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Abstract— Logging is a critical component of Linux auditing. 
The experiments indicate that the logging overhead can be 
significant. The paper aims to leverage the performance 
overhead introduced by Linux audit framework under various 
usage patterns. The study on the problem leads an adaptive audit 
logging mechanism. The adaptive auditing mechanism reduces 
the overall system overhead and achieves a similar level of 
protection on the system and network security. 
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I. INTRODUCTION 
UDITING in operating systems (OSs) is necessary to 
achieve  network and system security. Linux auditing 

watches file accesses, monitors system calls, records 
commands run by users, and security events, such as 
authentication, authorization, and privilege elevation, which is 
achieved via logging the system activities to events. Attributes 
of an event include the date, time, type, subject identity, result, 
and sensitivity labels.  

The book, The Trusted Computer System Evaluation 
Criteria, which was published by the U.S. Department of 
Defense in 1985 [1] defines the requirement of logging for 
auditing purpose. The criteria is often referred to as “the 
Orange Book,” which has been regarded as the security 
requirements for the design and implementation of secure 
computer systems, and has a profound influence on the design 
of secure computer systems. The Orange Book divides its 
security criteria into four categories, D, C, B, and A, which are 
organized in a hierarchical manner such that category D has 
the lowest security requirements while category A has highest 
ones. Category D stands for the minimal protection (i.e., the 
computer systems that cannot meet the requirements of the 
higher category). Category C sets forth the requirements for 
discretionary protection. Category B defines the requirements 
for mandatory protection. In category A, formal verification 
methods are required to assure that sensitive or classified data 
processed or stored by the system can be protected by 
discretionary and mandatory security controls. Categories B 
and C are further divided into a number of sub classes, 
organized hierarchically. For example, class C1 requires the 
separation user and data enforcement of access limitation to 
the data on an individual basis while a more finely-grained 
discretionary access control characterizes class C2 so that 
actions of users become accountable via auditing of 
security-related events, login procedures, and resource 
isolation  

The Common Criteria is closely related to the Orange Book. 
Its goal is to establish a guideline for developing and 
evaluating computer products in regards to its security 
features. The Common Criteria concentrates on the security 
threads from human activities. It reiterates the audit 
requirement for secure computer systems. Logging is essential 
to meet the requirement. Although these standards recognize 
the importance of auditing, the focus is obviously placed in 
bookkeeping audit trail/log, which is in fact the system activity 
log. 

In regard to the logging functionality of computer systems, 
audit information must be recorded and protected selectively 
[1, 2, 3, 4]. It is the logging functionality that keeps and 
protects the audit information, which is often referred to as 
audit trails, audit data, logs, or logging data. The criteria also 
indicates that identifications are needed for individual subjects 
and access information, such as identities of accessing 
information, and their authorization of accessing the 
information is mediated [1]. Information of identification and 
authorization must be saved in computers, protected from 
attractors, and used when performing some security-relevant 
actions [1]. Thus, the responsible party can be traced via its 
actions related to security, and the outcome of the actions can 
be assessed, and this is essentially based on the logging data 
recorded on non-volatile memory. 

Linux audit framework [5] helps Linux meet many 
government and industrial security standards, such as 
CAPP/EAL4+ [6] ,LSPP [7], RBAC [8], NISPOM [9], 
FISMA [10], PCI [11, 12], and DCID 6/3 [13]. It is important 
to the adoption of Linux in mission critical environments to 
meet the requirements of the security standards; otherwise, 
Linux cannot compete with other commercial operating 
systems, such as IBM, AIX, and Windows Server. They have 
already received certification in many government and 
industrial security standards.  

However, to the best of our knowledge, an important 
question remains open: what is the performance overhead 
induced by Linux audit framework under various traffic and 
usage patterns, would recent development and development of 
high throughput/bandwidth networks further stress Linux 
audit framework? 

In this paper, we first identify the important usage patterns 
of Linux operating systems, and then, we design experiments 
to measure the overhead induced by the Linux audit 
framework in these usage patterns. The experiments inform 
the design of an adaptive auditing mechanism, which uses a set 
of selected but important type of events as the vital sign of 
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system and network activity and uses the vital signs to adjust 
audit logging In order to change the type of events logged, the 
frequency of events logged and the time window intensive 
logging must be performed. The adaption achieves a low 
overhead in normal uses and at the same time provides the 
same amount of audit data sufficiently to accomplish an audit 
during critical events, such as system and network intrusion. 

The rest of the paper is organized as follows. In Section II, 
we introduce Linux audit framework. In Section III, we study 
overhead of Linux logging. We propose an adaptive 
mechanism and study the performance of the proposed 
adaptive logging in Section IV. Finally, we conclude the paper 
in Section V.  

II. LINUX AUDIT FRAMEWORK 
Linux audit provides users a way to analyze system 

activities in great detail [5]. It does not, however, protect users 
from attacks [5]. Instead, Linux audit helps users to track these 
issues and take security measures to prevent them [5]. 

Linux audit framework includes several components: 
auditd, auditctl, audit rules, aureport, ausearch, audispd, and 
autrace, as shown in Fig. 1 [5]. 

Fig. 1 Linux audit framework [5] 
We explain the functions in Fig.1 as follows [5]: 
 Auditd--The audit daemon writes the audit messages 

that collected in the Linux kernel to disk or transfers 
them to audispd. The configuration file, 
/etc/sysconfig/auditd, controls how the audit daemon 
starts, and the configuration file, /etc/auditd.conf, 
controls how the audit daemon functions once it starts. 

 Auditctl--The auditctl utility is responsible for kernel 
settings, log generation parameters, and audit rules that 
determine which events are tracked. 

 Audit rules--Audit rules are contained in the file 
/etc/audit.rules. The file is loaded when the system 
boots and starts audit daemon. 

 Aureport--The aureport utility helps users to create a 
custom view of logged messages.  

 Ausearch-- Users can use the ausearch utility to search 
some events with characteristics, such as keys, of the 
logged format in the log file. 

 Audispd--The audit dispatcher daemon (audispd) 
dispatches event messages to other applications instead 
of writing them to a disk. 

There are several keywords in an audit event record: type, 
msg, arch, syscall, success, exit, a0 to a3, items, ppid, pid, 
auid, uid, gid, euid, suid, fsuid, tty, comm., exe, subj, key, 
item, name, inode, dev, mode, and ouid. We explain them in 
details as follows [5]: 

 The type field in the record denotes the type of events 
recorded.  

 The msg field stores a message ID. The arch field refers 
to the CPU architecture.  

 The syscall field stores the system call ID.  
 The result of the system call, such as being invoked, 

success, or failure, is saved in the success field.  
 The return value of the system call is saved in the exit 

field.  
 The first four arguments to the system call are saved in 

the a0 to a3 field.  
 The number of strings that is passed to the application 

is saved in the items field.  
 Ppid, pid, auid, uid, gid, euid suid, fsuid, egid, sgid, and 

fsgid store the ID of the process, user, or group.  
 The tty field refers to the terminal from which the 

application is initiated.  
 The Comm field stores the application name appeared 

in the task list.  
 The Exe field stores the pathname of the invoked 

program. 
 The Subj field refers to the security context to which 

the process is subject.  
 The key field stores the key strings assigned to each 

event.  
 The item field stores the path argument of system call if 

there is more than one argument.  
 As an argument, the pathname is saved in the name 

field.  
 Inode refers to the inode number corresponding to the 

name field.  
 The dev field stores the device and mode field stores 

the files access permission in numerical representation.  
 The uid and gid of inode are saved in the ouid and ogid 

fields, respectively. 

III. OVERHEAD OF LINUX AUDIT LOGGING 

A. Traffic Patterns and Types of Events 
Linux distributions have been used as a server operating 

system for its stability, security, and pricing [14]. There are 
several types of servers in the general network environment: 
web server, mail server, file server, application server, catalog 
server, DNS server, data server, etc [15]. Moreover, Linux is a 
widely used platform for cloud computing, which provides 
storage service, software, data access, and computation, which 
users may not know, as well as configuration of the system and 
physical location that provide the services [16, 17, 18]. 
Besides, Linux distributions play a major role on scientific 
computing because of their efficiency [19] and stability. Last 
but not least, Linux can be used in workstation. Current 



workstations uses sophisticated CPU such as Intel Xeon, 
AMD Opteron, or IBM Power and run Unix/Linux systems to 
provide reliable workhorse for computing-intensive tasks 
[20]. 

In addition, auditing is used widely in operating systems and 
Linux is used as a case study. More importantly, what we 
learned from this case study can be extended to auditing of 
other operating systems. 

B. Experimental Design and Overhead Measurement 
There are many free Linux benchmark tools available such 

as Phoronix Test Suite and Netperf [21]. The drawback is the 
benchmark is different from real situation [22]. 

Similar to the logging performance study, we will run a 
worker program (on the host, or from the network), measure 
wall-clock time, with/without audit logging, and with different 
granularity of audit logging. 

We use a worker program, which invokes a number of 
system calls to simulate normal workload. The number of 
system calls and the frequency with which the worker program 
opens and closes files can be adjusted. In other words, the 
worker program simulates normal workload in a variety of 
usage patterns, such as web servers, file servers, and mail 
servers.  

First, we run the worker program on a computer with 
Ubuntu 9.10 running, and we count the average running time 
(wall clock time). Then, we run the same worker program on 
the same computer with auditing function enabled, and we 
record the average running time as well. We denote the former 
average running time as Toff indicating that the auditing 
function is off and the later as Ton indicating that the auditing 
function is on. The performance overhead is a percentage 
expressed as on off offC T T T . 

C. Performance Overhead Analysis of Linux Audit Logging 
Configuration of the test and evaluation computer system is 

shown in Table 1.  
 

TABLE 1 CONFIGURATION OF THE TEST AND EVALUATION COMPUTER SYSTEM 

Component Description 

Linux distribution Ubuntu 9.10 
Motherboard Dell 0G8310 
Memory 1GB DIMM SDRAM PC 533 RAM 
CPU    1 Intel(R) Pentium(R) 4 CPU 3.00GHz 

Disk 82801FB/FW (ICH6/ICH6W) SATA 
Controller and  40GB WDC 
WD400BD-75JM 

 
Since there are 347 system calls in 

arch/x86/kernel/syscall_table_32.S for x86 architecture, these 
primary system calls in [23] and [24] are configured to be 
audited. The performance overhead is shown in Fig. 2. In this 
figure, the X dimension denotes the action frequency in 
worker program from 1 times/s, 5 times/s, 10 times/s to 20 
times/s. Because the action in worker program can only 
happen 23.8 times per second, the highest frequency recorded 
in Fig. 2 is 20 times/s. The Y dimension denotes the overhead 

that computed using on off offC T T T . 

Significant performance overhead is observed when action 
frequency is 20 times/second. With the action frequency 
increasing, performance overhead increases as well. Since 
auditing these system calls incurred system overhead, the 
performance penalty will increase when the frequency of 
invoking system calls increases.  
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Fig. 2 Performance overhead when auditing 347 primary system calls 

IV. ADAPTIVE LOGGING AND PERFORMANCE EVALUATION  

A. Adaptive Auditing Mechanism 
The study on the problem leads an adaptive audit logging 

mechanism. Many security incidents or other important events 
are often accompanied with precursory events. We identify 
important precursory events – the vital signs of system activity 
and the audit events that must be recorded. The adaptive 
auditing mechanism increases or reduces the type of events 
collected and the frequency of events collected based upon the 
online analysis of the vital sign events. The adaptive auditing 
mechanism reduces the overall system overhead and achieves 
a similar level of protection on the system and network 
security. 

Two goals are 1) to identify critical events specific for 
Linux server traffic, 2) to estimate the performance overhead 
introduced by the auditing function. 

Common tasks in the Linux server, uch as bash, aureport, 
crond and yum, etc., are shown in Fig. 3. These tasks will 
eventually invoke the connect system call or the accept system 
call, which are in fact are socket function calls. In order to 
adapt the auditing system to the server operating system and 
minimize the incurred system overhead, these two critical 
system calls, connect and accept, are chosen to be audited. 

Operating systems are not actual user programs. The 
number of resources used by operating systems should be as 
small as possible. The auditing function would increase the 
resources used by the operating system. We would like to 
estimate the performance overhead introduced by the adaptive 
auditing function. 

Audit rules in /etc/audit/audit.rules file are shown as 



follows: 
 

-a entry, always –S, connect 
-a entry, always –S, accept 

 
The first rule is to monitor the connect system call, and the 

second rule is to monitor the accept system call. 

 
Fig. 3 Linux tasks and corresponding system calls 

 

B. Performance Evaluation 
This subsection shows that adaptive logging has reduced 

overhead.  
Figs. 4, 5, and 6 are produced using aureport utility and two 

vital system calls, connect and accept, for web servers, are 
monitored.  

The failed access statistics report is shown in Fig. 4. In the 
figure, /var/run/setrans/.setrans-unix is observed to have the 
highest failed access and /var/run/nscd/socket ranked the 
second. Because /var/run/setrans/.setrans-unix contains many 
system related parameters that are used by a variety of 
applications and because only the root user has access to this 
file, the other applications will fail to access the file if no root 

privilege is obtained. The third file in Fig. 4 is a log file owned 
by ssh utility and does not have a failed access recorded. 

The system call statistics report is shown in Fig. 5. In this 
figure, two system calls, connect and accept, are recorded. The 
connect system call was invoked many times because a lot of 
the common tasks of server traffic will invoke this system call. 

Event ranking is shown in Fig. 6. In the figure, the system 
call event ranked first among all events in the server operating 
system. 

Performance overhead for adaptive logging is shown in Fig. 
7. In this figure, the X dimension denotes the action frequency 
in the worker program from 1 times/s, 5 times/s, 10 times/s to 
20 times/s. Because action in the worker program can only 
happen 23.8 times per second, the highest frequency recorded 
in Fig. 7 is 20 times/s. The Y dimension denotes the overhead 
computed using on off offC T T T . 
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Fig. 7 Performance overhead 

The performance overhead is observed as insignificant at a 
chosen frequency in the worker program, especially when 
compared with the previous experiment when all of the system 
calls are audited. This means that the performance overhead 
introduced by Linux audit function is acceptable when two 
system calls, connect and accept, are audited. In the case that 
all of the system calls are audited, the performance overhead 
will end up being unacceptable. Therefore, auditing should be 
adapted to different Linux security models to enhance the 
security with an acceptable, incurred overhead. 

V. CONCLUSION 
In this paper, we introduced Linux audit framework and 

measured system overhead when the auditing function was 
enabled. Then, we adapted the auditing function to the server 
traffic pattern and reevaluated system overhead. We observed 
that adaptive logging can dramatically reduce system 
overhead.  
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Fig. 4 Failed Access Statistics Report 



 
Fig. 5 System Call Statistics Report 

 
Fig. 6 Event Ranking 

 


