
Linux Auditing: Overhead and Adaptation

Lei Zeng, Yang Xiao*
Department of Computer Science,

The University of Alabama,
Tuscaloosa, AL 35487-0290 USA

Email: yangxiao@ieee.org
*Prof. Yang Xiao is the corresponding author

Hui Chen

Department of Mathematics and
Computer Science,

Virginia State University,
Petersburg, VA 23806 USA

Abstract— Logging is a critical component of Linux auditing.
The experiments indicate that the logging overhead can be
significant. The paper aims to leverage the performance
overhead introduced by Linux audit framework under various
usage patterns. The study on the problem leads an adaptive audit
logging mechanism. The adaptive auditing mechanism reduces
the overall system overhead and achieves a similar level of
protection on the system and network security.

Index items: logging, overhead, Linux, auditing;

I. INTRODUCTION
UDITING in operating systems (OSs) is necessary to
achieve network and system security. Linux auditing

watches file accesses, monitors system calls, records
commands run by users, and security events, such as
authentication, authorization, and privilege elevation, which is
achieved via logging the system activities to events. Attributes
of an event include the date, time, type, subject identity, result,
and sensitivity labels.

The book, The Trusted Computer System Evaluation
Criteria, which was published by the U.S. Department of
Defense in 1985 [1] defines the requirement of logging for
auditing purpose. The criteria is often referred to as “the
Orange Book,” which has been regarded as the security
requirements for the design and implementation of secure
computer systems, and has a profound influence on the design
of secure computer systems. The Orange Book divides its
security criteria into four categories, D, C, B, and A, which are
organized in a hierarchical manner such that category D has
the lowest security requirements while category A has highest
ones. Category D stands for the minimal protection (i.e., the
computer systems that cannot meet the requirements of the
higher category). Category C sets forth the requirements for
discretionary protection. Category B defines the requirements
for mandatory protection. In category A, formal verification
methods are required to assure that sensitive or classified data
processed or stored by the system can be protected by
discretionary and mandatory security controls. Categories B
and C are further divided into a number of sub classes,
organized hierarchically. For example, class C1 requires the
separation user and data enforcement of access limitation to
the data on an individual basis while a more finely-grained
discretionary access control characterizes class C2 so that
actions of users become accountable via auditing of
security-related events, login procedures, and resource
isolation

The Common Criteria is closely related to the Orange Book.
Its goal is to establish a guideline for developing and
evaluating computer products in regards to its security
features. The Common Criteria concentrates on the security
threads from human activities. It reiterates the audit
requirement for secure computer systems. Logging is essential
to meet the requirement. Although these standards recognize
the importance of auditing, the focus is obviously placed in
bookkeeping audit trail/log, which is in fact the system activity
log.

In regard to the logging functionality of computer systems,
audit information must be recorded and protected selectively
[1, 2, 3, 4]. It is the logging functionality that keeps and
protects the audit information, which is often referred to as
audit trails, audit data, logs, or logging data. The criteria also
indicates that identifications are needed for individual subjects
and access information, such as identities of accessing
information, and their authorization of accessing the
information is mediated [1]. Information of identification and
authorization must be saved in computers, protected from
attractors, and used when performing some security-relevant
actions [1]. Thus, the responsible party can be traced via its
actions related to security, and the outcome of the actions can
be assessed, and this is essentially based on the logging data
recorded on non-volatile memory.

Linux audit framework [5] helps Linux meet many
government and industrial security standards, such as
CAPP/EAL4+ [6] ,LSPP [7], RBAC [8], NISPOM [9],
FISMA [10], PCI [11, 12], and DCID 6/3 [13]. It is important
to the adoption of Linux in mission critical environments to
meet the requirements of the security standards; otherwise,
Linux cannot compete with other commercial operating
systems, such as IBM, AIX, and Windows Server. They have
already received certification in many government and
industrial security standards.

However, to the best of our knowledge, an important
question remains open: what is the performance overhead
induced by Linux audit framework under various traffic and
usage patterns, would recent development and development of
high throughput/bandwidth networks further stress Linux
audit framework?

In this paper, we first identify the important usage patterns
of Linux operating systems, and then, we design experiments
to measure the overhead induced by the Linux audit
framework in these usage patterns. The experiments inform
the design of an adaptive auditing mechanism, which uses a set
of selected but important type of events as the vital sign of

A

system and network activity and uses the vital signs to adjust
audit logging In order to change the type of events logged, the
frequency of events logged and the time window intensive
logging must be performed. The adaption achieves a low
overhead in normal uses and at the same time provides the
same amount of audit data sufficiently to accomplish an audit
during critical events, such as system and network intrusion.

The rest of the paper is organized as follows. In Section II,
we introduce Linux audit framework. In Section III, we study
overhead of Linux logging. We propose an adaptive
mechanism and study the performance of the proposed
adaptive logging in Section IV. Finally, we conclude the paper
in Section V.

II. LINUX AUDIT FRAMEWORK
Linux audit provides users a way to analyze system

activities in great detail [5]. It does not, however, protect users
from attacks [5]. Instead, Linux audit helps users to track these
issues and take security measures to prevent them [5].

Linux audit framework includes several components:
auditd, auditctl, audit rules, aureport, ausearch, audispd, and
autrace, as shown in Fig. 1 [5].

Fig. 1 Linux audit framework [5]
We explain the functions in Fig.1 as follows [5]:
 Auditd--The audit daemon writes the audit messages

that collected in the Linux kernel to disk or transfers
them to audispd. The configuration file,
/etc/sysconfig/auditd, controls how the audit daemon
starts, and the configuration file, /etc/auditd.conf,
controls how the audit daemon functions once it starts.

 Auditctl--The auditctl utility is responsible for kernel
settings, log generation parameters, and audit rules that
determine which events are tracked.

 Audit rules--Audit rules are contained in the file
/etc/audit.rules. The file is loaded when the system
boots and starts audit daemon.

 Aureport--The aureport utility helps users to create a
custom view of logged messages.

 Ausearch-- Users can use the ausearch utility to search
some events with characteristics, such as keys, of the
logged format in the log file.

 Audispd--The audit dispatcher daemon (audispd)
dispatches event messages to other applications instead
of writing them to a disk.

There are several keywords in an audit event record: type,
msg, arch, syscall, success, exit, a0 to a3, items, ppid, pid,
auid, uid, gid, euid, suid, fsuid, tty, comm., exe, subj, key,
item, name, inode, dev, mode, and ouid. We explain them in
details as follows [5]:

 The type field in the record denotes the type of events
recorded.

 The msg field stores a message ID. The arch field refers
to the CPU architecture.

 The syscall field stores the system call ID.
 The result of the system call, such as being invoked,

success, or failure, is saved in the success field.
 The return value of the system call is saved in the exit

field.
 The first four arguments to the system call are saved in

the a0 to a3 field.
 The number of strings that is passed to the application

is saved in the items field.
 Ppid, pid, auid, uid, gid, euid suid, fsuid, egid, sgid, and

fsgid store the ID of the process, user, or group.
 The tty field refers to the terminal from which the

application is initiated.
 The Comm field stores the application name appeared

in the task list.
 The Exe field stores the pathname of the invoked

program.
 The Subj field refers to the security context to which

the process is subject.
 The key field stores the key strings assigned to each

event.
 The item field stores the path argument of system call if

there is more than one argument.
 As an argument, the pathname is saved in the name

field.
 Inode refers to the inode number corresponding to the

name field.
 The dev field stores the device and mode field stores

the files access permission in numerical representation.
 The uid and gid of inode are saved in the ouid and ogid

fields, respectively.

III. OVERHEAD OF LINUX AUDIT LOGGING

A. Traffic Patterns and Types of Events
Linux distributions have been used as a server operating

system for its stability, security, and pricing [14]. There are
several types of servers in the general network environment:
web server, mail server, file server, application server, catalog
server, DNS server, data server, etc [15]. Moreover, Linux is a
widely used platform for cloud computing, which provides
storage service, software, data access, and computation, which
users may not know, as well as configuration of the system and
physical location that provide the services [16, 17, 18].
Besides, Linux distributions play a major role on scientific
computing because of their efficiency [19] and stability. Last
but not least, Linux can be used in workstation. Current

workstations uses sophisticated CPU such as Intel Xeon,
AMD Opteron, or IBM Power and run Unix/Linux systems to
provide reliable workhorse for computing-intensive tasks
[20].

In addition, auditing is used widely in operating systems and
Linux is used as a case study. More importantly, what we
learned from this case study can be extended to auditing of
other operating systems.

B. Experimental Design and Overhead Measurement
There are many free Linux benchmark tools available such

as Phoronix Test Suite and Netperf [21]. The drawback is the
benchmark is different from real situation [22].

Similar to the logging performance study, we will run a
worker program (on the host, or from the network), measure
wall-clock time, with/without audit logging, and with different
granularity of audit logging.

We use a worker program, which invokes a number of
system calls to simulate normal workload. The number of
system calls and the frequency with which the worker program
opens and closes files can be adjusted. In other words, the
worker program simulates normal workload in a variety of
usage patterns, such as web servers, file servers, and mail
servers.

First, we run the worker program on a computer with
Ubuntu 9.10 running, and we count the average running time
(wall clock time). Then, we run the same worker program on
the same computer with auditing function enabled, and we
record the average running time as well. We denote the former
average running time as Toff indicating that the auditing
function is off and the later as Ton indicating that the auditing
function is on. The performance overhead is a percentage
expressed as on off offC T T T .

C. Performance Overhead Analysis of Linux Audit Logging
Configuration of the test and evaluation computer system is

shown in Table 1.

TABLE 1 CONFIGURATION OF THE TEST AND EVALUATION COMPUTER SYSTEM

Component Description

Linux distribution Ubuntu 9.10
Motherboard Dell 0G8310
Memory 1GB DIMM SDRAM PC 533 RAM
CPU 1 Intel(R) Pentium(R) 4 CPU 3.00GHz

Disk 82801FB/FW (ICH6/ICH6W) SATA
Controller and 40GB WDC
WD400BD-75JM

Since there are 347 system calls in

arch/x86/kernel/syscall_table_32.S for x86 architecture, these
primary system calls in [23] and [24] are configured to be
audited. The performance overhead is shown in Fig. 2. In this
figure, the X dimension denotes the action frequency in
worker program from 1 times/s, 5 times/s, 10 times/s to 20
times/s. Because the action in worker program can only
happen 23.8 times per second, the highest frequency recorded
in Fig. 2 is 20 times/s. The Y dimension denotes the overhead

that computed using on off offC T T T .

Significant performance overhead is observed when action
frequency is 20 times/second. With the action frequency
increasing, performance overhead increases as well. Since
auditing these system calls incurred system overhead, the
performance penalty will increase when the frequency of
invoking system calls increases.

5 10 15 20
0

1

2

3

4

5

6

%

Action frequency/s

 Performance overhead

Fig. 2 Performance overhead when auditing 347 primary system calls

IV. ADAPTIVE LOGGING AND PERFORMANCE EVALUATION

A. Adaptive Auditing Mechanism
The study on the problem leads an adaptive audit logging

mechanism. Many security incidents or other important events
are often accompanied with precursory events. We identify
important precursory events – the vital signs of system activity
and the audit events that must be recorded. The adaptive
auditing mechanism increases or reduces the type of events
collected and the frequency of events collected based upon the
online analysis of the vital sign events. The adaptive auditing
mechanism reduces the overall system overhead and achieves
a similar level of protection on the system and network
security.

Two goals are 1) to identify critical events specific for
Linux server traffic, 2) to estimate the performance overhead
introduced by the auditing function.

Common tasks in the Linux server, uch as bash, aureport,
crond and yum, etc., are shown in Fig. 3. These tasks will
eventually invoke the connect system call or the accept system
call, which are in fact are socket function calls. In order to
adapt the auditing system to the server operating system and
minimize the incurred system overhead, these two critical
system calls, connect and accept, are chosen to be audited.

Operating systems are not actual user programs. The
number of resources used by operating systems should be as
small as possible. The auditing function would increase the
resources used by the operating system. We would like to
estimate the performance overhead introduced by the adaptive
auditing function.

Audit rules in /etc/audit/audit.rules file are shown as

follows:

-a entry, always –S, connect
-a entry, always –S, accept

The first rule is to monitor the connect system call, and the

second rule is to monitor the accept system call.

Fig. 3 Linux tasks and corresponding system calls

B. Performance Evaluation
This subsection shows that adaptive logging has reduced

overhead.
Figs. 4, 5, and 6 are produced using aureport utility and two

vital system calls, connect and accept, for web servers, are
monitored.

The failed access statistics report is shown in Fig. 4. In the
figure, /var/run/setrans/.setrans-unix is observed to have the
highest failed access and /var/run/nscd/socket ranked the
second. Because /var/run/setrans/.setrans-unix contains many
system related parameters that are used by a variety of
applications and because only the root user has access to this
file, the other applications will fail to access the file if no root

privilege is obtained. The third file in Fig. 4 is a log file owned
by ssh utility and does not have a failed access recorded.

The system call statistics report is shown in Fig. 5. In this
figure, two system calls, connect and accept, are recorded. The
connect system call was invoked many times because a lot of
the common tasks of server traffic will invoke this system call.

Event ranking is shown in Fig. 6. In the figure, the system
call event ranked first among all events in the server operating
system.

Performance overhead for adaptive logging is shown in Fig.
7. In this figure, the X dimension denotes the action frequency
in the worker program from 1 times/s, 5 times/s, 10 times/s to
20 times/s. Because action in the worker program can only
happen 23.8 times per second, the highest frequency recorded
in Fig. 7 is 20 times/s. The Y dimension denotes the overhead
computed using on off offC T T T .

5 10 15 20
0

1

2

3

4

5

6

%

Action frequency/s

 Performance overhead

Fig. 7 Performance overhead

The performance overhead is observed as insignificant at a
chosen frequency in the worker program, especially when
compared with the previous experiment when all of the system
calls are audited. This means that the performance overhead
introduced by Linux audit function is acceptable when two
system calls, connect and accept, are audited. In the case that
all of the system calls are audited, the performance overhead
will end up being unacceptable. Therefore, auditing should be
adapted to different Linux security models to enhance the
security with an acceptable, incurred overhead.

V. CONCLUSION
In this paper, we introduced Linux audit framework and

measured system overhead when the auditing function was
enabled. Then, we adapted the auditing function to the server
traffic pattern and reevaluated system overhead. We observed
that adaptive logging can dramatically reduce system
overhead.

ACKNOWLEDGEMENT
This work was supported partially by the Natural Science

Foundation of China under grant #61374200.

REFERENCES
[1] US Department of Defense, “Department of Defense Trusted Computer

System Evaluation Criteria,” DoD 5200.28-STD, Library No. S225,
711, December 1985.

[2] Y. Xiao, "Flow-Net Methodology for Accountability in Wireless
Networks," IEEE Network, Vol. 23, No. 5, Sept./Oct. 2009, pp. 30-37.

[3] B. Fu and Y. Xiao, "Q-Accountable: A Overhead-based Quantifiable
Accountability in Wireless Networks," Proceedings of IEEE Consumer
Communications and Networking Conference (IEEE CCNC 2012), pp.
138-142.

[4] B. Fu and Y. Xiao, "Accountability and Q-Accountable Logging in
Wireless Networks", Wireless Personal Communications, Vol. 75, No. 3,
Apr. 2014, pp. 1715-1746.

[5] “SUSE Linux Enterprise—The Linux Audit Framework,” available:
http://www.suse.com/documentation/sled10/pdfdoc/audit_sp2/audit_sp
2.pdf, May 8, 2008

[6] “CAPP/EAL4+ compliant system overview,” see:
http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/
com.ibm.aix.security/doc/security/capp_compliant_overview.htm.

[7] Information Systems Security Organization, "Labeled Security
Protection Profile,” URL:
http://www.commoncriteriaportal.org/files/ppfiles/lspp.pdf, October 8,
1999.

[8] Ravi S. Sandhu, Edward J. Coyne, “Role-Based Access Control
Models,” URL:
http://profsandhu.com/journals/computer/i94rbac(org).pdf, 1996, IEEE.

[9] “National Industrial Security Program—Operating Manual,” available:
http://www.ncms-isp.org/NISPOM_200602_with_ISLs.pdf, February
2006.

[10] “Federal Information Security Management Act of 2002,” available:
http://en.wikipedia.org/wiki/Federal_Information_Security_Manageme
nt_Act_of_2002.

[11] “Conventional PCI,” available:
http://en.wikipedia.org/wiki/Conventional_PCI.

[12] “Director of Central Intelligence Directive 6/3—Protecting Sensitive
Compartmented Information Within Information Systems,” available:
http://www.fas.org/irp/offdocs/DCID_6-3_20Manual.htm.

[13] J. Liu, Y. Xiao, H. Chen, S. Ozdemir, S. Dodle, and V. Singh, "A Survey
of Payment Card Industry (PCI) Data Security Standard," IEEE
Communications Surveys & Tutorials, Vol. 12, No. 3, pp. 287-303,
Third Quarter 2010.

[14] “Wikipedia—Linux,” available: http://en.wikipedia.org/wiki/Linux.
[15] “Wikipedia—Server,” available:

http://en.wikipedia.org/wiki/Server_(computing).
[16] “Wikipedia—Cloud Computing, ” available:

http://en.wikipedia.org/wiki/Cloud_computing.
[17] Z. Xiao and Y. Xiao, “Security and Privacy in Cloud Computing,” IEEE

Communications Surveys & Tutorials, Vol. 15, No. 2, Second Quarter
2013, pp. 843-859.

[18] Z. Xiao and Y. Xiao, "Achieving Accountable MapReduce in Cloud
Computing," (Elsevier) Future Generation Computer Systems, Vol. 30,
No.1, Jan. 2014, pp. 1–13.

[19] B. Saphir, “Linux for Scientific Computing,” available:
http://www.lugod.org/presentations/linux4scientificcomputing.pdf.

[20] “Wikipedia—Workstation,” available:
http://en.wikipedia.org/wiki/Workstation.

[21] “Linux Benchmarking HOWTO,” available:
ftp://ftp.lyx.org/pub/sgml-tools/website/HOWTO/Benchmarking-HOW
TO/t152.html

[22] “Evaluation assurance levels,” available:
http://cygnacom.com/labs/cc_assurance_index/CCinHTML/PART3/PA
RT36.HTM

[23] J. He, “Linux System Call Quick Reference,” available:
http://www.digilife.be/quickreferences/qrc/linux%20system%20call%2
0quick%20reference.pdf.

[24] “Linux System Call Reference,” available:
http://syscalls.kernelgrok.com/.

Fig. 4 Failed Access Statistics Report

Fig. 5 System Call Statistics Report

Fig. 6 Event Ranking

