
Accountable Logging in Operating Systems

Lei Zeng, Yang Xiao*
Department of Computer Science,

The University of Alabama,
Tuscaloosa, AL 35487-0290 USA

Email: yangxiao@ieee.org
*Prof. Yang Xiao is the corresponding author

Hui Chen

Department of Mathematics and
Computer Science,

Virginia State University,
Petersburg, VA 23806 USA

Abstract—In this paper, study how to achieve accountable
logging for operating system using the flow-net logging and its
implementation in current operating system such as Linux. We
demonstrate that the flow-net logging technique is capable of
preserving event relationship. The performance for the flow-net
logging implementation in Linux operation system is evaluated.

Index Terms—Logging, Accountability, Operating System,
Flow-net

I. INTRODUCTION
While computer system gains more complexity, security

system breaches keep emerging. Many researches focus on
countermeasures that detect security threats and recover the
damages. Accountability contributes to these countermeasures.
Accountability indicates that an entity with specific actions
should be responsible for its actions [1-2]. One event could be
traced back for the causes even when it was transpired [2].
Auditing or logging is a typical approach to achieve
accountability [3]. Logging consists of accumulation and
maintenance of records of activities in systems and networks.
Logging includes recording system activities and network
activities and maintaining the recorded data at the same time.
Normally people refer to the recorded data as logging data,
audit logs, audit trails, or logging. Auditing involves
conducting reviews and examinations of system activities in
order to ascertain the causes of one or more events and the
responsibility of a system entity based on the logs.

Syslogd and syslog-ng are the syslog daemons implemented
in Linux systems. Not only can they log data from their own
machines, but they may also log data from other machines [4].
Syslogd consists of two programs: klogd and syslogd. Klogd
manages the logged data from the kernel, and syslogd manages
the logged data from application programs, and logged data is
written in log files according to the configuration files. Also,
there are several applications that have the ability to produce
their own logs.

Mainly for debugging purpose, a modern operating system
normally has limited generated logged data. Some security
mechanisms such as are enforced to track most of the activities
in the system. However, these logging records in log files are
sorted by time the event generated. Therefore, the relationships
between these events are lost.

When an event triggered logging, the event information will
be buffered. Then the logging module will write out the
contents of the logging buffer periodically. Therefore, the
time-stamp of logged event is not necessarily the same as the

time the event really happened. It is the time when the event is
written out to the file.

When it comes to accountability, the logged events should be
traced back in order to determine their causes. The relationships
between these events are vital for tracing back security events.
The trace back will be difficult if it only depends on the
time-stamp to figure out what was really happening in the
system.

In this paper, we propose operating system accountable
logging using the flow-net methodology (ref. [5]) and we also
implement it in current operating system such as Linux. The
flow-net methodology not only logs the events, but also logs the
relationships between the events. We further evaluate the
performance of the logging implementation for operating
system using the flow-net.

The organization of this paper is as follows. OS log is
presented in Section II. Flow-net methodology implementation
in Linux is introduced in Section III. Then performance
evaluation is provided in Section IV. Finally we conclude this
paper in Section V.

II. OPERATING SYSTEM LOG
In this section, we will present background information for

the current logging systems, such as SE Linux and Linux
system logs, and analyze their generated logging files. Then we
will propose our logging methodology to address the current
logging system issues.

A. SE Linux logging
As a mechanism adopting Linux Security Modules (LSM) in

the Linux kernel, Security-Enhanced Linux (SELinux) supports
access control policies, including mandatory access controls
(MACs). Although SELinux does not come with Linux, it is
provided with modifications applied to kernels of Unix-like
operating systems including BSD (Berkeley Software
Distribution) and Linux.

In Linux, there is a system log module that maintains all the
buffered log events and writes out these buffers. The data
generated by SELinux is also manipulated by system log
module and therefore is part of the system logs.

If auditd, the daemon of the auditing system of Linux, is
running background, SELinux denials are saved in the log/audit
file. /var/log/audit/audit.log is the default
log/audit file. If auditd is not running,
/var/log/messages is used to log AVC (Access Vector
Cache) denials. Normally /var/log/audit/audit.log is the
log/audit file to save SELinux logsif auditd is running. An

example of AVC denial is shown as follows and explained in
Table 1 [6].

avc: denied { read } for pid=3002 comm="httpd" name="index.html"
dev=hda3 ino=32004 scontext=user_u:system_r:httpd_t:s0
tcontext=system_u:object_r:tmp_t:s0 tclass=file

Table 1 Analysis of an SELinux logging record [6]
Message Description

Avc: denied An operation has been denied
{read} This operation required the read

permission
Pid=3002 The process with Pid 3002

executed the operation
Comm.= "httpd" The process was an instance of

the httpd program
name="index.html" The target object was named

index.html
dev=hda3 The device hosting the target

object was a real disk, named
hda3

ino=32004 The object was identified by the
inode number 32004

scontext=user_u:system_r:httpd_t:s0 This is the security context of the
process who executed the

operation. It contains user, role,
type and security level

tcontext=system_u:object_r:tmp_t:s0 It is the is target object’s security
context.

tclass=file This means that the target object
is a file.

B. Linux system logging
Syslogd and syslog-ng are the syslog daemons implemented

in Linux systems. Not only can they log data from their own
machines, but they may also log data from other machines [4].

Syslogd consists of two programs: klogd and syslogd. Klogd
manages the logged data from the kernel, and syslogd manages
the logged data from application programs, and logged data is
written in log files according to the configuration files. Also,
there are several applications that have the ability to produce
their own logs.

The following example is a logging record in /var/log/syslog
file.

Feb 20 22:34:49 forrestgump-OptiPlex-755 rtkit-daemon[12467]:
Successfully called chroot.
The first element of the logging record is timestamp,

followed by a user. The application that triggers the event and
the result of the event are logged as well. In this example
record, process rtkit-daemon with process id 12467
successfully called chroot at 22:34:49 on Feb 20.

In essence, all the log files only contain the events with
timestamps and the relationships between these events are not
recorded.

III. FLOW-NET IMPLEMENTATION IN LINUX

A. Flow-net methodology
The flow-net methodology is illustrated in Fig. 1. In Fig. 1,

user A logged in, entered a directory, opened File B, read File
B, closed File B, and logged out. User D logged in and created
File B. The logged information includes three flows: User A,
File B, and User D. The flow beginning from User D obtains
three events: logging in, creating File B and logging out.

The flow-net records not only contain events information,
but also contain relationships between these events. The
generated data is really useful for tracing back.

Fig. 1 Flow-net vs. traditional log

For traditional log, nine events in Fig. 1 were logged with
their time-stamps in the generated log file. Compared to
Flow-net log, the relationship between different events may
only be recovered based on the time-stamps and our best
knowledge. However, the relationships between different
flow-net events are built in the first place when the log
generated.

Based on the previous analysis, we might ask: does
traditional log lose any information compared with Flow-net
log? When we use traditional log events to recover Flow-net
log, it might be possible that the relationships between events
may not be rebuilt, or may be rebuilt wrongly, based on the
time-stamps as well as our knowledge. We can only guess their
causes and effects when it comes to accountablilty, which is not
accurate for most cases. The accuracy of these guessings are
entirely based on auditors’ knowledge and experience.
Therefore, traditional log cannot address accountability
problems.

Besides, if we can recover the relationships correctly, what is
the time complexity to build Flow-net log using traditional log.
Given the n recorded log events, the time complexity to build
Flow-net log should be n!. At first, we need to take one event at
the beginning and determine its relation with the other (n-1)
events. Subsequently, take out the second event and determine
its relation with the remaining (n-2) events.At last there is only
one event left and rebuilding process is done.

For accountability, the logged events should be traced back
in order to determine their causes. The relationships between
these events are vital for tracing back security events. The trace
back will be difficult if it only depends on the timestamp to
figure out what was really happening in the system. Besides,
traditional log only log limited security related events with the
purpose of debugging, which is not suffice to answer
accountability problems. For instance, some non security
related events might not be logged for the traditional log.

B. Implementation of flow-net
In order to record the events occurred in the system, the

hooks added by SELinux [7] are used to capture the events for
simplicity. Since Flow-net structure is built in real time,
updating Flow-net structure whenever an event occurs is
necessary. Therefore we can modify the event-capturing part of
SE Linux and add some logic to build the cross-reference
structure. Besides, we should maintain the entries to all entities
in Fig. 1. For instance, user A, File B, and use D are the entities
in the system. In this case, we need to consider another
problem: when we build a new entry for an entity? Note that all
files and users are entities. If we maintain the cross-reference
for all entities in the system, it will dramatically slow the
system and will not have the capability of being understood.
We can intuitively think that if an entity is created for the first
time, we need to create a new entry for this entity. We don’t
need to create entries for the files created when the system is
installed. When a user login the system, we need to create an
entry for the user because the user may invoke many actions in
the system and cause lots of logging records generated. But
what if users read or write to a file created when the system is

installing, which happens very often. For instance, user A
makes some modifications to /etc/profile to customize the
system. Our solution is to create a new entry for an entity when
an event involves this entity. Otherwise, we don’t need to create
the entry. But, if an entity involves tremendous entities, the
performance of the system will be jeopardized. For example,
Firefox can create many cache files and other temporary files to
speed itself. When these things occur, we need to dramatically
increase our cross-reference structure.

We can capture the events such as reading and writing a file
in kernel. In order to test whether our scheme works, we only
log the read and write events in the system and build a flow-net.

In linux-2.6/fs/sysfs/bin.c:

Static ssize_t write (struct file *file, const char _user *userbuf, size_t
bytes, loff_t *off)

Add the following codes:
#include <linux/cred.h>
#include<asm/current.h>
#include<linux/sched.h>

Static char logEventBuf[1024];
Int uid=current->real_cred->uid;
Int euid=current->real_cred->euid;
Struct dentry *dentry=file->f_path.dentry;
if (dentry->d_inode->i_iflog==1)
 printk(KERN_INFO “%s want to write to log file

%s\n”,current_euid(),dentry->d_name);
logEventBuf=”write”;
….

At this point, we captured the write event and logged it in

logEventBuf[] in kernel space. The next step is to forward the
data in kernel space to user space and build the Flow-net
structure.

In order to build a more complicated flow, we need to
capture more events. For example, login event is critical. How
can we know the login event happens is also a problem.
Because when the machine finishes booting, a getty process is
invoked and it will invoke another process login. Therefore, a
login event happens whenever a login process is invoked by
exec system call. After the init process respawns the getty
process, the login event has ended. Besides all file—related
operation is very important and worth logged. For example,
chmod, chown, and so on.

When we capture an event happening, we first check whether
the involved entities are new. If these entities are new, we build
a new entry for every new entity and build the link from each
involved entry to the captured event. If the entities already have
their entries, we traverse their event list and add the newly
captured events at the end of the event list. At the same time, we
have a user space program like syslog daemon to write the cross
reference to a file on the disk.

During our implementation, we use an array to record these
link structures as follows.

struct time_m {
 int sec;
 int min;
 int hour;

 int mday;
 int mon;
 long year;
 int wday;
 int tyday;};

In Flow-net model, any file objects and users have flows, as

shown in Fig. 2. There are three flows, user A, user D and file B
in the figure with their own flow entries.

Fig. 2 Flow-net model

C. Communication between kernel space and user space
After we have built the cross-reference structure in the array

in kernel, we need a user space program to read the array out to
write to the disk. There are several ways available to
communicate with a user space program in kernel, such as
named pipe, copy_to_user, copy_from_user and netlink socket.

In these three approaches, the named pipe is FIFO. Because
we only desire to use a program in user space to write the data
in array to a file, maybe there is no close relation to FIFO. For
either the copy_to_user approach or copy_from_user approach,
it will be suitable for our implementation due to the fact that we
use an array to store those cross-reference structures.
copy_from_user and copy_to_user can easily copy a part of
memory in kernel to user space. For the netlink approach, a
special inter-process communication (IPC) called Netlink
socket is for the purpose of two-way communications between
user-space processes and the kernel [4].

In essence, we can use copy_to_user and netlink socket to
write the data in kernel to user space.

IV. PERFORMANCE EVALUATION
When we have implemented the flow-net model in the

Linux, we now desire to evaluate the system performance and
check the overhead from the logging. The test scenario is that
we first open a new file and write a given volume of data to the
file. Subsequently, we delete the file and persist on doing the
same thing for 2000 times. First we run the test program in the
old default kernel and count the average running time. Next, we
run the same test program in the kernel in which we
implemented the flow-net model and count the average running
time. Then, we may roughly estimate the overhead in the new
kernel.

The program running in the old kernel took roughly 283
seconds. The program running in the new kernel took roughly
404 seconds. The performance is affected by

(404-283)/283=43%.
Due to the fact that this time is for the overall running time,

we cannot clearly know whether it uses the CPU cycle during
the executing procedure. In Linux, we have a times () function
storing current process times in struct tms:

struct tms {
clock_t user_time
clock_t system_time;
clock_t child_user_time;
clock_t child_system_stime;
Therefore, we may use this structure to know more about the

process time.
In the original system, the process took 14998(time ticks) for

user time and 13426 for system time. In the new system, the
process took 23695 for user time and 17254 for system time,
illustrated in Table 2. Due to the logging logic in kernel, the
system time is increased. In the kernel, we modified the read
and write functions and everything will affect the system time.
Due to the fact that the user time also increased because we
launched a user space-logging program in order to write the
buffer in kernel to files when we launch the test program. The
two programs that run simultaneous are all IO-intensive and
will wait for each other to do IO. Maybe their waiting for IO
will increase the user time.

Table 2 System performance of flow-net implementation
 User time System time

Original system 14998 13426
System with flow-net Implementation 23695 17254

When we have implemented the accountable log model in
the Linux, we then want to evaluate the system performance
and check the overhead from the logging scheme. The test
scenario is designed as follows: first, open a new file, write
some random numbers to the file, and then delete the file. We
call this set of actions “1 time action”. We record different
running times for different action frequencies. We also run the
test program in the old default kernel and count the average
running time. Then, we run the same test program in the kernel
in which we implemented the flow-net model and count the

average running time. Therefore, we may roughly get the
overhead in the new kernel. The implementation environment
is described in Table 3.

Table 3 Implementation environment
Component Description

system Ubuntu 9.10
bus 0G8310

memory 512MiB DIMM SDRAM
Synchronous 533*2

processor Intel(R) Pentium(R) 4 CPU
3.00GHz

storage 82801FB/FW (ICH6/ICH6W)
SATA Cont, 40GB WDC

WD400BD-75JM
We can see the performance result in our previous work [4].

Also, we may notice that the system performance varied by the
number amount of data written to the disk. If we were to write
more data to the disk in one action, the performance can be
improved.

We may notice that the system performance is affected
because we add some protection policy before the write () and
delete () system calls to forbid delete and write actions to some
protected files. We may see the performance from Fig. 3.
Therefore, we can notice from the experiment that because of
the SE Linux policy, the system becomes time increased. In the
old kernel, we only need to run the test program. We can also
see that the system performance varied by the number amount
of data written to the disk. If we write more data to the disk in
one action, the performance can be improved, as showed shown
in Fig. 3.

0 50 100 150 200

0

5

10

15

20

25

pe
rfo

rm
an

ce
 %

action/ second

 1 page
 5 pages
 20 pages

Fig. 3 Performance evaluation (flow-net model)

We may also see that the performance is improved compared
to the evaluation in our previous work [4]. In that study, we
used copy_to_user to deliver messages from the kernel space to
the user space. But in this study, we adopt netlink socket to
achieve the goal. Why is the performance improved? Netlink as
any socket application programming interface (API) uses a
queue to save messages to smooth the socket traffic. When a
message of netlink is sent, the reception handler of the receiver
was invoked after the message is queued in the netlink queue of

the receiver. The queued message may be either processed
immediately in the context of the reception handler or left in the
queue to process it later in another context. Therefore, Netlink
is asynchronous. System calls other than netlink are
synchronous so that when a message passing from the user
space to the kernel space, the scheduling granularity of the
kernel cab be influenced due to the long delay of message to be
handled.

V. CONCLUSION
We have implemented the flow-net model to make the log

accountable using the netlink approach and also written on our
policy use the platform provided by SE Linux. We also
evaluated the performance.

ACKNOWLEDGEMENT
This work was supported partially by the Natural Science

Foundation of China under grant #61374200.

REFERENCES
[1] J. Mirkovic and P. Reiher, “Building Accountability into the Future

Internet,” Proceedings of the IEEE ICNP Workshop on Secure Network
Protocols (NPSec), 2008.

[2] Y. Xiao, “Accountability for Wireless LANs, Ad Hoc Networks, and
Wireless Mesh Networks,” IEEE Communications Magazine, Vol. 46,
No. 4, Apr. 2008, pp. 116-126.

[3] K. Kent and M. Souppaya, “Guide to Computer Security Log
Management: Recommendations of the National Institute of Standards
and Technology,” NIST Special Publication 800-92, Sep.2006.

[4] L. Zeng, H. Chen, and Y. Xiao, "Accountable Administration and
Implementation in Operating Systems," Proc. of IEEE GLOBECOM
2011

[5] Y. Xiao, "Flow-Net Methodology for Accountability in Wireless
Networks," IEEE Network, Vol. 23, No. 5, Sept./Oct. 2009, pp. 30-37.

[6] “The Debian Administrator's Handbook,” available:
http://debian-handbook.info/browse/wheezy/sect.selinux.html

[7] “Security-Enhanced Linux,”
http://en.wikipedia.org/wiki/Security-Enhanced_Linux

