
Utilizing Real-World Software Vulnerabilities to
Enhance Secure Programming Education

Denise Daniels
Virginia State University

Petersburg, Virginia, U.S.A.
dcdaniels@vsu.edu

Joon Suk Lee
Virginia State University

Petersburg, Virginia, U.S.A.
jlee@vsu.edu

Hui Chen
CUNY Brooklyn College

Brooklyn, New York, U.S.A.
hui.chen@brooklyn.cuny.edu

Kostadin Damevski
Virginia Commonwealth University

Richmond, Virginia, U.S.A.
kdamevski@vcu.edu

Abstract—This research paper describes a study of using real-
world vulnerabilities to motivate computer science students to-
wards learning secure programming. Given the rise in cybersecu-
rity incidents due to programming errors, there is a pressing need
to improve programmers’ secure programming skills. Despite
educators’ numerous efforts towards this goal, communicating
the importance of this training to students remains a challenge.
Grounding on the theory of intrinsic motivation, we propose
that exposing students to authentic, relatable vulnerabilities can
significantly enhance their learning orientation towards secure
programming. Our approach involves selecting vulnerabilities
from the National Vulnerability Database that are both relatable
to students and understandable without extensive external con-
text. These vulnerabilities are transformed into comprehensive
course modules, each featuring a demonstrative video, source
code snippets of the vulnerability and its patch, and associated
developer communications about the vulnerability. We assess
the impact of one of our course modules on students’ learning
disposition through a study conducted in two universities in
an identical setting. The study results indicate that students
appreciate seeing real-world vulnerabilities in detail, especially
the video we recorded reproducing the vulnerability, and that
they gain in self-efficacy after completing the module.

Index Terms—5.b.vii. Computer science; 8.c. Computing skills;
8.u. Student perception; 12.d.iii. Mixed methods research

I. INTRODUCTION

Cybersecurity attacks and incidents are increasing at an
alarming rate [1], [2]. The Software Engineering Institute
attributes nearly 90% of reported cybersecurity incidents to
programming errors, i.e., defects in the design or imple-
mentation of software [3]. Improving programmers’ secure
programming skills can lead to more robust programs [4], with
significantly fewer attack surfaces.

In recent years, the integration of secure programming into
the introductory curriculum of computer science courses has
become increasingly prevalent [1], [2]. While this integra-
tion marks a positive step towards enhancing programmers’
abilities to create more secure software [4], a significant
challenge remains in ensuring that students not only learn
these principles but also effectively apply them in practi-
cal programming situations and real-world contexts. Despite
some initial exposure to secure programming, many students
struggle to internalize and utilize this knowledge beyond the
classroom. This gap is evident as students often fail to con-
tinue improving and applying their secure programming skills,
particularly when faced with new programming tasks [5]–[7].

To address this issue, it is essential to develop an educational
model that not only imparts secure programming knowledge
but also fosters a strong learning disposition. This involves
cultivating the will or orientation to continually learn and
apply secure programming principles, thereby bridging the gap
from scaffolded classroom examples to novel programming
challenges.

The theory of intrinsic motivation indicates the factors
like contextualization, personalization, and learning choices
can enable learners to improve the depth of engagement in
learning, the amount learned in a fixed time period, and
the perceived competence and levels of aspiration [8], [9].
Following this, we focus on increasing students’ exposure to
real-world vulnerabilities and connecting these to students’
prior life experiences or daily lives, in order to make the
learning experience more meaningful and directly applicable.
We hypothesize that this strategy can increase the students
learning orientation towards secure programming and increase
their self-efficacy towards this task (and the overall cause
of secure programming) due to highly contextualized and
personally relevant learning experiences.

More specifically, in this paper we aim to answer the follow-
ing research question (RQ): Does the authenticity and personal
relevance of the real-world software vulnerabilities improve
the students’ 1) self-efficacy in secure programming and 2)
awareness of the importance of security in programming?
Support for our hypothesis comes from the theory of learning
engagement and the competency-based education model [8]–
[11], i.e., we expect learners to develop a strong learning
disposition for secure programming from personally relevant
content.

To answer this RQ, we first curate real-world security vul-
nerabilities from the National Vulnerability Database (NVD)
that are: 1) relatable and likely to be personally relevant to
students; 2) accompanied by source code for both the vul-
nerability and the patch; 3) understandable without excessive
context about the project or external software libraries. Based
on each curated vulnerability, we create course modules1

that highlights the real-world impact of the vulnerability by
providing the following content: 1) a video recording repro-
ducing the vulnerability and showing how it is exploited; 2)

1https://realvulnerabilityedu.github.io/modules/.



snippets of source code showing the vulnerable and fixed
code with explanations; and 3) additional documents from the
software developers that reported the vulnerability highlighting
their communications to other software users. We study the
impact of the course module via “pre- and post-test” quasi-
experimental design method [12] where we use a pre/post
survey of students in two different universities. The results
of our study indicate that learning more about real-world
vulnerabilities that are relatable to students improves their self-
efficacy (e.g., improving their agreement with the statement “I
understand what secure programming is.”)

II. RELATED WORK

There has been a growing importance of cybersecurity
education in computer science [13]. Cybersecurity represents
a broad spectrum of knowledge and skills, encompassing both
technical and non-technical areas [14]. This paper focuses
on secure programming, a technical area within the broader
fields of robust or defensive programming, which focuses
on designing and implementing resilient software. For secure
programming, robustness is defined with regard to security
policies [4].

There is a rich body of literature on teaching secure
programming [6], [15]–[21]. A few studies demonstrate ap-
proaches to enhance computer science courses and curriculum,
such as integrating secure programming concepts into the
introductory sequence, elective and core computer science
courses, and the entire curriculum [15]–[19]. Accompanying
this is the creation of secure programming modules, labs, or
tools aimed at improving students’ awareness, knowledge, and
skills in secure programming [22]–[26]. Table I summarizes
some of these resources. Beyond this are the development
of novel pedagogy in secure programming. For instance,
out-of-classroom secure programming “clinics” where experts
provide diagnostic reviews of students’ code are shown to
be effective in improving secure programming awareness
and practice [6]. Also, automated methods to provide in-
time feedback to students about security problems in their
program code have been explored as effective tools for learn-
ing secure programming [24], [27]. Segmenting the modules
and incorporating interactive elements could enhance student
completion rates, engagement, and motivation by reducing
cognitive overload that can result in students’ skipping valu-
able information [20].

In addition, researchers have also made progress in under-
standing the students and in improving the students’ readiness
to learn secure programming. For instance, Siraj et al. [28]
suggest that we should teach students to have a security
mindset in addition to secure programming knowledge and
skills. Lam et al. [29] found gaps in students’ knowledge
and skills in securing programming. A particular gap is the
lack of awareness of security vulnerabilities or their effect on
their code. Slusky et al. [30] demonstrated that students’ lack
of security awareness originates from their struggle to apply
security knowledge in real-world scenarios.

Course Module on
MangaDex-Dowloader Vulnerability

(CVE-2022-36082)

Background Lesson on Input Validation
from Towson University's Cyber4All

pre-survey

mid-survey

post-survey

introduction and context
for the vulnerability

description of the vulnerable
code and fix

video reproducing the vulnerability

knowledge check

knowledge check

1.

2.

3.

4.

5.

Fig. 1: Structure of the course module based on CVE-2022-
36082.

As discussed in Section I, students suffer from the inability
to improve and apply secure programming knowledge and
skills [5], [6]. Interestingly, this observation can also be
extended to professional developers [7]. In order to address
this, we set out to develop a pedagogical approach and course
modules that can cultivate the will or orientation to continually
learn and apply secure programming principles by taking
advantage of real-world vulnerabilities and connecting these
to students’ prior life experiences or daily lives. This approach
distinguishes our paper from prior work.

We argue that by exposing students to real-world security
vulnerabilities that are relevant to their daily experiences, we
can instill in students the importance of secure programming
practices, enrich their security mindset, and empower them to
apply this knowledge in their programming.

III. COURSE MODULE DESIGN

We selected a specific course module to use in our study
that focuses on one of the most common software security
problems: improper input validation. Vulnerabilities based on
improper input validation allow an attacker to take advantage
of software that does not check if potentially dangerous inputs
are safe for processing. We developed a Python script that
examined the publicly disclosed vulnerabilities assigned to
the category: CWE-20: Improper Input Validation [31] for the
following criteria: 1) the vulnerability has a publicly-accessible
GitHub link to the patch (i.e., fix); 2) had a severity score
(based on CVSS-3.0 [32]) of Medium, High, or Critical; 3)
was published in the last 3 years. From the retrieved set, we
manually examined the vulnerability descriptions searching for

2



TABLE I: Overview of several popular computer security educational resources.

Name Description

SEED Lab [22] Over 30 publicly-available labs targeted at upper-level undergraduate and undergraduate
computer and information security courses based on several known exploits, among which 6
are about software security

Cyber4all / Security Injec-
tions [23]

Security modules for integrating security across the curriculum; model for teaching secure
coding to introductory programming students, and SPLASH (Secure Programming Logic for
college credit to high school girls). A number of lessons can be found in their publications
and on their Website.

Nice Challenge Project [25] Projects with a narrative-driven scenario, a business environment (workspace), and a set of
technical objectives and/or a written deliverable.

Cyber Threat Hunting [26] 4 cyber threat hunting labs
ES-IDE [24], [27] 1 SQL injection exercises and tutorials for EIDE, an Eclipse IDE plugin for teaching secure

programming

projects or application domains that students could relate to
(e.g., games, popular mobile apps). We finally selected CVE-
2022-36082 [33] as it concerned Manga, which are Japanese
comic books that we believed students would find relatable.
More specifically, CVE-2022-36082 has the following descrip-
tion in the National Vulnerability Database:

mangadex-downloader is a command-line tool to
download manga from MangaDex. When using
‘file:<location>‘ command and ‘<location>‘ is
a web URL location (http, https), mangadex-
downloader between versions 1.3.0 and 1.7.2 will
try to open and read a file in local disk for each line
of website contents. Version 1.7.2 contains a patch
for this issue.

We framed the course module around both CWE-20: Im-
proper Input Validation and CVE-2022-36082. The structure
of the module is shown in Figure 1. We hosted the secure
programming course module on Notion, an online platform
commonly used for note-taking, project management and orga-
nization, and website creation. The course module consisted of
5 parts: 1) pre-survey, 2) lesson on Improper Input Validation
from Cyber4All (first 3 out of 5 sections: Background, Code
Responsibly and Laboratory Assignment) [23], [34], 3) mid-
survey; 4) our course module focused on CVE-2022-36082;
and 5) post-survey. All of the content was either directly
on Notion2 or embedded content within a Notion page, i.e.,
participants did not need to leave Notion to access any
content, including the surveys. All survey pages consisted of
an embedded Google form for each survey to be completed
by the participants.

Our content focused on the MangaDex-Downloader vulner-
ability (CVE-2022-36082) was laid out as follows. We started
our module with a brief introduction providing context for the
vulnerability, followed by a detailed narrative description of
the vulnerability, including the vulnerable code and its fix,
and, finally, by a 4 minute video where we reproduced the
vulnerable version of the software and showed its exploit. We
provided brief knowledge checks, consisting of 1-2 multiple
choice question, between each sections to break up the content

2Notion is a Web host service that we used (see https://www.notion.so/)

and provide some interactivity. The responses to these knowl-
edge checks as well as the 3 surveys provide the means to
answer our research question.

IV. STUDY DESIGN

We performed a study with the goal of measuring the effects
of the course module on student self-efficacy towards secure
programming and their awareness and perceived importance of
secure programming. The study follows a pre- and post-test
quasi-experimental design [12].

a) Participants: For this study, participants were re-
cruited from two distinct universities, all of whom were
enrolled in a programming course (on the level of CS2 or
CS3 courses). The validity of the pre- and post-test design can
suffer from confounding factors, such as history, maturation,
and test effects [35]. The study design of involving two
universities is to offset partially the effect of the confounding
factors and thereby to improve the robustness of the study
by increasing the randomness due to the differences of the
two groups of the students and the uncontrollable factors in
carrying out the study. A total of 60 participants successfully
completed the provided secure programming course module.
Of these, 21 were from one university, and the remaining 39
from the other. The cohort consisted of 5% freshmen, 55%
sophomores, 33% juniors, and 7% seniors. Notably, 90% of
the participants expressed an interest in pursuing a career as a
computer programmer, while the remaining 10% had different
career aspirations.

In general, the study participants appreciated the importance
of secure programming. On the pre-survey statement Secure
programming is important., 39/60 (65%) of the participants
indicated they Strongly Agree, 16/60 (27%) of the partici-
pants indicated they Agree, and 5/60 (8%) of the participants
indicated Neither Disagree nor Agree. However, students were
somewhat less confident in their secure programming skills.
In the study pre-survey, for the statement ”I understand
what a security vulnerability is when programming”, 14/60
(23%) indicated they Strongly Agree, 12/60 (20%) indicated
Agree, 23/60 (38%) Neither Disagree nor Agree, 7/60 (12%)
Disagree, and 4/60 (7%) indicated Strongly Disagree.

3



b) Study Protocol: Students worked on the secure pro-
gramming course module independently during class time.
The course module was distributed through the respective
university’s online course platform, where each participant
received a link to the course module. During class, participants
were directed to log in to their course portal, navigate to
the module, and complete each part of the module. The
participants completed the assigned work during one 75-
minute class session.

We opted to focus only a single session, i.e., not to conduct
multiple study sessions with multiple course modules. This
study design choice was made to avoid maturation, i.e.,
students’ learning outcomes tend to improve simply due to
their increased learning maturity over time. Past studies have
observed that the potential effects due to maturation become
greater as the time difference between the pre- and post-tests
increases [36], [37].

c) Data Collection: Data was collected through surveys
embedded within the course module. We positioned three
separate surveys at different stages — Pre, Mid, and Post
— along with the two distinct yet interconnected sections:
”Input Validation” and ”Analysis of Input Validation.” The
survey instruments consisted of open-ended and closed-ended
questions, addressing various aspects of secure programming
and software security vulnerabilities. The closed-ended ques-
tions are rated on a Likert scale. The pre-survey consisted
of 2 Likert questions, and the mid and post-survey consisted
of 17 Likert questions, ranging from 1 (Strongly Disagree)
to 5 (Strongly Agree). For qualitative support, the pre-and
post-surveys contained open-ended questions addressing a
participant’s comprehension of secure programming before
and after completing the entire module. For the ease of the
discussion, we include the common questions in the mid- and
post-surveys in Table II.

We group the Likert-scale questions in a few topics: 1)
Learning and Educational Methods (Q.1 to Q.6): These
questions are about the effectiveness of using real-world
examples to learn secure programming. They explore different
approaches to teaching and understanding secure program-
ming, particularly through practical examples. Included is
also a question about the likelihood of recommending the
course module, which directly pertains to the course itself.
2) Self-Efficacy (Q.7 to Q.12): These questions assess the
respondents’ confidence in their understanding and abilities
regarding secure programming and vulnerability management.
3) Importance and Awareness of Security in Programming
(Q.13 to Q.16): These questions focus on the respondent’s
recognition of the importance of secure programming and their
awareness of security concepts like vulnerabilities and input
validation. This topic gauges the respondent’s understanding
and acknowledgment of security in the context of program-
ming.

A. Data Analysis

In order to answer the research question (Section I), we
adopt a mixed approach to analyze the participants’ responses

TABLE II: Common questions in mid- and post-surveys

No. Question

Course Module and Educational Method:
Q.1 I need a real world example to learn secure programming.
Q.2 Seeing a real-world example of a software security vulner-

ability helps me develop good secure programming skills.
Q.3 Being shown real-world security vulnerabilities in soft-

ware makes you want to program securely.
Q.4 I learn better when provided with a real-world example of

a problem.
Q.5 Exploring a real-world vulnerability help me to better

understand the importance of secure programming.
Q.6 How likely are you to recommend this secure program-

ming course module to another student?

Self-Efficacy:
Q.7 I know how an input validation vulnerability can affect

my program.
Q.8 I believe programs that I have written in the past may

contain security vulnerabilities.
Q.9 I am aware of various types of security vulnerabilities.
Q.10 I will take into account potential security vulnerabilities

when coding.
Q.11 I understand what secure programming is.
Q.12 I know how to program securely.

Awareness of the Importance of Security in Programming:
Q.13 Secure programming is important.
Q.14 A security vulnerability can affect my code.
Q.15 I am aware of different security vulnerabilities that have

affected real-world software.
Q.16 I know what input validation is.

to the surveys. We analyzed the quantitative survey data
obtained from the Likert scale questions to reveal the dif-
ference before and after the participants’ studying the course
module. The participants’ free-text answers to the open-ended
questions were subjected to a comprehensive thematic analysis
to reveal common patterns of the participants’ self-efficacy and
awareness of secure programming and software vulnerabilities.
Thematic analysis is a commonly used method to identify
patterns in data to extract notable themes [38].

V. RESULTS

Based on the study method in Section IV-A, in this section
we present the results of quantitative and qualitative analysis.

A. Quantitative Analysis

To evaluate whether the authenticity and personal relevance
of the real-world software vulnerabilities improve the students’
learning disposition toward secure programming, we compare
the participants’ responses to the common questions in the
mid- and post-surveys. For each shared survey question, we
calculate the difference between each student’s responses, e.g.,
if a participant answered 3 for survey question Q.1 in the mid-
survey, but 4 for the same question in the post-survey, the
difference is 1; however, if the response changed to 4 in the
mid-survey, and then 3 in the post-survey, the difference is -1.
The difference captures the change in a participant’s response
to survey questions before and after taking the real-world

4



Q.1
Q.2
Q.3
Q.4
Q.5
Q.6

36
42
41
48
43
40

1
1

1
1

1

11
3
4

7
5
4

10
12
13

4
10

13

2
2
1

1
2 1

  0.426

  0.019

  0.037

  0.902

  0.151

  0.003

p-value0

3 -2 -1 0 1 2 3

(2.a) Course Module and Educational Method

Q.7
Q.8
Q.9

Q.10
Q.11
Q.12

36
39
38
41
36
291

2
1

1

7
6

1
11

2
5

13
9

13
6

17
16

4
3

4
1

4
6

3

1
1

  0.009

  0.351

0.001

  0.839

0.001

0.001

p-value0

(2.b) Self-Efficacy

Q.13
Q.14
Q.15
Q.16

43
46
34
41

1

2

8
10

7
9

8
3

12
7

1
5

2 1

  0.673

  0.887

  0.056

  0.211

p-value0

(2.c) Awareness of the Importance of Security in Programming

Fig. 2: Difference between participant’s responses to mid- and
post-surveys. Bar blocks corresponding to 0 differences in
responses is shrunk by a factor of 5 while the others are to
scale.

vulnerability part of the course module. Figure 2 summarizes
the comparison in a bar chart. Each bar characterizes the
differences of the responses to a single question, indicating
the number of participants whose response difference to the
question is ≤ −3, −2, . . ., ≥ 3. To assess the strength
of the evidence, we conducted a Wilcoxon signed-rank test,
a distribution-free nonparametric statistical hypothesis test
method that is frequently used to analyze Likert scale data
with small sample size [39]. In our test, the null hypothesis
posits that the participants’ responses show no improvement.
Our observations are as follows:

a) Course Module and Educational Method.: Figure
2.a reveals that for most questions in this group, i.e., Q.2,
Q.3, Q.5, and Q.6, the response differences tend to favor a
positive trend with a small p-value. Particularly, the p-values
for Q.2, Q.3, and Q.6 are below 0.05. The evidence is stronger
for these survey questions for us to reject the null hypothesis.
The participants’ responses to Q.2 suggest that there should
be a benefit of using the real-world example of a software
security vulnerability in developing secure programming skills.
Furthermore, the changes in the participants’ responses to Q.3

and Q.5 from mid- to post-surveys suggest that there should
be an improvement of the participants’ willingness towards
learning secure program due to the real-world example pre-
sented in the module. However, according to the participants’
responses to questions Q.1 and Q.4, the participants seem
to believe that they can learn secure program without real-
world vulnerability, despite the stronger willingness to learning
secure programming indicated by the other questions.

b) Self-Efficacy: In this group (Figure 2.b), the partic-
ipants had a positive difference in their responses to Q.7,
Q.8, Q.9, Q.11, and Q.12. Among these, except for Q.8, the
hypothesis testing yields small p-values (≤ 0.05), suggesting
a statistically significant trend in the evidence. Given these
results, after observing the real-world vulnerability, the par-
ticipants appear to have formed a stronger belief that input
validation vulnerability can affect their own code (Q.7), to
have developed an improved awareness of security vulnerabil-
ities (Q.9), and to have gained improved confidence in their
ability to program securely (Q.11 and Q.12). However, the
participants do not believe that they can take into account
security vulnerabilities when coding, given their responses to
Q.10. We posit that the discrepancy in the students’ responses
exhibited by Q.10 indicates that students do not believe that
they will need to focus on ensuring their code is secure in their
classwork, as they are typically graded only on satisfying an
assignment’s required functionality.

c) Awareness of the Importance of Security in Pro-
gramming: As shown in Figure 2.c, although the evidence is
weaker than the previous two groups of survey questions, the
participants gave positive responses to Q.15 and Q.16, which
suggests that the participants believe that they understand
the concept of improper input validation and also believe
that security vulnerability affect real-world software. However,
their responses to Q.13 and Q.14 appear to indicate that they
don’t believe security vulnerabilities are important to their
own code, i.e., their homework assignments and class projects,
likely because they believe that these are not considered real-
world software.

B. Qualitative Analysis

In this study, two of the paper’s authors focused specifically
on the thematic analysis of the student answers to the open
ended questions (Table III). They analyzed the responses to
each question, categorizing and interpreting the underlying
themes and patterns observed across related groups of ques-
tions. Following their individual analyses, they engaged in a
comprehensive comparison and discussion of their findings,
combining similar categories and agreeing on labels for the
most prevalent themes. The final themes focus on the student
perspectives on the course module, on their self-efficacy in se-
cure programming, and how students perceive the importance
of secure programming.

a) Course Module and Educational Method.: Partici-
pants had a positive response to the use of real-world examples
in the course module. They appreciated the practicality of
learning through relatable scenarios, citing increased attention

5



TABLE III: Post-survey open-ended questions

No. Question

Course Module and Educational Method:
OQ.1 What did you like about the module?
OQ.2 What did you dislike about the module?
OQ.3 How has the real-world example of MangaDex-

Downloader influenced your understanding of input vali-
dation vulnerabilities, and what insights did you gain from
it?

OQ.4 In what ways do you believe the MangaDex-Downloader
Demo video in Part 3 aids in your understanding of
the impact of the input validation vulnerability on the
program?

Self-Efficacy:
OQ.5 How do you believe real-world vulnerabilities emphasize

the significance of your efforts in secure programming?

Awareness of the Importance of Security in Programming:
OQ.6 Do you think that exploring a real-world vulnerability

is beneficial for gaining a better understanding of the
importance of secure programming? Explain, why?

and a deeper understanding of the concepts presented. Partic-
ipant 7 stated, “Being given real world examples helps me
relate to the topic. It makes me think if I have ever been in
any of these situations, thus making me more intrigued in the
topic.” Similarly, Participant 14 stated, “It showed what the
vulnerability actually looks like in real life, and when you
yourself are coding and doing testing, you’re more likely to
spot something that’s not secure, such as that.”

Likewise, participants expressed that using a video demo to
present the real-world vulnerability was beneficial. They found
this multimedia approach was effective, providing a visual
representation that complemented their learning experience.
Participant 57 stated, “The MangaDex Demo video allows
viewers to see the real-time exploitation of a vulnerability.
This can be more impactful than reading about it in text,
as it provides a step-by-step illustration of how an attacker
can take advantage of a weakness in input validation.”, while
Participant 7 noted that “A video always helps me understand
something more rather than reading.”

One shortcoming of the current version of the module
was the lack of hands-on activities related to the real-world
vulnerability. Some of the student participants desired more
in-depth content or practical, hands-on coding experiences
to enhance their learning, e.g., for the question on what
they disliked about the course module Participant 47 simply
indicated: “Lack of hands-on coding opportunities”.

b) Self-Efficacy: Several students emphasized the im-
portance of implementing secure coding practices to prevent
vulnerabilities and security risks. For instance, Participant 4
noted “I know I need to write code that can be full-proof
so there are no potential security risks”. After completing
the course modules participants also recognized the real-
world impact and severe consequences of vulnerabilities, e.g.,
Participant 10 stated “I believe real world vulnerabilities are
crucial to understand and prevent because a small error can

have a negative impact”. Some provided responses that reflect
a sense of personal responsibility and the need for individual
effort in secure programming practices. More specifically,
Participant 13 said, “Real-world vulnerabilities emphasized
my significance in my efforts of secure programming because I
now know the dangers of how a small error on my part could
affect the life of someone else”.

c) Awareness of the Importance of Security in Pro-
gramming: The real-world vulnerability explored in the mod-
ule focused on input validation. We provided the MangaDex-
Downloader software vulnerability as an example to demon-
strate this vulnerability in the real-world. Participants ex-
plained that the example showed how important it is to ensure
that input accepted by users is validated. Participant 4 stated,
“I now see how dangerous input validation vulnerability errors
can be. I know that a lot of code that I have written has plenty
of errors like these, and I should go out of my way to fix
these errors in the future.” Similarly, inspired by the real-world
example, participants developed a heightened awareness of
security vulnerabilities when coding. They have gained insight
into the dangers of improper input validation and expressed
their motivation to program with this security concern in
mind. Participant 33 stated, “MangaDex serves as a valuable
reminder of the significance of robust input validation in
preventing security breaches and underscores the need for a
proactive approach to security in software development.”

C. Implications

Our quantitative and qualitative evaluation revealed an over-
all positive trend in the improvements in student self-efficacy
due to our course module. In addition, students appreciated
the course module, particularly our efforts in recording a
video that reproduces a vulnerability and demonstrates how
it can be exploited. However, we observed a smaller positive
difference in the students’ perception of the importance of
secure programming and their awareness of security issues in
their code. This was because students ranked those character-
istics highly even prior to the module. This observation aligns
with findings from other researchers, who noted that students
recognize the importance of secure coding but often lack the
necessary skills to write secure code [7], [29]. Our course
module specifically enhanced learning self-efficacy concerning
improper input validation, the vulnerability we focused on.
This suggests that employing real-world vulnerabilities can be
an effective way to learn secure programming.

D. Threats to Validity

There are several key threats to validity of our study that
might affect the interpretation and generalizability of our
findings.

External validity concerns the extent to which our results
can be generalized. Our study’s participants were drawn from
only two universities and all were enrolled in a programming
course (CS2 and CS3), which may not be representative of all
computer science students. The risk is mitigated by the fact

6



that both universities have a large and diverse population of
students.

The design of the surveys and the choice of questions could
also impact our findings and is a source of construct validity.
The reliance on self-reported measures, especially in assessing
understanding of secure programming, might not accurately
reflect the participants’ actual skills and knowledge in the
subject. This threat is mitigated by the fact that used both
qualitative and quantitative measures to get a more complete
picture of the students perceptions and that the goal of the
study was to measure student perceptions and not their actual
learning gain.

Internal validity concerns include how well the study was
conducted and whether the results can be attributed to the
interventions made. The single-session format of the course
module might not be sufficient to instigate significant changes
in understanding or attitudes toward secure programming. Ad-
ditionally, by using a single-session format, we may observe
a reduced effect size. However, we note that multi-session
format may introduce its own set of confounding factors,
such as maturation (i.e., a natural improvement in student
knowledge over time) [35]. Furthermore, we did not ensure
that the participants fully read the course module content
and watched the recorded video. This risk is mitigated by
the fact that the study was performed in a classroom setting
where students were generally focused on their task and had
few distractions. Finally, an internal threat to validity arises
from the absence of a random control group in the study. We
mitigate this threat by recruiting numerous participants and
enlisting two distinct universities in the study [35].

VI. CONCLUSIONS

Teaching secure programming is crucial for mitigating
software security threats. However, students often struggle to
maintain and apply their secure programming skills in new
tasks. The availability of large vulnerability databases offers
a chance to introduce real-world software vulnerabilities into
educational settings. These real-world examples are authentic
and can resonate with students’ experiences. Our study, one of
the first of its kind, investigates whether the authenticity and
relevance of these vulnerabilities affect students’ self-efficacy
and awareness in secure programming.

We designed course modules centered on a real-world input
validation vulnerability. Using a module, we designed a quasi-
experiment study and implemented it at two universities. Using
Likert scale questionnaires and open-ended questions, we
assessed the module’s impact quantitatively and qualitatively.
The results indicate that incorporating real-world vulnerabil-
ities positively influences students’ learning disposition and
self-efficacy in secure programming.

However, this study has limitations, including its single-
experiment nature and mixed student responses to certain sur-
vey questions. These mixed responses might reflect students’
views of their assignments as lacking real-world security
significance, underscoring the need for a stronger focus on
secure programming in curricula.

This research is a preliminary step in developing pedagogy
and materials that use real-world vulnerabilities to enhance
secure programming education. Future research will explore
different security vulnerabilities and educational methods,
aiming to not only assess self-efficacy but also examine
directly students’ mastery of secure programming skills and
knowledge and assess the extent to which design factors of the
pedagogy and materials affect students’ learning disposition
towards secure programming.

ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under Grant No.’s 2235224 and 2235976.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] T. E. Gasiba, U. Lechner, M. Pinto-Albuquerque, and D. Mendez, “Is
secure coding education in the industry needed? an investigation through
a large scale survey,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering Education and Training
(ICSE-SEET). IEEE, 2021, pp. 241–252.

[2] T. E. Gasiba, U. Lechner, M. Pinto-Albuquerque, and D. M. Fernandez,
“Awareness of secure coding guidelines in the industry-a first data
analysis,” in 2020 IEEE 19th International Conference on Trust, Security
and Privacy in Computing and Communications (TrustCom). IEEE,
2020, pp. 345–352.

[3] US-CERT, “Software assurance,” September 2020, available:
https://www.cisa.gov/uscert/sites/default/files/publications/infosheet
SoftwareAssurance.pdf, retrieved on June 20, 2022.

[4] M. Bishop, I. Ngambeki, S. Mian, J. Dai, and P. Nico, “Measuring
self-efficacy in secure programming,” in IFIP World Conference on
Information Security Education. Springer, 2021, pp. 81–92.

[5] M. Almansoori, J. Lam, E. Fang, K. Mulligan, A. G. Soosai Raj, and
R. Chatterjee, “How secure are our computer systems courses?” in
Proceedings of the 2020 ACM Conference on International Computing
Education Research, 2020, pp. 271–281.

[6] M. Bishop, “A clinic for “secure” programming,” IEEE Security &
Privacy, vol. 8, no. 2, pp. 54–56, 2010.

[7] T. Yilmaz and Ö. Ulusoy, “Understanding security vulnerabilities in
student code: A case study in a non-security course,” Journal of Systems
and Software, vol. 185, p. 111150, 2022.

[8] D. I. Cordova and M. R. Lepper, “Intrinsic motivation and the process
of learning: Beneficial effects of contextualization, personalization, and
choice.” Journal of educational psychology, vol. 88, no. 4, p. 715, 1996.

[9] S. J. Priniski, C. A. Hecht, and J. M. Harackiewicz, “Making learning
personally meaningful: A new framework for relevance research,” The
Journal of Experimental Education, vol. 86, no. 1, pp. 11–29, 2018.

[10] S. Buckingham Shum and R. D. Crick, “Learning dispositions and
transferable competencies: pedagogy, modelling and learning analytics,”
in Proceedings of the 2nd international conference on learning analytics
and knowledge, 2012, pp. 92–101.

[11] J. A. Fredricks, Eight myths of student disengagement: Creating class-
rooms of deep learning. Corwin Press, 2014.

[12] L. Cohen, L. Manion, and K. Morrison, Research methods in education,
8th ed. routledge, 2002.

[13] V. Švábenskỳ, J. Vykopal, and P. Čeleda, “What are cybersecurity
education papers about? a systematic literature review of sigcse and
iticse conferences,” in Proceedings of the 51st ACM technical symposium
on computer science education, 2020, pp. 2–8.

[14] S. Furnell and M. Bishop, “Addressing cyber security skills: the spec-
trum, not the silo,” Computer fraud & security, vol. 2020, no. 2, pp.
6–11, 2020.

[15] C. E. Irvine and S.-K. Chin, “Integrating security into the curriculum,”
Computer, vol. 31, no. 12, pp. 25–30, 1998.

7



[16] C. E. Irvine, “What might we mean by “secure code” and how might
we teach what we mean?” in 19th Conference on Software Engineering
Education and Training Workshops (CSEETW’06). IEEE, 2006, pp.
22–22.

[17] K. Nance, “Teach them when they aren’t looking: Introducing security
in CS1,” IEEE Security & Privacy, vol. 7, no. 5, pp. 53–55, 2009.

[18] M. Bishop, “Teaching security stealthily,” IEEE Security & Privacy,
vol. 9, no. 2, pp. 69–71, 2011.

[19] J. Cappos and R. Weiss, “Teaching the security mindset with reference
monitors,” in Proceedings of the 45th ACM technical symposium on
Computer science education, 2014, pp. 523–528.

[20] S. Raina, S. Kaza, and B. Taylor, “Segmented and interactive modules
for teaching secure coding: A pilot study,” in E-Learning, E-Education,
and Online Training: First International Conference, eLEOT 2014,
Bethesda, MD, USA, September 18-20, 2014, Revised Selected Papers
1. Springer, 2014, pp. 147–154.

[21] S. Kaza and B. Taylor, “Introducing secure coding in undergraduate (cs0,
cs1, and cs2) and high school (ap computer science a) programming
courses,” in Proceedings of the 49th ACM Technical Symposium on
Computer Science Education, 2018, pp. 1050–1050.

[22] W. Du, “SEED: hands-on lab exercises for computer security education,”
IEEE Security & Privacy, vol. 9, no. 5, pp. 70–73, 2011.

[23] B. Taylor and S. Kaza, “Security injections@Towson: Integrating secure
coding into introductory computer science courses,” ACM Transactions
on Computing Education (TOCE), vol. 16, no. 4, pp. 1–20, 2016.

[24] M. Whitney, H. R. Lipford, B. Chu, and T. Thomas, “Embedding secure
coding instruction into the ide: Complementing early and intermediate
cs courses with eside,” Journal of Educational Computing Research,
vol. 56, no. 3, pp. 415–438, 2018.

[25] V. Nestler, T. Coulson, and J. D. Ashley, “The nice challenge project:
providing workforce experience before the workforce,” IEEE Security
& Privacy, vol. 17, no. 2, pp. 73–78, 2019.

[26] J. Wei, B.-T. Chu, D. Cranford-Wesley, and J. Brown, “A laboratory for
hands-on cyber threat hunting education,” in Journal of The Colloquium
for Information Systems Security Education, vol. 7, no. 1, 2020, pp. 7–7.

[27] J. Zhu, H. R. Lipford, and B. Chu, “Interactive support for secure
programming education,” in Proceeding of the 44th ACM technical
symposium on Computer science education, 2013, pp. 687–692.

[28] A. Siraj, N. Sridhar, J. A. D. Hamilton Jr, L. Khan, S. Kaza, M. Gupta,
and S. Mittal, “Is there a security mindset and can it be taught?” in
Proceedings of the Eleventh ACM Conference on Data and Application
Security and Privacy, 2021, pp. 335–336.

[29] J. Lam, E. Fang, M. Almansoori, R. Chatterjee, and A. G. Soosai Raj,
“Identifying gaps in the secure programming knowledge and skills of
students,” in Proceedings of the 53rd ACM Technical Symposium on
Computer Science Education V. 1, 2022, pp. 703–709.

[30] L. Slusky and P. Partow-Navid, “Students information security practices
and awareness,” Journal of Information Privacy and Security, vol. 8,
no. 4, pp. 3–26, 2012.

[31] MITRE Corporation, “CWE-20: Improper input validation,” available:
CWE-20:ImproperInputValidation, retrieved on June 20, 2022.

[32] FIRST.Org, Inc., “Common vulnerability scoring system v3.0:
Specification document,” available: https://www.first.org/cvss/v3.0/
specification-document, retrieved on May 25, 2023.

[33] NIST, “Cve-2022-36082 detail,” available https://nvd.nist.gov/vuln/
detail/CVE-2022-36082, retrieved on May 25, 2023.

[34] Cyber4All Team, “Cyber4all input validation module,” available:
https://cisserv1.towson.edu/∼cyber4all/modules/nanomodules/Input
Validation-CS0 Java.html, retrieved May, 2023.

[35] E. Marsden and C. J. Torgerson, “Single group, pre-and post-test
research designs: Some methodological concerns,” Oxford Review of
Education, vol. 38, no. 5, pp. 583–616, 2012.

[36] R. Hyman, “Quasi-experimentation: Design and analysis issues for field
settings (book),” Journal of Personality Assessment, vol. 46, no. 1, pp.
96–97, 1982.

[37] T. D. Cook, D. T. Campbell, and W. Shadish, Experimental and quasi-
experimental designs for generalized causal inference. Houghton
Mifflin Boston, MA, 2002, vol. 1195.

[38] V. Braun and V. Clarke, “Thematic analysis.” in APA handbook of
research methods in psychology, Vol 2: Research designs: Quantitative,
qualitative, neuropsychological, and biological. American Psycholog-
ical Association, 2012, pp. 57–71.

[39] J. F. de Winter and D. Dodou, “Five-point likert items: t test versus
mann-whitney-wilcoxon (addendum added october 2012),” Practical
Assessment, Research, and Evaluation, vol. 15, no. 1, p. 11, 2019.

8


