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Abstract—In this paper, study how to achieve accountable 
logging for operating system using the flow-net logging and its 
implementation in current operating system such as Linux. We 
demonstrate that the flow-net logging technique is capable of 
preserving event relationship. The performance for the flow-net 
logging implementation in Linux operation system is evaluated.  
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I. INTRODUCTION 
While computer system gains more complexity, security 

system breaches keep emerging. Many researches focus on 
countermeasures that detect security threats and recover the 
damages. Accountability contributes to these countermeasures. 
Accountability indicates that an entity with specific actions 
should be responsible for its actions [1-2]. One event could be 
traced back for the causes even when it was transpired [2]. 
Auditing or logging is a typical approach to achieve 
accountability [3]. Logging consists of accumulation and 
maintenance of records of activities in systems and networks. 
Logging includes recording system activities and network 
activities and maintaining the recorded data at the same time. 
Normally people refer to the recorded data as logging data, 
audit logs, audit trails, or logging. Auditing involves 
conducting reviews and examinations of system activities in 
order to ascertain the causes of one or more events and the 
responsibility of a system entity based on the logs. 

Syslogd and syslog-ng are the syslog daemons implemented 
in Linux systems. Not only can they log data from their own 
machines, but they may also log data from other machines [4]. 
Syslogd consists of two programs: klogd and syslogd. Klogd 
manages the logged data from the kernel, and syslogd manages 
the logged data from application programs, and logged data is 
written in log files according to the configuration files. Also, 
there are several applications that have the ability to produce 
their own logs. 

Mainly for debugging purpose, a modern operating system 
normally has limited generated logged data. Some security 
mechanisms such as are enforced to track most of the activities 
in the system. However, these logging records in log files are 
sorted by time the event generated. Therefore, the relationships 
between these events are lost. 

When an event triggered logging, the event information will 
be buffered. Then the logging module will write out the 
contents of the logging buffer periodically. Therefore, the 
time-stamp of logged event is not necessarily the same as the 

time the event really happened. It is the time when the event is 
written out to the file.  

When it comes to accountability, the logged events should be 
traced back in order to determine their causes. The relationships 
between these events are vital for tracing back security events. 
The trace back will be difficult if it only depends on the 
time-stamp to figure out what was really happening in the 
system. 

In this paper, we propose operating system accountable 
logging using the flow-net methodology (ref. [5]) and we also 
implement it in current operating system such as Linux. The 
flow-net methodology not only logs the events, but also logs the 
relationships between the events. We further evaluate the 
performance of the logging implementation for operating 
system using the flow-net. 

The organization of this paper is as follows. OS log is 
presented in Section II. Flow-net methodology implementation 
in Linux is introduced in Section III. Then performance 
evaluation is provided in Section IV. Finally we conclude this 
paper in Section V. 

II. OPERATING SYSTEM LOG 
In this section, we will present background information for 

the current logging systems, such as SE Linux and Linux 
system logs, and analyze their generated logging files. Then we 
will propose our logging methodology to address the current 
logging system issues. 

A. SE Linux logging 
As a mechanism adopting Linux Security Modules (LSM) in 

the Linux kernel, Security-Enhanced Linux (SELinux) supports 
access control policies, including mandatory access controls 
(MACs). Although SELinux does not come with Linux, it is 
provided with modifications applied to kernels of Unix-like 
operating systems including BSD (Berkeley Software 
Distribution) and Linux. 

In Linux, there is a system log module that maintains all the 
buffered log events and writes out these buffers. The data 
generated by SELinux is also manipulated by system log 
module and therefore is part of the system logs. 

If auditd, the daemon of the auditing system of Linux, is 
running background, SELinux denials are saved in the log/audit 
file. /var/log/audit/audit.log is the default 
log/audit file. If auditd is not running, 
/var/log/messages is used to log AVC (Access Vector 
Cache) denials. Normally /var/log/audit/audit.log is the 
log/audit file to save SELinux logsif auditd is running. An 



example of AVC denial is shown as follows and explained in 
Table 1 [6]. 

 
avc:  denied  { read } for  pid=3002 comm="httpd" name="index.html" 
dev=hda3 ino=32004 scontext=user_u:system_r:httpd_t:s0 
tcontext=system_u:object_r:tmp_t:s0 tclass=file 

 
Table 1 Analysis of an SELinux logging record [6] 
Message Description 

Avc: denied An operation has been denied 
{read} This operation required the read 

permission 
Pid=3002 The process with Pid 3002 

executed the operation 
Comm.= "httpd" The process was an instance of 

the httpd program 
name="index.html" The target object was named 

index.html 
dev=hda3 The device hosting the target 

object was a real disk, named 
hda3 

ino=32004 The object was identified by the 
inode number 32004 

scontext=user_u:system_r:httpd_t:s0 This is the security context of the 
process who executed the 

operation. It contains user, role, 
type and security level 

tcontext=system_u:object_r:tmp_t:s0 It is the is target object’s security 
context. 

tclass=file This means that the target object 
is a file. 

B. Linux system logging 
Syslogd and syslog-ng are the syslog daemons implemented 

in Linux systems. Not only can they log data from their own 
machines, but they may also log data from other machines [4]. 

Syslogd consists of two programs: klogd and syslogd. Klogd 
manages the logged data from the kernel, and syslogd manages 
the logged data from application programs, and logged data is 
written in log files according to the configuration files. Also, 
there are several applications that have the ability to produce 
their own logs. 

The following example is a logging record in /var/log/syslog 
file. 

Feb 20 22:34:49 forrestgump-OptiPlex-755 rtkit-daemon[12467]: 
Successfully called chroot. 
The first element of the logging record is timestamp, 

followed by a user. The application that triggers the event and 
the result of the event are logged as well. In this example 
record, process rtkit-daemon with process id 12467 
successfully called chroot at 22:34:49 on Feb 20. 

In essence, all the log files only contain the events with 
timestamps and the relationships between these events are not 
recorded. 

III. FLOW-NET IMPLEMENTATION IN LINUX 

A. Flow-net methodology 
The flow-net methodology is illustrated in Fig. 1. In Fig. 1, 

user A logged in, entered a directory, opened File B, read File 
B, closed File B, and logged out. User D logged in and created 
File B. The logged information includes three flows: User A, 
File B, and User D. The flow beginning from User D obtains 
three events: logging in, creating File B and logging out. 

The flow-net records not only contain events information, 
but also contain relationships between these events. The 
generated data is really useful for tracing back.  

 
Fig. 1 Flow-net vs. traditional log 

 



For traditional log, nine events in Fig. 1 were logged with 
their time-stamps in the generated log file. Compared to 
Flow-net log, the relationship between different events may 
only be recovered based on the time-stamps and our best 
knowledge. However, the relationships between different 
flow-net events are built in the first place when the log 
generated.   

Based on the previous analysis, we might ask: does 
traditional log lose any information compared with Flow-net 
log? When we use traditional log events to recover Flow-net 
log, it might be possible that the relationships between events 
may not be rebuilt, or may be rebuilt wrongly, based on the 
time-stamps as well as our knowledge. We can only guess their 
causes and effects when it comes to accountablilty, which is not 
accurate for most cases. The accuracy of these guessings are 
entirely based on auditors’ knowledge and experience. 
Therefore, traditional log cannot address accountability 
problems. 

Besides, if we can recover the relationships correctly, what is 
the time complexity to build Flow-net log using traditional log. 
Given the n recorded log events, the time complexity to build 
Flow-net log should be n!. At first, we need to take one event at 
the beginning and determine its relation with the other (n-1) 
events. Subsequently, take out the second event and determine 
its relation with the remaining (n-2) events.At last there is only 
one event left and rebuilding process is done.  

For accountability, the logged events should be traced back 
in order to determine their causes. The relationships between 
these events are vital for tracing back security events. The trace 
back will be difficult if it only depends on the timestamp to 
figure out what was really happening in the system. Besides, 
traditional log only log limited security related events with the 
purpose of debugging, which is not suffice to answer 
accountability problems. For instance, some non security 
related events might not be logged for the traditional log. 

B. Implementation of flow-net 
In order to record the events occurred in the system, the 

hooks added by SELinux [7] are used to capture the events for 
simplicity. Since Flow-net structure is built in real time, 
updating Flow-net  structure whenever an event occurs is 
necessary. Therefore we can modify the event-capturing part of 
SE Linux and add some logic to build the cross-reference 
structure. Besides, we should maintain the entries to all entities 
in Fig. 1. For instance, user A, File B, and use D are the entities 
in the system. In this case, we need to consider another 
problem: when we build a new entry for an entity? Note that all 
files and users are entities. If we maintain the cross-reference 
for all entities in the system, it will dramatically slow the 
system and will not have the capability of being understood. 
We can intuitively think that if an entity is created for the first 
time, we need to create a new entry for this entity. We don’t 
need to create entries for the files created when the system is 
installed. When a user login the system, we need to create an 
entry for the user because the user may invoke many actions in 
the system and cause lots of logging records generated. But 
what if users read or write to a file created when the system is 

installing, which happens very often. For instance, user A 
makes some modifications to /etc/profile to customize the 
system. Our solution is to create a new entry for an entity when 
an event involves this entity. Otherwise, we don’t need to create 
the entry. But, if an entity involves tremendous entities, the 
performance of the system will be jeopardized. For example, 
Firefox can create many cache files and other temporary files to 
speed itself. When these things occur, we need to dramatically 
increase our cross-reference structure. 

We can capture the events such as reading and writing a file 
in kernel. In order to test whether our scheme works, we only 
log the read and write events in the system and build a flow-net. 

 
In linux-2.6/fs/sysfs/bin.c: 
 

Static ssize_t write (struct file *file, const char _user *userbuf, size_t 
bytes, loff_t *off) 

Add the following codes: 
#include <linux/cred.h> 
#include<asm/current.h> 
#include<linux/sched.h> 
 
Static char logEventBuf[1024]; 
Int uid=current->real_cred->uid; 
Int euid=current->real_cred->euid; 
Struct dentry *dentry=file->f_path.dentry; 
if  (dentry->d_inode->i_iflog==1) 
      printk(KERN_INFO “%s want to write to log file 

%s\n”,current_euid(),dentry->d_name); 
logEventBuf=”write”; 
…. 

 
At this point, we captured the write event and logged it in 

logEventBuf[] in kernel space. The next step is to forward the 
data in kernel space to user space and build the Flow-net 
structure. 

In order to build a more complicated flow, we need to 
capture more events. For example, login event is critical. How 
can we know the login event happens is also a problem. 
Because when the machine finishes booting, a getty process is 
invoked and it will invoke another process login. Therefore, a 
login event happens whenever a login process is invoked by 
exec system call. After the init process respawns the getty 
process, the login event has ended. Besides all file—related 
operation is very important and worth logged. For example,  
chmod, chown, and so on. 

When we capture an event happening, we first check whether 
the involved entities are new. If these entities are new, we build 
a new entry for every new entity and build the link from each 
involved entry to the captured event. If the entities already have 
their entries, we traverse their event list and add the newly 
captured events at the end of the event list. At the same time, we 
have a user space program like syslog daemon to write the cross 
reference to a file on the disk. 

During our implementation, we use an array to record these 
link structures as follows.  

 
struct time_m { 
        int sec; 
        int min; 
       int hour; 



        int mday; 
         int mon; 
       long year; 
       int wday; 
       int tyday;}; 

 
In Flow-net model, any file objects and users have flows, as 

shown in Fig. 2. There are three flows, user A, user D and file B 
in the figure with their own flow entries. 

 
Fig. 2 Flow-net model 

 

C. Communication between kernel space and user space 
After we have built the cross-reference structure in the array 

in kernel, we need a user space program to read the array out to 
write to the disk. There are several ways available to 
communicate with a user space program in kernel, such as 
named pipe, copy_to_user, copy_from_user and netlink socket. 

In these three approaches, the named pipe is FIFO. Because 
we only desire to use a program in user space to write the data 
in array to a file, maybe there is no close relation to FIFO. For 
either the copy_to_user approach or copy_from_user approach, 
it will be suitable for our implementation due to the fact that we 
use an array to store those cross-reference structures. 
copy_from_user and copy_to_user can easily copy a part of 
memory in kernel to user space. For the netlink approach, a 
special inter-process communication (IPC) called Netlink 
socket is for the purpose of two-way communications between 
user-space processes and the kernel [4]. 

In essence, we can use copy_to_user and netlink socket to 
write the data in kernel to user space. 

IV. PERFORMANCE EVALUATION 
When we have implemented the flow-net model in the 

Linux, we now desire to evaluate the system performance and 
check the overhead from the logging. The test scenario is that 
we first open a new file and write a given volume of data to the 
file. Subsequently, we delete the file and persist on doing the 
same thing for 2000 times. First we run the test program in the 
old default kernel and count the average running time. Next, we 
run the same test program in the kernel in which we 
implemented the flow-net model and count the average running 
time. Then, we may roughly estimate the overhead in the new 
kernel. 

The program running in the old kernel took roughly 283 
seconds. The program running in the new kernel took roughly 
404 seconds.  The performance is affected by 

(404-283)/283=43%. 
Due to the fact that this time is for the overall running time, 

we cannot clearly know whether it uses the CPU cycle during 
the executing procedure. In Linux, we have a times () function 
storing current process times in struct tms: 

struct tms { 
clock_t user_time  
clock_t system_time;    
clock_t child_user_time;   
clock_t child_system_stime;   
Therefore, we may use this structure to know more about the 

process time. 
In the original system, the process took 14998(time ticks) for 

user time and 13426 for system time. In the new system, the 
process took 23695 for user time and 17254 for system time, 
illustrated in Table 2. Due to the logging logic in kernel, the 
system time is increased. In the kernel, we modified the read 
and write functions and everything will affect the system time. 
Due to the fact that the user time also increased because we 
launched a user space-logging program in order to write the 
buffer in kernel to files when we launch the test program. The 
two programs that run simultaneous are all IO-intensive and 
will wait for each other to do IO. Maybe their waiting for IO 
will increase the user time. 

Table 2 System performance of flow-net implementation 
 User time System time 

Original system 14998 13426 
System with flow-net Implementation 23695 17254 

When we have implemented the accountable log model in 
the Linux, we then want to evaluate the system performance 
and check the overhead from the logging scheme. The test 
scenario is designed as follows: first, open a new file, write 
some random numbers to the file, and then delete the file. We 
call this set of actions “1 time action”. We record different 
running times for different action frequencies. We also run the 
test program in the old default kernel and count the average 
running time. Then, we run the same test program in the kernel 
in which we implemented the flow-net model and count the 



average running time. Therefore, we may roughly get the 
overhead in the new kernel. The implementation environment 
is described in Table 3. 
 

Table 3 Implementation environment 
Component Description 

system Ubuntu 9.10 
bus 0G8310 

memory 512MiB DIMM SDRAM 
Synchronous 533*2 

processor Intel(R) Pentium(R) 4 CPU 
3.00GHz 

storage 82801FB/FW (ICH6/ICH6W) 
SATA Cont, 40GB WDC 

WD400BD-75JM 
We can see the performance result in our previous work [4]. 

Also, we may notice that the system performance varied by the 
number amount of data written to the disk. If we were to write 
more data to the disk in one action, the performance can be 
improved. 

We may notice that the system performance is affected 
because we add some protection policy before the write () and 
delete () system calls to forbid delete and write actions to some 
protected files. We may see the performance from Fig. 3. 
Therefore, we can notice from the experiment that because of 
the SE Linux policy, the system becomes time increased. In the 
old kernel, we only need to run the test program. We can also 
see that the system performance varied by the number amount 
of data written to the disk. If we write more data to the disk in 
one action, the performance can be improved, as showed shown 
in Fig. 3. 
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Fig. 3 Performance evaluation (flow-net model) 

We may also see that the performance is improved compared 
to the evaluation in our previous work [4]. In that study, we 
used copy_to_user to deliver messages from the kernel space to 
the user space. But in this study, we adopt netlink socket to 
achieve the goal. Why is the performance improved? Netlink as 
any socket application programming interface (API) uses a 
queue to save messages to smooth the socket traffic. When a 
message of netlink is sent, the reception handler of the receiver 
was invoked after the message is queued in the netlink queue of 

the receiver. The queued message may be either processed 
immediately in the context of the reception handler or left in the 
queue to process it later in another context. Therefore, Netlink 
is asynchronous. System calls other than netlink are 
synchronous so that when a message passing from the user 
space to the kernel space, the scheduling granularity of the 
kernel cab be influenced due to the long delay of message to be 
handled. 

V. CONCLUSION  
We have implemented the flow-net model to make the log 

accountable using the netlink approach and also written on our 
policy use the platform provided by SE Linux. We also 
evaluated the performance.  
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