yang, X. Li, Y. Yu, Vuldigger: A just-in-time and cost-aware tool for
digging vulnerability-contributing changes, in: GLOBECOM 2017-2017
IEEE Global Communications Conference, IEEE, 2017, pp. 1–7.

[17] F. Lomio, E. Iannone, A. De Lucia, F. Palomba, V. Lenarduzzi, Just-
in-time software vulnerability detection: Are we there yet?, Journal of
Systems and Software 188 (2022) 111283.

[18] Y. Ding, Y. Fu, O. Ibrahim, C. Sitawarin, X. Chen, B. Alomair, D. Wag-
ner, B. Ray, Y. Chen, Vulnerability detection with code language mod-
els: How far are we?, in: 2025 IEEE/ACM 47th International Confer-
ence on Software Engineering (ICSE), IEEE Computer Society, 2024,
pp. 469–481.

[19] S. Wang, Y. Zhang, L. Bao, X. Xia, M. Wu, Vcmatch: A ranking-based
approach for automatic security patches localization for oss vulnera-
bilities, in: 2022 IEEE International Conference on Software Analy-
sis, Evolution and Reengineering (SANER), 2022, pp. 589–600. doi:

10.1109/SANER53432.2022.00076.

[20] T. G. Nguyen, T. Le-Cong, H. J. Kang, X.-B. D. Le, D. Lo, VulCurator:
A Vulnerability-Fixing Commit Detector (Sep. 2022). doi:10.48550/

arXiv.2209.03260.
URL http://arxiv.org/abs/2209.03260

[21] N. Jain, K. Han, A. Gu, W.-D. Li, F. Yan, T. Zhang, S. Wang, A. Solar-
Lezama, K. Sen, I. Stoica, Livecodebench: Holistic and contamination
free evaluation of large language models for code (2024). arXiv:2403.
07974.
URL https://arxiv.org/abs/2403.07974

[22] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, Y. Iwasawa, Large language
models are zero-shot reasoners (2023). arXiv:2205.11916.
URL https://arxiv.org/abs/2205.11916

[23] Z. Yan, Prompting fundamentals and how to apply them effectively,
eugeneyan.com (May 2024).

30

https://doi.org/10.1109/SANER53432.2022.00076
https://doi.org/10.1109/SANER53432.2022.00076
http://arxiv.org/abs/2209.03260
http://arxiv.org/abs/2209.03260
https://doi.org/10.48550/arXiv.2209.03260
https://doi.org/10.48550/arXiv.2209.03260
http://arxiv.org/abs/2209.03260
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
http://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
http://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916

[24] V. Shwartz, P. West, R. Le Bras, C. Bhagavatula, Y. Choi, Unsuper-
vised commonsense question answering with self-talk, in: B. Webber,
T. Cohn, Y. He, Y. Liu (Eds.), Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Processing (EMNLP), As-
sociation for Computational Linguistics, Online, 2020, pp. 4615–4629.
doi:10.18653/v1/2020.emnlp-main.373.

[25] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi,
Q. V. Le, D. Zhou, Chain-of-thought prompting elicits reasoning in large
language models, in: S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave,
K. Cho, A. Oh (Eds.), Advances in Neural Information Processing Sys-
tems, Vol. 35, Curran Associates, Inc., 2022, pp. 24824–24837.

[26] A. Talmor, J. Herzig, N. Lourie, J. Berant, Commonsenseqa: A question
answering challenge targeting commonsense knowledge (2019). arXiv:

1811.00937.
URL https://arxiv.org/abs/1811.00937

[27] Z. Yu, C. Theisen, L. Williams, T. Menzies, Improving vulnerability
inspection efficiency using active learning, IEEE Transactions on Soft-
ware Engineering 47 (11) (2021) 2401–2420. doi:10.1109/tse.2019.

2949275.

[28] I. Arous, L. Dolamic, J. Yang, A. Bhardwaj, G. Cuccu, P. Cudré-
Mauroux, Marta: Leveraging human rationales for explainable text clas-
sification, Proceedings of the AAAI Conference on Artificial Intelligence
35 (7) (2021) 5868–5876. doi:10.1609/aaai.v35i7.16734.

[29] H. J. Kang, F. Harel-Canada, M. A. Gulzar, V. Peng, M. Kim, Human-
in-the-loop synthetic text data inspection with provenance tracking
(2024). arXiv:2404.18881.
URL https://arxiv.org/abs/2404.18881

[30] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A c/c++ code vulnerability
dataset with code changes and cve summaries, in: Proceedings of the
17th International Conference on Mining Software Repositories, MSR
’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 508–512. doi:10.1145/3379597.3387501.

31

https://doi.org/10.18653/v1/2020.emnlp-main.373
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
http://arxiv.org/abs/1811.00937
http://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://doi.org/10.1109/tse.2019.2949275
https://doi.org/10.1109/tse.2019.2949275
https://doi.org/10.1609/aaai.v35i7.16734
https://arxiv.org/abs/2404.18881
https://arxiv.org/abs/2404.18881
http://arxiv.org/abs/2404.18881
https://arxiv.org/abs/2404.18881
https://doi.org/10.1145/3379597.3387501

[31] M. Fu, C. Tantithamthavorn, Linevul: A transformer-based line-level
vulnerability prediction, in: 2022 IEEE/ACM 19th International Con-
ference on Mining Software Repositories (MSR), 2022, pp. 608–620.
doi:10.1145/3524842.3528452.

[32] Z. Feng, D. Guo, D. Tang, N. Duan, X. Feng, M. Gong, L. Shou, B. Qin,
T. Liu, D. Jiang, M. Zhou, Codebert: A pre-trained model for program-
ming and natural languages (2020). arXiv:2002.08155.

[33] Y. Wang, W. Wang, S. Joty, S. C. H. Hoi, Codet5: Identifier-aware
unified pre-trained encoder-decoder models for code understanding and
generation (2021). arXiv:2109.00859.

[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, I. Polosukhin, Attention is all you need (2023). arXiv:1706.
03762.

[35] B. Steenhoek, M. M. Rahman, R. Jiles, W. Le, An empirical study of
deep learning models for vulnerability detection, in: 2023 IEEE/ACM
45th International Conference on Software Engineering (ICSE), IEEE,
2023, pp. 2237–2248.

[36] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, V. Stoyanov, Roberta: A robustly optimized bert pre-
training approach (2019). arXiv:1907.11692.

[37] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, M. Brockschmidt, Code-
searchnet challenge: Evaluating the state of semantic code search (2020).
arXiv:1909.09436.

[38] S. Wang, Y. Zhang, L. Bao, X. Xia, M. Wu, VCMatch: A ranking-based
approach for automatic security patches localization for oss vulnerabili-
ties, in: 2022 IEEE International Conference on Software Analysis, Evo-
lution and Reengineering (SANER), IEEE, IEEE, 2022, pp. 589–600.

[39] R. Croft, M. A. Babar, M. M. Kholoosi, Data quality for software vul-
nerability datasets, in: 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE), IEEE, 2023, pp. 121–133.

32

https://doi.org/10.1145/3524842.3528452
http://arxiv.org/abs/2002.08155
http://arxiv.org/abs/2109.00859
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1909.09436

[40] S. Rei, R. Abreu, A Database of Existing Vulnerabilities to Enable Con-
trolled Testing Studies, International Journal of Secure Software Engi-
neering (IJSSE) 8 (3) (2017) 1–23. doi:10.4018/IJSSE.2017070101.

[41] M. Jimenez, Y. Le Traon, M. Papadakis, [Engineering Paper] Enabling
the Continuous Analysis of Security Vulnerabilities with VulData7, in:
2018 IEEE 18th International Working Conference on Source Code Anal-
ysis and Manipulation (SCAM), 2018, pp. 56–61. doi:10.1109/SCAM.

2018.00014.

[42] X. Wang, K. Sun, A. Batcheller, S. Jajodia, Detecting ”0-Day” Vul-
nerability: An Empirical Study of Secret Security Patch in OSS, in:
2019 49th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), 2019, pp. 485–492. doi:10.1109/DSN.

2019.00056.

[43] J. Fan, Y. Li, S. Wang, T. N. Nguyen, A C/C++ Code Vulnerability
Dataset with Code Changes and CVE Summaries, in: Proceedings of the
17th International Conference on Mining Software Repositories, MSR
’20, Association for Computing Machinery, New York, NY, USA, 2020,
pp. 508–512. doi:10.1145/3379597.3387501.

[44] S. Reis, R. Abreu, A ground-truth dataset of real security patches (Oct.
2021). doi:10.48550/arXiv.2110.09635.
URL http://arxiv.org/abs/2110.09635

[45] G. Bhandari, A. Naseer, L. Moonen, CVEfixes: automated collection
of vulnerabilities and their fixes from open-source software, in: Pro-
ceedings of the 17th International Conference on Predictive Models
and Data Analytics in Software Engineering, PROMISE 2021, Associa-
tion for Computing Machinery, New York, NY, USA, 2021, pp. 30–39.
doi:10.1145/3475960.3475985.

[46] S. E. Ponta, H. Plate, A. Sabetta, M. Bezzi, C. Dangremont, A
Manually-Curated Dataset of Fixes to Vulnerabilities of Open-Source
Software (Mar. 2019). doi:10.48550/arXiv.1902.02595.
URL http://arxiv.org/abs/1902.02595

[47] Vulncode-DB, https://www.vulncode-db.com/ (2024).

33

https://doi.org/10.4018/IJSSE.2017070101
https://doi.org/10.1109/SCAM.2018.00014
https://doi.org/10.1109/SCAM.2018.00014
https://doi.org/10.1109/DSN.2019.00056
https://doi.org/10.1109/DSN.2019.00056
https://doi.org/10.1145/3379597.3387501
http://arxiv.org/abs/2110.09635
https://doi.org/10.48550/arXiv.2110.09635
http://arxiv.org/abs/2110.09635
https://doi.org/10.1145/3475960.3475985
http://arxiv.org/abs/1902.02595
http://arxiv.org/abs/1902.02595
http://arxiv.org/abs/1902.02595
https://doi.org/10.48550/arXiv.1902.02595
http://arxiv.org/abs/1902.02595
https://www.vulncode-db.com/

[48] X. Tan, Y. Zhang, C. Mi, J. Cao, K. Sun, Y. Lin, M. Yang, Locating
the security patches for disclosed oss vulnerabilities with vulnerability-
commit correlation ranking, in: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’21, As-
sociation for Computing Machinery, New York, NY, USA, 2021, pp.
3282–3299. doi:10.1145/3460120.3484593.

[49] J. Zhang, X. Hu, L. Bao, X. Xia, S. Li, Dual prompt-based few-shot
learning for automated vulnerability patch localization, in: 2024 IEEE
International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 2024, pp. 940–951. doi:10.1109/SANER60148.2024.
00102.

[50] K. Shen, Y. Zhang, L. Bao, Z. Wan, Z. Li, M. Wu, Patchmatch:
A tool for locating patches of open source project vulnerabilities, in:
2023 IEEE/ACM 45th International Conference on Software Engineer-
ing: Companion Proceedings (ICSE-Companion), 2023, pp. 175–179.
doi:10.1109/ICSE-Companion58688.2023.00049.

[51] Z. Han, X. Li, Z. Xing, H. Liu, Z. Feng, Learning to predict severity
of software vulnerability using only vulnerability description, in: 2017
IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 125–136. doi:10.1109/ICSME.2017.52.

[52] N. Marastoni, R. Giacobazzi, M. Dalla Preda, A deep learning approach
to program similarity, in: Proceedings of the 1st International Workshop
on Machine Learning and Software Engineering in Symbiosis, MASES
2018, Association for Computing Machinery, New York, NY, USA, 2018,
pp. 26–35. doi:10.1145/3243127.3243131.

[53] R. Russell, L. Kim, L. Hamilton, T. Lazovich, J. Harer, O. Ozdemir,
P. Ellingwood, M. McConley, Automated vulnerability detection
in source code using deep representation learning, in: 2018 17th
IEEE International Conference on Machine Learning and Applications
(ICMLA), 2018, pp. 757–762. doi:10.1109/ICMLA.2018.00120.

[54] Y. Mao, Y. Li, J. Sun, Y. Chen, Explainable software vulnerability de-
tection based on attention-based bidirectional recurrent neural networks,
in: 2020 IEEE International Conference on Big Data (Big Data), 2020,
pp. 4651–4656. doi:10.1109/BigData50022.2020.9377803.

34

https://doi.org/10.1145/3460120.3484593
https://doi.org/10.1109/SANER60148.2024.00102
https://doi.org/10.1109/SANER60148.2024.00102
https://doi.org/10.1109/ICSE-Companion58688.2023.00049
https://doi.org/10.1109/ICSME.2017.52
https://doi.org/10.1145/3243127.3243131
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/BigData50022.2020.9377803

[55] Z. Li, D. Zou, S. Xu, X. Ou, H. Jin, S. Wang, Z. Deng, Y. Zhong,
Vuldeepecker: A deep learning-based system for vulnerability detection,
in: Proceedings 2018 Network and Distributed System Security Sympo-
sium, NDSS 2018, Internet Society, 2018. doi:10.14722/ndss.2018.

23158.

[56] H. Wei, M. Li, Supervised deep features for software functional clone
detection by exploiting lexical and syntactical information in source
code, in: Proceedings of the Twenty-Sixth International Joint Confer-
ence on Artificial Intelligence, IJCAI-17, 2017, pp. 3034–3040. doi:

10.24963/ijcai.2017/423.

[57] Z. Li, D. Zou, S. Xu, H. Jin, Y. Zhu, Z. Chen, Sysevr: A framework for
using deep learning to detect software vulnerabilities, IEEE Transactions
on Dependable and Secure Computing 19 (4) (2022) 2244–2258. doi:

10.1109/tdsc.2021.3051525.

[58] Y. Zhou, S. Liu, J. Siow, X. Du, Y. Liu, Devign: Effective vulnera-
bility identification by learning comprehensive program semantics via
graph neural networks, in: H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, R. Garnett (Eds.), Advances in Neural Infor-
mation Processing Systems, Vol. 32, Curran Associates, Inc., 2019.

[59] X. Cheng, H. Wang, J. Hua, G. Xu, Y. Sui, Deepwukong: Stati-
cally detecting software vulnerabilities using deep graph neural net-
work, ACM Trans. Softw. Eng. Methodol. 30 (3) (Apr. 2021). doi:

10.1145/3436877.

[60] S. Cao, X. Sun, L. Bo, Y. Wei, B. Li, Bgnn4vd: Constructing bidi-
rectional graph neural-network for vulnerability detection, Information
and Software Technology 136 (2021) 106576. doi:https://doi.org/

10.1016/j.infsof.2021.106576.

[61] D. Hin, A. Kan, H. Chen, M. A. Babar, Linevd: statement-level vul-
nerability detection using graph neural networks, in: Proceedings of the
19th International Conference on Mining Software Repositories, MSR
’22, Association for Computing Machinery, New York, NY, USA, 2022,
pp. 596–607. doi:10.1145/3524842.3527949.

35

https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.14722/ndss.2018.23158
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.24963/ijcai.2017/423
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.1109/tdsc.2021.3051525
https://doi.org/10.1145/3436877
https://doi.org/10.1145/3436877
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106576
https://doi.org/10.1145/3524842.3527949

[62] C. Thapa, S. I. Jang, M. E. Ahmed, S. Camtepe, J. Pieprzyk, S. Nepal,
Transformer-based language models for software vulnerability detection,
in: Proceedings of the 38th Annual Computer Security Applications
Conference, ACSAC ’22, Association for Computing Machinery, New
York, NY, USA, 2022, pp. 481–496. doi:10.1145/3564625.3567985.

[63] C. Arora, J. Grundy, M. Abdelrazek, Advancing requirements engi-
neering through generative ai: Assessing the role of llms, in: Gen-
erative AI for Effective Software Development, Springer, 2024. doi:

10.1007/978-3-031-55642-5_6.

[64] F. Mu, L. Shi, S. Wang, Z. Yu, B. Zhang, C. Wang, S. Liu, Q. Wang,
ClarifyGPT: A framework for enhancing LLM-based code generation via
requirements clarification, in: Proceedings of the 32nd ACM/IEEE In-
ternational Conference on Software Engineering (ICSE), 2024, to appear
in ESEC/FSE-2024 Research Track.

[65] C. S. Xia, Y. Wei, L. Zhang, Automated program repair in the era of
large pre-trained language models, in: Proceedings of the 45th Interna-
tional Conference on Software Engineering (ICSE), IEEE Press, 2023,
pp. 1482–1494.

[66] Z. Yuan, M. Liu, S. Ding, K. Wang, Y. Chen, X. Peng, Y. Lou, No more
manual tests? evaluating and improving chatgpt for unit test generation,
Proceedings of the ACM on Software Engineering (ESEC/FSE) 1 (Issue
FSE) (2024) Article 76, 24 pages. doi:10.1145/3624032.3624035.

[67] S. B. Hossain, N. Jiang, Q. Zhou, X. Li, W. Chiang, Y. Lyu, H. Nguyen,
O. Tripp, A deep dive into large language models for automated bug lo-
calization and repair, Proceedings of the ACM on Software Engineering
(ESEC/FSE) 1 (Issue FSE) (2024) 1471–1493. doi:10.48550/arXiv.

2404.11595.

[68] C. Zhang, H. Liu, J. Zeng, K. Yang, Y. Li, H. Li, Prompt-enhanced
software vulnerability detection using chatgpt, in: Proceedings of the
2024 IEEE/ACM 46th International Conference on Software Engi-
neering: Companion Proceedings, ICSE-Companion ’24, Association
for Computing Machinery, New York, NY, USA, 2024, pp. 276–277.
doi:10.1145/3639478.3643065.

36

https://doi.org/10.1145/3564625.3567985
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.1007/978-3-031-55642-5_6
https://doi.org/10.1145/3624032.3624035
https://doi.org/10.48550/arXiv.2404.11595
https://doi.org/10.48550/arXiv.2404.11595
https://doi.org/10.1145/3639478.3643065

[69] J. Bae, S. Kwon, S. Myeong, Enhancing software code vulnerability
detection using gpt-4o and claude-3.5 sonnet: A study on prompt
engineering techniques, Electronics 13 (13) (2024). doi:10.3390/

electronics13132657.

[70] Y. Nong, M. Aldeen, L. Cheng, H. Hu, F. Chen, H. Cai, Chain-of-
thought prompting of large language models for discovering and fixing
software vulnerabilities (2024). arXiv:2402.17230.
URL https://arxiv.org/abs/2402.17230

[71] J. Bae, S. Kwon, S. Myeong, Enhancing software code vulnerability
detection using gpt-4o and claude-3.5 sonnet: A study on prompt
engineering techniques, Electronics 13 (13) (2024). doi:10.3390/

electronics13132657.

[72] H. Pearce, B. Tan, B. Ahmad, R. Karri, B. Dolan-Gavitt, Examining
zero-shot vulnerability repair with large language models, in: 2023 IEEE
Symposium on Security and Privacy (SP), 2023, pp. 2339–2356. doi:

10.1109/SP46215.2023.10179324.

[73] Y. Nong, H. Yang, L. Cheng, H. Hu, H. Cai, Automated software vulner-
ability patching using large language models (2024). arXiv:2408.13597.
URL https://arxiv.org/abs/2408.13597

[74] U. Kulsum, H. Zhu, B. Xu, M. d’Amorim, A case study of llm for
automated vulnerability repair: Assessing impact of reasoning and patch
validation feedback (2024). arXiv:2405.15690.
URL https://arxiv.org/abs/2405.15690

37

https://doi.org/10.3390/electronics13132657
https://doi.org/10.3390/electronics13132657
https://arxiv.org/abs/2402.17230
https://arxiv.org/abs/2402.17230
https://arxiv.org/abs/2402.17230
http://arxiv.org/abs/2402.17230
https://arxiv.org/abs/2402.17230
https://doi.org/10.3390/electronics13132657
https://doi.org/10.3390/electronics13132657
https://doi.org/10.1109/SP46215.2023.10179324
https://doi.org/10.1109/SP46215.2023.10179324
https://arxiv.org/abs/2408.13597
https://arxiv.org/abs/2408.13597
http://arxiv.org/abs/2408.13597
https://arxiv.org/abs/2408.13597
https://arxiv.org/abs/2405.15690
https://arxiv.org/abs/2405.15690
https://arxiv.org/abs/2405.15690
http://arxiv.org/abs/2405.15690
https://arxiv.org/abs/2405.15690

	Introduction
	Motivating Example
	Effectiveness of LLM-Based Data Filtering (RQ1)
	Datasets
	Tangled Commits Dataset

	Metrics
	Precision
	Recall
	F1-Score
	Accuracy

	LLMs
	Llama3
	GPT-4
	CodeLlama
	DeepSeek-R1

	Techniques
	Zero-shot Prompting
	Few-shot Prompting
	Chain-of-Thought Prompting
	Generated Knowledge Prompting

	Results
	Implications
	Error Analysis
	Human-in-the-Loop Dataset Curation

	Impact of Cleaned Data on Vulnerability Prediction (RQ2)
	Dataset
	Methodology
	LineVul
	CodeBERT
	CodeT5

	Metrics
	Matthews Correlation Coefficient (MCC)
	AUC-ROC
	AUC-PR

	Results
	Implications
	Error Analysis

	Related Work
	Threats to Validity
	Conclusions

