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Abstract—This research-to-practice WIP paper describes the
development and evaluation of a generative Large Language
Model (gLLM)-based autograder for computer programming
assignments. Manual grading is becoming increasingly unsus-
tainable due to growing student enrollment and the demand for
timely, high-quality feedback. To address these challenges, this
study explores the use of automated grading tools to reduce
instructors’ workload and improve scalability. The proposed
autograder takes a “reverse-engineering” approach, i.e., it con-
verts student code into structured natural language summaries,
which are then compared against predefined grading rubrics. An
evaluation is performed using an external dataset (the Menagerie
dataset), which contains real student submissions graded by four
human graders. The objective is to assess the alignment between
grades assigned by the autograder and those assigned by human
graders. Findings indicate that the autograder closely matches
human grading when letter grades are considered, though it
performs less accurately with fine-grained numerical scores.
While not yet a complete substitute for human assessment, the
autograder shows strong potential as a scalable, efficient tool for
supporting grading in programming education.

Index Terms—Grades, Grading Systems, Automated Grading,
Student Assessment, Computing Skills

I. INTRODUCTION

Evaluating student-written code in programming courses tradi-
tionally requires significant human effort to ensure that assign-
ments align with assignment specifications and requirements.
Motivated by the need to give students timely feedback and to
scale instruction for large classes, educators have long sought
to automate this process through the development of autograd-
ing systems. These systems use a range of techniques, such
as unit testing, static analysis, and machine learning [1]–[5].
Despite these advances, autograding systems often struggle to
assess open-ended assignments, accommodate a great range
of diversity in programming assignments, and evaluate the
students’ work beyond correctness or predefined patterns in
the code [6], [7].

Generative Large Language Models (gLLMs) have be-
come pivotal in harnessing artificial intelligence for a va-
riety of purposes due to their demonstrated capability to
“comprehend” natural language text and program code. These
models are typically accessed via textual prompts that de-
scribe the desired task. A number of prompting strategies
have been proposed, including few-shot prompting, chain-

of-thought prompting, generated knowledge prompting, and
graph-of-thought prompting [8]–[10]. These works suggest
that gLLMs possess emerging reasoning capabilities [11],
[12], raising hopes that they can be used to build systems
that automate the evaluation of student-written code while
addressing the challenges that traditional autograding systems
face.

Despite this potential, several unanswered and challenging
questions remain regarding how to effectively harness gLLMs
for grading programming assignments. First, what system
design leveraging gLLMs is effective for generating grades
for student-written programs? Second, to what extent can a
gLLM-based autograder achieve the same level of accuracy as
human graders? These questions are particularly challenging
because human graders often exhibit high variability in their
grading; however, they are able to identify a wide range of
issues in students’ programs in addition to correctness [7],
[13].

Thus, the focus of this work is to investigate the extent
to which a gLLM-based grading system produces grades
comparable to those of human graders. The design of the
system and the study is guided by the Criterion-Referenced
Assessment theory [14], [15]. The system is designed to
evaluate students’ work against a set standard derived from
the assignment description rather than in comparison to each
other. This work is also motivated by the theory of feedback,
which emphasizes the importance of providing students with
feedback that is not only accurate but also timely and relevant
to their learning objectives [16]. Grades, in conjunction with
descriptive comments, can serve as effective formative and
summative evaluation for students’ work [17]–[20].

To evaluate the autograder, we use a publically available
dataset [13], which includes real student Java programming
submissions from an introductory CS1 course and detailed
grading feedback from four human assessors. The use of this
dataset enables a robust comparison between the performance
of the gLLM-based autograder and human graders.

The contribution of this work is twofold. First, leveraging
gLLMs, we design a novel autograder via a “reverse engi-
neering” approach, where the autograder first transforms the
students’ code into structured natural language summaries,
representing a written specification of their programs, and



then assesses it against a set of specific grading rubric criteria
derived from the assignment. Second, we evaluate the perfor-
mance of the gLLM-based grading system against a dataset
of student submissions that have been graded by multiple
human graders. The evaluation indicates that the gLLM-based
grading system is comparable to human graders in terms of
both accuracy and variability.

II. RELATED WORK

There is a rich body of literature dedicated to the design
and evaluation of automated grading systems in computing
education [3], [7], [21].

A primary set of automated grading systems assesses the
correctness of students’ work using testing, such as unit
testing, to provide grades and feedback [3], [7]. A particular
challenge for instructors who adopt such systems is that
they must provide a comprehensive suite of tests for each
programming assignment, which requires significant effort and
time. Students also face challenges with these systems, as they
must ensure their submissions produce exact outputs for the
test cases or guarantee that their implementation can compile
and run with the test cases. A novel approach that lessens
the burden on instructors for writing the test cases is Web-
CAT [2], which requires all students to write and submit unit
tests for their own code, and the system grades students based
on the correctness of the tests written by their peers. Web-CAT
has found success in large engineering programming courses
that enroll a significant number of students; however, whether
it can be effectively deployed in smaller classes remains an
open question. More importantly, the approach suffers from
weaknesses common to other testing-based grading systems,
such as evaluating students’ work solely on the correctness
of program code, without sufficiently addressing other aspects
of programming assignments, such as quality of design, style,
and documentation.

Another approach to automated grading is to use static anal-
ysis tools to evaluate the quality of the code. These tools can
check for common programming errors, adherence to coding
standards, and other quality metrics. For grading students’
work, these tools are used to assess the similarity of the
students’ submissions to the instructor’s model solution [3],
[7]. The similarity can be computed by examining numerous
aspects, including but not limited to abstract syntax trees, data
flow graphs, and control flow graphs [7]. A limitation of these
tools is their inability to capture the dynamic behavior of
programs, as testing does. In addition, their ability to check
students’ work is based on a predefined set of rules, which is
not only often limited but can also produce incorrect warnings
(i.e., false positives). Finally, similar to testing-based grading
systems, building model solutions and writing new rules can
be laborious.

In recent years, researchers have also explored the use of
machine learning techniques to automate the grading process.
These techniques can learn from historical data and identify
patterns in student submissions, allowing for more accurate
and personalized feedback. For example, some studies have

used supervised learning algorithms to classify student sub-
missions based on their quality and correctness [5]. However,
these approaches often require large amounts of labeled stu-
dent submissions and associated programming assignments,
which can be difficult to obtain in practice. Moreover, the
performance of these models can be sensitive to the choice of
features and the quality of the training data [5].

The use of gLLMs in programming education has gained
significant attention in recent years, particularly in the context
of providing feedback to students [5], [22], [23], [23]–[34].
Our work explores the design of a gLLM-based autograder.
gLLMs are typically trained on vast text corpora through
unsupervised learning and can exhibit generative capabilities,
allowing them to produce human-like text and understand
complex programming concepts. A gLLM-based autograder
has the potential to provide more nuanced and context-aware
feedback compared to traditional systems. For instance, it can
be extended to analyze the structure and semantics of code,
identify potential bugs, and suggest improvements in design
and style. As it matures, it could lead to a more comprehensive
evaluation of students’ work, addressing some limitations of
existing grading approaches. In addition, unlike traditional
machine learning-based systems, these models are already
pretrained and typically used in a prompt-based manner, elim-
inating the need for extensive feature engineering and training
on large labeled datasets. This makes them more accessible
and easier to deploy in educational settings.

III. GENERATIVE LLM-BASED AUTOGRADER DESIGN

We design an autograder system using gLLMs, denoted as
o = G(a, r, s), where a is an assignment, r is the grading
rubric for the assignment, s is a student submission for the
assignment, and o is the system output – the grade of the
student’s submission. In this work, o is a numeric score on a
scale of 0 to 100.

One advantage of our design is that it takes the grading
rubric as input to the system. A grading rubric, in its basic
form, is often presented as a matrix that provides levels of
achievement for a set of criteria [35]. Despite its limita-
tions [35], [36], rubric-driven assessment has two advantages
for autograding. First, it breaks down evaluation criteria into
specific, measurable components and ensures consistency and
transparency [7], [24], [25], [37]. More importantly, since
gLLMs heavily rely on prompt engineering, the grading rubric
can be an indispensable source for formulating high-quality
prompts to guide gLLMs.

Via an initial exploration, we settle on a system design that
resembles a “reverse engineering” process. The system first
generates a natural language summary of the program code
submitted by the students, serving as a specification of the
work, and then compares this summary against the grading
rubric.

The process begins with the preprocessing of student
submissions. First, the system checks whether the student’s
submission can compile and run. A common practice in
programming education is to assign a failing grade to those



submissions that fail to compile and run [13], [23]. Our system
follows this practice and only proceeds with those submissions
that can. Second, a student’s submission will also be tagged
and skipped for autograding if it is a verbatim copy of the
starter code provided by the instructor.

The next step in our system is code summarization. To
overcome the limited context window length of gLLMs [38],
we break down the submitted code (s) into smaller chunks
(c) according to the context window length of the gLLM used
and the natural boundaries of the code segment, e.g., classes or
methods, i.e., s = c1, c2, . . . , cn, where |ci| ≤ L, and L is the
context window length of the gLLM used. Given a prompt pi,
the system generates a natural language summary (or digest,
denoted as di) of the code chunk ci as di = gLLM(pi, ci).

Prompt pi is designed to elicit a summary of the
code chunk ci that is relevant to the grading rubric
and the assignment. It takes the form of: “Given the
{assignment description}, according to
the {grading rubric}, summarize the chunk
of the submission {code chunk}”, where “{x}”
denotes a field that need to be filled in with actual value
of “x”. The summaries are then pooled together to form
a complete summary of the student submission, i.e.,
d = {d1, d2, . . . , dn}.

Motivated by the generated knowledge prompting tech-
nique [39], in the same session with the gLLM, after generat-
ing the summary d, we also prompt the gLLM to generate a set
of responses that can be used to evaluate the entire submission
according to the grading rubric. This is done by asking the
gLLM to provide a discrete Yes/No answer for each criterion
in the grading rubric (denoted as ij ∈ 1, 0 for criterion j).

For each criterion where the gLLM gives a Yes answer,
the system further prompts the gLLM to provide two discrete
scores. One score assesses the quality of the student’s work
relative to the grading rubric criterion and is in the range
Excellent/Good/Poor (lj ∈ {3, 2, 1}). The other score
assesses the quantity of the student’s work addressing the crite-
rion and is in the range All/Some/Little (tj ∈ {3, 2, 1}).

The system finally computes a score on the scale of 0 to
100 as follows: o = 100

∑N
j=1(ij lj + ijtj)/(6N), where N

is the number of rubric criteria.

IV. EVALUATION AND RESULTS

A. Choice of gLLM

Our long-term goal is to develop an autograder that does
not rely on a commercial gLLM and can be hosted by
an educational institution to alleviate security and privacy
concerns regarding student data. As a result, we elect to use
LLaMA 3.1, specifically, the LLaMA 3.1 8B model, as the
gLLM for experimenting with and evaluating our autograder.

B. Evaluation Dataset

The evaluation is based on a high-quality dataset collected
and released by Messer et al. [13]. The dataset consists of a set
of programming assignments from a programming course and
400 student submissions spanning multiple semesters. Each

submission was graded independently by four human graders
on a 100-point scale. As is often noted in the literature [24],
[25], human graders exhibit variance in their grades. This
dataset is no exception. As such, it is particularly well-suited
for evaluating the autograder not only in terms of grading
accuracy but also in terms of consistency when compared to
multiple human graders.

C. System Design and Tuning

To arrive at suitable design parameters, such as prompt
format and processing pipelines, we randomly partition the
submissions into two sets: a validation partition and a test par-
tition. The validation partition is used to tune prompt formats
and other parameters, including the model’s temperature and
top-p sampling. Using the validation partition, we eventually
settle on the design described in Section III.

D. Results

We use the autograder to grade the submissions in the test
partition, which is unseen during the system design and tuning
process.

To compare the grading accuracy of the autograder with that
of human graders, we consider a score assigned by the auto-
grader to be accurate when it falls within the range of scores
assigned by the four human graders. By this definition, 70%
of the submissions are accurately graded by the autograder.

To put this accuracy in context, we analyze the correlation
between the grades assigned by the autograder and those given
by human graders. It is well established that class rank is
often more meaningful than absolute scores in educational
settings [40]. Following this, we use a rank correlation method
to evaluate grading accuracy. Specifically, we use Kendall’s
Tau, as it is generally considered more accurate, although
computationally more expensive [41].

Figure 1 illustrates the rank correlation of submission scores
among the autograder and four human graders using Kendall’s
Tau. The τ values between the scores given by the autograder
and those given by the four human graders range from 0.15
to 0.26. Since the correlations among the four human graders
range from 0.10 to 0.33, factoring in the p-values, we conclude
that the correlation coefficients indicate a moderate level of
agreement between the autograder and the human graders –
the correlation is not as strong as the most consistent pair of
human graders, but it is not worse than the pair of human
graders with the greatest variance.

At higher education institutions in the U.S., letter grades
are often used. As such, we convert the scores in a scale of
0 to 100 to a letter grades: A (90–100), B (80–89), C (70–
79), D (60–69), and F (0–59) and then assign grade points
to the submissions, where A=4, B=3, C=2, D=1, and F=0.
Following this, we compare the machine grades with the 4
human graders’ grades using Kendall’s Tau rank correlation
coefficients. The results are shown in Figure 2.

The observations are as follows. Human graders exhibit
a high level of disagreement in their scores; however, the
disagreement is significantly narrowed when we compare letter
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Fig. 1. Rank correlation of the grades (scores in the scale of 0 to 100)
assigned by the autograder and by four human graders using Kendall’s Tau.

grades. The τ values between the letter grades assigned by
the four human graders range from 0.212 to 0.486 – much
higher than the score-level correlations. Similarly, we observe
that the autograder’s letter grades are more consistent with
those of the human graders than the raw scores. The τ values
between the autograder and the human graders range from
0.384 to 0.494, suggesting a correlation strength comparable
to that among human graders. These correlations also come
with significantly improved p-values. This result suggests that
the autograder achieves performance similar to that of human
graders when used to assign letter grades of coarse granularity
(i.e., A, B, C, D, and F), rather than fine-grained numerical
scores (i.e., 0 – 100).
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Fig. 2. Rank correlation of letter grades assigned by autograder and by four
human graders using Kendall’s Tau.

V. CONCLUSION AND FUTURE WORK

In this Work-in-Progress paper, we explored the potential of
using gLLMs to realize an automated grading system for pro-
gramming assignments. Our exploration suggests an effective
system design: an approach resembling “reverse engineering,”
where the system first generates a natural language summary
of the program code—effectively a written specification—and
then compares the summary against the criteria in the grading
rubric. When fully realized, this system has the potential to
overcome the limitations of traditional autograding methods,
such as testing- and static analysis-based approaches, and can
provide an assessment of student submissions that goes beyond
code correctness and limited set of code patterns.

The evaluation using a high-quality dataset indicates that
the gLLM-based autograder achieves grading accuracy com-
parable to human graders when comparing letter grades. The
evaluation also reveals a limitation: it has yet to achieve the
same level of consistency as human graders when comparing
fine-grained numerical scores on a scale of 0–100.

To complete this work-in-progress study, future work in-
cludes the following directions:

1) In this paper, we used the open-source LLaMA 3.1 8B
as the gLLM. While this model is powerful, it is not
the best-performing gLLM currently available. To what
extent could a stronger gLLM improve the grading ac-
curacy of our system? To explore this question, we have
begun experimenting with larger and newer versions of
LLaMA. Future work also includes experimenting with
models like DeepSeek and ChatGPT.

2) Prompt engineering methods significantly impact the
reasoning performance of gLLMs. Can we enhance the
autograder using advanced prompting techniques, such
as Retrieval-Augmented Generation (RAG)?

3) We plan to enhance the autograder by providing both
grades and descriptive feedback. This enhancement is
particularly important. First, even human graders can
exhibit significant variances in grading, as such there is
an inherent limit we can improve autograder’s grading
accuracy and consistency. Second, research suggests that
grades alone are not sufficient to motivate students to
learn [20], [42]. With this enhancement, we aim to
investigate whether an autograder that provides grades
along with descriptive feedback can better support and
motivate students toward self-regulated learning.
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