
An Accountable Framework for Sensing-Oriented

Mobile Cloud Computing

Zhifeng Xiao

Penn State Erie, the Behrend College

Erie, PA, 16509 USA

Email: zux2@psu.edu

Yang Xiao

The University of Alabama

Tuscaloosa, AL 35487-0290 USA

Email: yangxiao@ieee.org

Hui Chen

Virginia State University

 Petersburg, VA 23806 USA

Emails: huichen@ieee.org

Prof. Yang Xiao is the corresponding author

Abstract
Recent trends in Cloud Computing have further

stimulated the popularization of mobile device

industry, creating a novel computing paradigm called

Mobile Cloud Computing (MCC). MCC takes

advantage of the powerful computation and storage

capability of cloud servers by offloading heavy

computing or storing tasks from mobile devices to

cloud servers to keep a thin frontend on the mobile

devices. Such benefit is important to MCC

leveraging various sensors equipped in modern

mobile devices. We explore the sensing capability of

MCC and design an application framework that

enables a class of exciting mobile applications to be

developed in the sensing-oriented MCC

environment. A critical issue in such an environment

is accountability. We provide a comprehensive

analysis of the accountability issues in this new

computing context and show how the accountability

function is integrated into the application framework.

Keywords: mobile cloud computing, accountability,

sensing-oriented application

1 Introduction

Cloud Computing enables cloud vendors to deliver

powerful computation and storage as a service to

their customers. Meanwhile, Cloud Computing

provides a multitenant environment, which allows

numerous cloud customers to share platform

resources by running different applications

simultaneously. Instead of maintaining dedicated

computation and storage facility by themselves,

customers can significantly reduce the cost of service

provisioning through moving their computing and

storage facility to the cloud. Recent advances in

mobile/portable device industry make it possible to

take advantage of the great potential of Cloud

Computing with mobile devices. A computing

paradigm, called Mobile Cloud Computing (MCC)

integrating both mobile devices and Cloud

Computing has emerged [2].

MCC extends the current cloud to include

numerous mobile devices. With MCC, applications

running on mobile devices become thinner since

heavy tasks can be moved to cloud servers. Although

offloading is the focus of existing works for MCC

[14, 15], it is not the end of the story. In addition to

the two well-known functional dimensions (i.e.,

computation and storage), MCC presents a third

functional dimension, i.e., sensing [6]. The ability of

sensing tremendously increases the ways of data

collection and sharing on MCC. There are some other

related papers about sensing [36-45].

For example, in a disaster recovery application,

when a natural disaster happens, mobile/stationary

devices are connected via ad hoc networks or have

bi-directional communications with the cloud; people

carrying the devices can provide nearby sensing data

to the cloud, which could service a rescue center.

This paper is focused on a sensing-oriented MCC

whose main function includes computation sensing

data gathering, processing, and presentation. Broadly

defined, sensing is the capturing of any real world

data, ranging from basic environmental parameters

such as temperature, humidity, and light intensity, to

location and motion data, and to more complex data

types such as image, sound, video, etc. Little

advancement in mobile sensing applications for

MCC has been made until recent technologies of the

mobile/portable devices (e.g., smart phones) have

revolutionarily changed people’s lives. One of the

exciting features of these devices is that they come

with a suite of sensors. For example, an Apple iPhone

5 has a gyroscope, proximity sensor, compass,

accelerometer, ambient light sensor, microphone, and

cameras. Leveraging the sensing capability of mobile

devices, mobile sensing applications are gaining

rapid growth. Some applications [12, 13] have been

developed to accomplish specific sensing tasks,

while a unified application framework still remains to

be developed. To this end, we propose a task-driven

application framework for sensing-oriented MCC.

Based on the framework, third party developers are

able to provide a variety of applications, which will

specify the ways to handle sensing tasks. In addition,

mailto:zux2@psu.edu
mailto:yangxiao@ieee.org
mailto:huichen@ieee.org

we consider accountability as another design priority

for our framework due to its significance in

dependable systems. Accountability has been a

longstanding concern of trustworthy computer

systems [3], and it has recently been elevated to a first

class design principle for dependable networked

systems [1]. Accountability implies that an entity

should be held responsible for its own actions or

behaviors [4]. We will fully explore the

accountability issues in sensing-oriented MCC, and

integrate our solution that is based on secure logging

and third party auditing to the proposed framework.

Therefore, applications based on our framework are

able to detect various misbehaviors with undeniable

evidence.

The rest of this paper is organized as follows. An

overview of cloud computing and MCC is given in

Section 2. Accountability issues in MCC are then

proposed in Section 3. Section 4 describes the design

of an application framework for sensing-oriented

MCC. We conclude this paper in the Section 5.

Internet

Cloud Customer

Cloud Provider

Mobile Devices

APP 1

APP 4

APP 2

APP 3

Virtualization

 Fig. 1: An overview of MCC

2 Cloud Computing and Mobile

Cloud Computing

In this section, we discuss cloud computing in

general and mobile cloud computing, and focus on

the security aspects.

2.1 Cloud Computing

Recent advances have witnessed the success and

popularity of cloud computing. The feature of

on-demand provisioning of computation, storage,

and bandwidth resources has driven many businesses

to utilize cloud computing services. Although the

cloud is considered cutting edge technology, it has

become critical to the functions of many large

companies in diverse business segments.

2.1.1 Cloud Computing Characteristics

Compared to the traditional computing paradigm,

cloud computing has five major distinguishing

characteristics as follows [16].

• On-demand self-service means that cloud

customers can obtain computing capabilities

on demand.

• Broad network access enables customers to

access cloud services via any communication

mechanisms.

• Resource pooling means that the

multi-tenant customers can demand physical

and virtual resources (such as storage,

processing, memory, network bandwidth,

and virtual machines) dynamically by

pooling.

• Rapid elasticity means that cloud services

are elastic and can rapidly scale in/out so that

their resources appear to be unlimited to the

customers

• Measured service enables monitoring,

controlling, and metering the provided

services, as well as reporting.

2.1.2 Example Cloud Providers

Amazon Elastic Compute Cloud (Amazon EC2) [25]

provides web cloud computing services, and is easily

accessible to developers with simple service

interfaces for customers. Customers can control

computing resources and programs in a proven

computing environment. Amazon EC2 is efficient for

starting new instances, scaling capacity, allowing

users to pay exact needed capacity, and building

failure resilient applications.

Google App Engine [26] is easy to use, maintain,

and scale for developers without servers to maintain

so that users can run their uploaded applications

easily.

Microsoft’s Windows Azure platform [27, 28]

provides a specific set of cloud services, which

support both cloud applications and on-premise

applications.

2.1.3 Cloud Security

Security issues have been a long-term concern for

cloud computing and many consider this concern as

main obstacle of the widespread use of cloud

computing [16, 30-33]. Three main challenges for

building a secure and trustworthy cloud are [16]:

• Outsourcing to the cloud decreases cloud

customers’ capital expenditure and

operational expenditure, with the tradeoff of

customers’ losing physical control of

hardware, software, and data. Therefore, the

cloud should offer the customers the

capability of verifying data and computation

in terms of confidentiality, integrity, and

other security services.

• Multi-tenancy (via virtualization of

resource allocation and management) allows

different customers to save data on the same

physical machine. Leveraging

multi-tenancy, attackers may launch various

attacks such as data breach, flooding attack,

etc.

• Massive data and intensive computation

have huge computation or communication

overhead, and such overhead poses new

challenges to achieve security goals.

Therefore, new security requirements are

needed.

The above challenges give rise to a set of

completely novel vulnerabilities and threats that have

never occurred in traditional computing systems. We

briefly summarize these new security issues below.

• Cloud confidentiality means that data and

computation tasks of customers should be

confidential from both other customers and

the cloud provider. Cloud confidentiality can

be violated by exploiting the VM

co-residency vulnerability, through which

adversaries can launch a cross-VM attack via

a side channel to steal sensitive information

from VMs that co-reside on the same

physical machine [17]. In addition, malicious

system admin can exploit the VM

co-residency vulnerability to cause data

breach [18].

• Cloud integrity includes cloud data integrity

and cloud computation integrity, and both

present unsolved issues. Data integrity

indicates that any violations on cloud data

(e.g., data missing, modification, or

confidential compromising) can be detected.

Computation integrity indicates that any

distortion on the cloud programs’ execution

by malware, cloud vendor, or other users can

be detected. The main challenge for data

integrity is that the tremendous size of cloud

data makes classic MAC-based approaches

ineffective or inefficient. Researchers have

developed new approaches such as Provable

Data Possession (PDP) [19] and its variants

[20, 21] to protect cloud data integrity.

Computation integrity in cloud computing

aims to ensure that a machine can verify the

correctness of an outsourced computation

task to a remote server without running the

task locally. Proposed schemes include

re-computation, replication, auditing, trusted

computing, etc.

• Cloud availability implies that cloud

services can be consistently delivered.

Besides conventional Denial of Service

(DoS) attacks, a DoS attack is developed to

target cloud servers to saturate the limited

network bandwidth in cloud environment

[22], and another attack, called Economic

Denial of Sustainability (EDoS), can cause

denials of availability of publicly accessible

hosting web contents [23].

• Cloud accountability implies that

undeniable evidence is obtained to identify a

party being responsible for specific events.

Service Level Agreement (SLA) violation,

hidden identity of adversaries, dishonest

MapReduce, and inaccurate billing of

resource consumption are among reported

new threats [10, 24]. A few use cases are

provided in [5] to address the accountability

issue in cloud: 1) Mis-configuration or

defectiveness can corrupt customers’ data or

return incorrect results; 2) Accidental

insufficient resource location can degrade

the services and cause unsatisfied SLAs; 3)

Data can be stolen, the machines can be

captured when some software bugs are

exploited by using spam or DoS attacks; 4)

Loss of data or unavailable data causes the

data unavailable. Root causes of data leaking

to a competitor vendor and incorrect

computation results are difficult to figure out

without solid evidences, and therefore the

solution becomes to achieve accountability

[5]. Each of the threats involves a cloud

entity that attempts to misbehave. The

overall goal of cloud accountability is to

ensure that any violation of cloud security

policies will be discovered with provable

evidence. Pearson and Charlesworth [29]

argue that the following elements are the key

to provision accountability in the cloud:

o Transparency. Cloud customers

should be adequately informed about

how their data and computation

tasks are handled in the cloud and

that the responsibilities of entities

should be clearly identified.

o Assurance. Cloud users should

provide assurance to their clients

through certain privacy policy, while

requiring similar assurances from

the cloud vendor through contractual

measures and audits.

o User trust. Accountability is a

premise of user trust. It is crucial for

users to understand that why their

personal data is requested and

processed by another party, or users

will become suspicious and then

distrust occurs.

o Responsibility should be

pre-determined via contracts, as

information is shared and processed

within the cloud, preempts

perceptions of regulatory failure,

which may impair user trust.

2.2 Mobile Cloud Computing

A big picture of MCC is depicted in Fig. 1. There are

several roles in the MCC environment.

• Cloud provider is the owner of cloud

servers and other hardware infrastructure.

Cloud provider offers various combinations

of computation, storage, and sensing

capability to its customers. Resources on the

cloud are well organized and managed

through virtualization.

• Cloud customers are people who

purchase/use certain services from the cloud

provider. Traditional cloud providers attract

customers by powerful but affordable

computation and storage service. In the MCC

context, information is not only processed

and stored in cloud, it is also sensed,

collected, and obtained from the cloud,

forming a complete information chain.

Therefore, customers will have more

abundant choices of mobile applications.

• Mobile devices become the main source of

data. In addition, MCC enables mobile

devices to offload certain computing and

storing tasks to the cloud to save energy and

resource.

We provide an application scenario of

sensing-oriented MCC called Sensing Map to

demonstrate how the framework works. In Sensing

Map, a digital geographical map is accessible to each

cloud customer who is interested in certain

environment information within a particular area. To

fully explore the area, the customer issues a task to

the cloud, which distributes the task to every mobile

device currently locating in the area. A selected

mobile device can choose to accept or deny the task.

The main incentive to accept such a task is based on a

principle: the more you give, the more you can

obtain. In other words, if one chooses to comply with

the task, he/she will be granted higher ability (e.g.,

ability to request image or even video from other

people). With this principle, being selfish would not

help a mobile user upgrade his/her ability. If the task

is accepted, a mobile device needs to report sensing

data to the cloud. After information assembling,

aggregation, and post-processing, the cloud delivers

the sensing result to the task owner (i.e., customer).

For example, a tourist may be interested in one of the

scenery spots in his/her destination city; he/she may

first find the specific location in Sensing Map, then

select the kinds of information (e.g., image and

video) interesting to him/her, and then issue a task to

the cloud. Upon receiving the new task, the cloud

first searches its database to see if there are similar

tasks submitted by other customers. If there are, it

returns the existing data to the customer; otherwise it

disseminates the task to mobile devices that are

geographically close to the scenery spot. If a mobile

device chooses to accept the task, it will take pictures

or videos of the scenery spot, and report the sensing

data back to cloud.

The above case indicates the great potential of

sensing-oriented MCC. However, it also presents

some issues that are worth further studies.

• Privacy. MCC enables the cloud to obtain a

large amount of information, some of which

should be protected from being revealed. For

example, the current location of a mobile

device should remain secret to the cloud or

other.

• Accountability. MCC also provide chances

for malicious participants to misbehave.

Detecting an abnormal event or misbehavior

with undeniable evidence is another priority.

Accountability is the focus of this paper.

• Energy saving. If a mobile device accepts

too many tasks, its battery may drain rapidly.

For the interest of a mobile device, a

trade-off can be sought between energy

saving and task management.

3 Accountability in Mobile Cloud

Computing

Accountability in MCC is a significant security

aspect. Since there are three roles involved in MCC,

it is essential to restrict accountability boundaries

among different groups to facilitate blame

assignment when an anomaly happens. In this paper,

we divide the issues of accountability in MCC into

three categories according to the groups and

boundaries among them:

• Accountability Level 1 (AL #1 for short)

defines the trust relationship between cloud

provider and customers. Since customers

deploy their software on the cloud,

accountability is needed to ensure whether

the Service Level Agreement (SLA) is

fulfilled. If it is not, evidences should be

provided to indicate who the responsible unit

is. The problem exists in both general cloud

and MCC, and it has been discussed in [5].

• Accountability Level 2 (AL #2) addresses

the accountability issues among cloud

machines or virtual machines. A data center

usually consists of thousands of computers

working together to finish tasks. However,

some machines may be attacked,

compromised, or mis-configured, and the

resulting misbehavior usually jeopardizes the

tasks running on the cloud. For example, a

popular parallel computing paradigm called

MapReduce, adopted by major cloud

vendors splits large data into multiple blocks

to allow a number of working machines to

work on them in parallel [7]. However,

compromised working machines may be

manipulated not to return correct results.

Therefore, accountability is needed to

identify the malicious workers with

undeniable evidence. This problem has been

discussed in [8], [10], [24].

• Accountability Level 3 (AL #3): In MCC, a

mobile sensing application involves the

cloud, customers, and mobile devices.

Therefore, we need to ensure that 1)

applications on the cloud are accountable,

and this means that applications should be

committed to what they have done, e.g.,

issuing a new task or other control messages

to mobile devices; 2) sensing devices should

be accountable for the sensing data and other

messages that they send to data center.

In this paper, we focus on AL #3, because the

other two levels are not MCC-specific and have been

addressed in general cloud computing environments.

We study the accountability issues in MCC from four

different angles, which are the four design objectives

for our framework as well.

3.1 Message Accountability

Cloud software, cloud customer, and mobile devices

should be committed to the messages that they send

or receive; also, all of them should be able to defend

themselves to the messages that they never send or

receive. For the entire MCC system, all messages

should be accurately traced back to the responsible

unit. There are two properties: 1) accuracy, i.e., each

message can be accurately traced back to its source;

and 2) completeness, i.e., each message generator is

able to defend itself from false accusation. In MCC,

messages can be categorized based on the type of

source and destination:

• Customer-to-cloud: customers usually

interact with cloud through a web client,

which means messages are carried in the

HTTP protocol.

• In-cloud: machines in cloud need to

exchange messages with each other to

collaboratively accomplish tasks.

• Cloud-to-mobile device: messages in this

category are unique to MCC. Obviously,

although a mobile device can be also a

customer, we emphasize its sensing function

and the role as a data origin. There are

mainly two types of messages in this

category:

o Control message: tasks are issued by the

sensing application operator, which

might be the cloud customer, who not

only run their software in the cloud, but

also manage the software to issue

commands to the mobile devices. We

assume that there are well-defined

interface among cloud, cloud customer,

and mobile user. Tasks should be made

accountable. First, the entity that issues

the task command should be able to

prove that it has indeed issued this task

and it is unable to deny the tasks that it

has issued. Second, mobile devices, i.e.,

the receivers of task commands, should

be able to prove that whether they really

receive the task commands or not;

similarly, they are unable to pretend they

receive the task and return some bad

data.

o Sensing data: mobile devices start to

sense after they accept tasks from the

cloud. Mobile devices should be

accountable for the sensing data they

captured, i.e., sensing data should be

known that where it comes from, and the

data source device cannot deny it.

3.2 Behavior Accountability

Mobile devices sense the environment according to

the commands that they receive. However, it is

possible that some devices do not fulfill the tasks

assigned to them. This could happen if some

malicious mobile devices 1) totally ignore the task

commands, or 2) provide fake data. Therefore, it is

critical for the system to detect the devices that do not

comply with the application regulation or protocol.

3.3 Temporal Accountability

Temporal Accountability (T-Accountability) has

been previously studied [11]. In MCC, some service

is time-critical. First, SLAs may include time

constraints. For example, a cloud customer needs

his/her data to be completely processed in 24 hrs.

Second, a sensing data message has a timestamp

indicating when it is sampled. With

T-Accountability, any entity violating the time

constraint will be detected.

3.4 Spatial Accountability

In MCC, we assume that each mobile device can

obtain its spatial location in real time. For some

location-sensitive applications like Sensing Map,

location information is critical. Hence it is essential

to guarantee that each device is accountable for its

location.

4 An Accountable Framework for

Sensing-oriented MCC

We describe the proposed application framework for

Sensing-Oriented MCC in Fig.2. The system is

comprised of four parties: customers, cloud, mobile

devices, and a Third Party Auditor (TPA). The first

three parties jointly contribute to MCC applications,

while the TPA is responsible for monitoring and

examining the behavior of other parties to ensure

accountability. We assume that the TPA is trusted by

the whole system.

Task Management

Sensing Data

Processing

Cloud

Secure Logging

TMP State

Machine
Log Check

Third Party Auditor

Database

TMP

module

Sensing

module

Secure

Logging

Mobile Device

Cloud Service
Browser

Secure

logging

Customer

Fig. 2: An application framework for MCC

4.1 Task Management Protocol (TMP)

Task Management Protocol (TMP) is the core of the

MCC framework. TMP handles the life cycle of

tasks: task creation, task dissemination, task

execution, task synchronization, and task revocation.

Since TMP is defined in the application level, TMP

messages are independent on the lower level

communication standards (e.g., cellular network,

3G/4G, WiFi, etc.). We assume that a public and

private key pair, and a certificate signed by a

Certificate Authority (CA) are possessed by every

each customer and each mobile device.

4.1.1 Task Creation

A task defines a customer’s interests. By creating and

issuing a task, cloud customers are able to initiate a

sensing and data collection procedure with specific

purposes. Each task is aiming at sensing one or more

locations with particular time constraints. A task

message is comprised of the following fields:

• Customer ID - a customer ID is the account

ID that he/she uses to access the web portal

of MCC. A customer creating a task is also

called the task owner.

• Task ID - a task ID is a unique identifier for

each task. To prevent adversaries from

predicting the task ID, it is necessary to use a

Pseudo-Random Number Generator with

sufficiently long period to generate the task

ID. The approach in [34] can be used to

generate pseudo-random numbers with a

long period.

• Data type - A complete option list of data

type is offered to cloud customers. Each

customer can choose multiple interested data

types; thus the field is a vector of data types

chosen by the task owner. Let

1 2[, ,...,]i kD d d d= denote the data type vector

for task i.

• Report Frequency - this field specifies that

how often mobile devices should report data

to cloud.
• Time frame - this field is a vector of time

intervals that the task owner assigns to

mobile devices. If a mobile device chooses to

accept the task, it will be desired to finish the

task within the time frame. Let

1 1 2 2[(,), (,),..., (,)]i s e s e sn enT t t t t t t= denote the

time frame vector for task i.
• Location - this field specifies a vector of

geo-locations that the task owner is

interested in. It could be a unique physical

address or a famous spot name like “the

Statue of Liberty”. Let
1 2[, ,...,]i mL l l l=

denote the location vector for task i.

• Expire date - this field specifies when a task

is expired to 1) prevent malicious task

owners from submitting the task repeatedly,

and 2) prevent attackers from re-submitting

the task.

• Note - the note field specifies a human

readable message to the mobile device

owners as other requirements or preference.

After a task message in generated, the task owner

signs its signature with his private key to ensure

message integrity, and submits the task to the TMP

module on the cloud.

4.1.2 Task Pre-processing

Upon receiving the task, the cloud first examines the

attached signature. If the message is intact, the cloud

extracts three fields, i.e., data type, time frame, and

location, from the task message. The cloud maintains

a database that records all task information for all

customers. Before assigning the task to mobile

devices, the cloud will search the database to look up

if a task with the same request has been processed

earlier. To do that, the cloud picks one item from

each of the three vectors to form a 3-tuple, which is

used as a token to conduct a exhaustive search over

the database. Let Qi = {qj = <dj, tj, lj> |

, ,j i j i j id D t T l L } denote a complete search

tokens for a task i. If qj is hit, it is moved from
iQ to

'iQ , otherwise it stays in
iQ . Once the search is

finished, if
iQ is empty, then there is no need to

involve mobile devices since the cloud can provide

all the information in need; if
iQ is not empty, the

cloud has to find eligible mobile devices for data

collection. For each element
j iq Q , the cloud

generates a subtask, which will be sent to eligible

mobile devices using multicast. A subtask contains

the following: taskID, subtaskID, data type, report

frequency, time frame, location, and expire date. In

these fields, taskeID, report frequency, and expire

date inherit from the original task; data type, time

frame, and location form a 3-tuple belonging to Qi.

4.1.2 Task Dissemination

The cloud also maintains a hash table to store

registered mobile devices that are willing to join the

TMP. The hash table maps a key that is defined as

(|j jd l), through a hash function h(x), to a slot in the

table where IDs of mobile devices with identical keys

form a linked list.

A mobile device that supports TMP will turn on

the push notification. Meanwhile, a mobile device

will report its current location to the cloud

periodically, and update the hash table on the cloud

end accordingly. Since the reveal of real-time

location information to cloud may not be agreed by

most mobile users, it is necessary to design a

privacy-preserving approach to handle the location

data. The scheme presented in [35] can be used here.

For a task i, for each
j iq Q , the cloud looks up the

hash table with key (|j jd l), and obtains a list of

device IDs, which become the recipients of the

subtask produced by
jq . After all subtasks are sent,

the task dissemination completes.

4.1.3 Task Scheduling and Execution

A mobile device keeps a subtask list in chronological

order based on the time frame field in the subtask

message. Upon receiving a subtask message, a

mobile device first decrypts the message with the

session key, and then examines the message content

to ensure its integrity and freshness. If the message is

intact and fresh, the TMP module on the mobile

device generates a message to the device owner,

asking the device owner to make a choice to accept it

or not. If the subtask is accepted, it is inserted into the

subtask list; otherwise the mobile device returns a

signed message of denial to the cloud.

The scheduler only needs to check the start time

of the first task in the list since the list is sorted

chronologically. When it reaches the start time of the

first task, the task should be executed automatically

or with the assistance from the device owner,

depending on the data type. When a task is executed

once, the next execution time for the task will be

scheduled based on the report frequency. Therefore,

the task list needs to be re-ordered to ensure that the

next task to be executed is the first node of the list.

4.1.4 Data Reporting

Before the sensing data is reported to the cloud, the

mobile device constructs a data message containing

the following: device ID, data content, subtask ID,

timestamp, location, and a signature of all previous

contents from the mobile device. The whole message

is encrypted using a session key to prevent

eavesdropping. If the subtask is finished, the mobile

device sends a control message “TMP_FIN” to the

cloud, indicating the end of the subtask.

Upon receiving the data message, the cloud will

first examine the data (i.e., confidentiality, integrity,

and freshness). After that, the data is either returned

to the customer or buffered on the cloud, depending

on the requirement of timeliness from the customer.

4.1.5 Task Synchronization

Before a task is entirely finished or expired, its owner

is always able to modify the task and update it. Once

the task information is changed (e.g., the time is

extended, more locations are added), the task should

be synchronized in the cloud and in each mobile

device that is handling the subtask of it. If a set of

fields of the task are changed, a control message

“TMP_DIFF” will be created and sent to the cloud.

Let Fi = {f1, f2, …fv} denote the fields of task i before

the update, and let Fi' = {f1', f2',…, fv'} denote the

fields of task i after the update. An TMP_DIFF
i is

calculated as
i = {diff(fj' , fj)| j = 1, 2, …, v }.

Operation diff(fj' , fj) outputs two sets: S1 = fj' - fj and

S2 = fj - fj', in which ‘-’ is the difference operator

applied on sets. Therefore, S1 implies expansion on fj,

while S2 implies reduction on fj. The “TMP_DIFF”

message includes
i as its content. Upon receiving

the “TMP_DIFF” message, the cloud will update task

i based on
i . After the task is updated on the cloud,

a series of control messages “TMP_SYN” will be

constructed and sent to specific mobile devices to

update the corresponding subtasks.

4.1.6 Task Post-processing

Upon receiving a “TMP_FIN” message, the cloud

will send an acknowledgement “TMP_FIN_ACK”

back to the mobile device. When all subtasks are

finished, the cloud will assemble all sensing data, no

matter if it is from the mobile devices or from the task

database. The final result may be processed in the

cloud based on the customer preference.

4.1.7 Task Revocation

Once a task is finished, it is labeled as expired even if

the expire date is not reached yet. In addition, the

cloud will store the sensing data into an indexed

database to potentially speed up future query and

retrieval.

4.1.8 Accountable TMP

TMP spans the entire platform of MCC. A

fundamental need of accountability is to ensure that

every participant of TMP strictly follows the protocol

specification, and detect any deviation from the

protocol with undeniable evidence. To address this

problem, we employ a public auditor to check the

correctness of TMP execution for each participant. A

public auditor is an external party that is trusted by

every component of MCC. We use a public auditor

because the trust relation among cloud provider,

cloud customers, and mobile devices may not be fully

established. In other words, a responsible party has to

be identified when anomaly is detected by a

trustworthy party to every component of MCC. For

example, after a customer updates the task, how

could he/she ensure that the cloud actually

synchronizes the task instead of ignoring it?

4.2 Secure Event Logging

For each TMP participant, every TMP event will be

recorded into a tamper-evident secure log file. In

other words, log data should be protected from any

malicious modification and unauthorized access; in

addition, any security violation on log data will be

detected and recorded. In this context, we employ a

hash-chain based secure logging scheme [9]. Each

TMP event has the following attributes: event

timestamp, event owner, event location (for mobile

device only), event type, and event contents. Let ek

denote the k-th event to be logged. To secure the log,

ek will be associated with a hash value hk, which can

be calculated recursively based on the previous log

entries as hk = H(hk-1 | ek), in which H(x) denotes a

hash function, and | the concatenation operator. The

base value h0 is prefixed and known to the system.

Therefore, a hash chain is formed along with the log

file. Consider two parties A and B, each of which

keeps a secure log, by sending a signed hash value hk

from A to B, A commits to having logged event ek

and all events happened before ek. Any attempt to

manipulate the log file before ek will result in a

different hk, which can be used as an evidence to

detect security violation on the log file.

Since mobile devices are storage limited, they

store the log files on the cloud by sending a control

message called “TMP_LOG”. The cloud will

maintain a secure log file for each mobile device. A

cloud customer can choose to either store log files

locally or remotely on the cloud. For each log file, no

matter who produces it, there is a chain of hash

values; these hash values will be signed by the log

file owner (i.e., the one who generates the log

entries), and sent to the public auditor from time to

time for verification purpose.

4.3 Auditing

A public auditor is responsible for auditing the

protocol execution for each TMP participant to check

if anyone deviates from the protocol specification. A

state machine of TMP is maintained by the auditor as

a reference. The auditing process is sketched as

follows: periodically, the public auditor will request

log files and corresponding hash values from the

cloud and its customers. Upon receiving the log files,

the public auditor first checks the integrity of the log

files by recalculating the hash chain, which is

compared with those maintained at other parties of

MCC. If the log files are intact, the auditor starts to

replay the events in the log files according to the

TMP specification. If any entity’s behavior deviates

from the protocol, the relevant log events will be

revealed to the auditor and the auditor may stop the

auditing process. Since the public auditor is assumed

to be trustworthy, it can use the log files and the

replay algorithm based on the TMP state machine as

evidence to identify a misbehaved entity.

5 Conclusion

In this paper, we study Sensing-Oriented Mobile

Cloud Computing. We propose a general application

framework that is centered on a task management

protocol. We investigate related accountability issues

for the Sensing-Oriented MCC application

framework. We believe Sensing-Oriented MCC will

bring more opportunities for both researchers and

practitioners in the foreseeable future in many

application domains.

Acknowledgement

This work is supported in part by the US National

Science Foundation under grant numbers 0737325,

0716211, 0829827, 1059265, 1036253, 1040254,

and 1044841, as well as the National Natural Science

Foundation of China under grant number 61374200.

References
[1] A.R. Yumerefendi and J.S. Chase, “The role of

accountability in dependable distributed

systems,” Proc. of HotDep, 2005.

[2] Huang, D, “Mobile cloud computing,” IEEE

COMSOC Multimedia Communications

Technical Committee (MMTC) E-Letter, 2011.

[3] Department of Defense. Trusted Computer

System Evaluation Criteria. Technical Report

5200.28-STD, Department of Defense, 1985.

[4] Y. Xiao, "Flow-Net Methodology for

Accountability in Wireless Networks," IEEE

Network, Vol. 23, No. 5, Sept./Oct. 2009, pp.

30-37.

[5] A. Haeberlen. “A Case for the Accountable

Cloud” 3rd ACM SIGOPS International

Workshop on Large-Scale Distributed Systems

and Middleware (LADIS '09), Big Sky, MT,

October 2009

[6] N. D. Lane, E. Miluzzo, H. Lu, D. Peebles, T.

Choudhury, and A. T. Campbell, “A survey of

mobile phone sensing,” IEEE Communications

Magazine, vol. 48, no. 9, pp. 140 –150, Sep.

2010.

[7] J. Dean, and S. Ghemawat. “Mapreduce:

simplified data processing on large clusters.” In

OSDI’04: Proceedings of the 6th conference on

Symposium on Opearting Systems Design &

Implementation. USENIX Association,

Berkeley, CA, USA, 2004.

[8] W. Wei, J. Du, T. Yu, and X. Gu, “SecureMR: A

Service Integrity Assurance Framework for

MapReduce,” Proceedings of the 2009 Annual

Computer Security Applications Conference,

2009, pp. 73–82.

[9] P. Maniatis and M. Baker. Secure history

preservation through timeline entanglement. In

Proc. of the 11th USENIX Security Symposium,

Jan 2002.

[10] Z. Xiao and Y. Xiao, “Accountable

MapReduce in Cloud Computing,” in 2011 IEEE

Conference on Computer Communications

Workshops (INFOCOM WKSHPS), 2011, pp.

1082 –1087.

[11] J. Liu, and Y. Xiao, “Temporal

Accountability and Anonymity in Medical

Sensor Networks,” ACM/Springer Mobile

Networks and Applications (MONET), Vol. 16,

No. 6, pp. 695-712, Dec. 2011.

[12] CENS/UCLA, “Participatory Sensing /

Urban Sensing Projects”;

http://research.cens.ucla.edu/

[13] A. Thiagarajan, L. Ravindranath, K.

LaCurts, S. Madden, H. Balakrishnan, S. Toledo,

and J. Eriksson, “VTrack: accurate,

energy-aware road traffic delay estimation using

mobile phones,” in Pro. of the 7th ACM

Conference on Embedded Networked Sensor

Systems, 2009, pp. 85–98.

[14] K. Kumar and Y.-H. Lu, “Cloud Computing

for Mobile Users: Can Offloading Computation

Save Energy?,” Computer, vol. 43, no. 4, pp. 51

–56, Apr. 2010.

[15] B.-G. Chun and P. Maniatis, “Augmented

smartphone applications through clone cloud

execution,” in Proc. of the 12th conference on

Hot topics in operating systems, Berkeley, CA,

USA, 2009.

[16] Z. Xiao and Y. Xiao, "Security and Privacy

in Cloud Computing," Communications Surveys

& Tutorials, IEEE , vol.15, no.2, pp.843,859,

Second Quarter 2013

[17] T. Ristenpart, E. Tromer, H. Shacham, and

S. Savage, “Hey, you, get off of my cloud:

exploring information leakage in third-party

compute clouds,” Proc. 16th ACM conference on

Computer and communications security, 2009,

pp. 199-212.

[18] B. D. Payne, M. Carbone, and W. Lee,

“Secure and Flexible Monitoring of Virtual

Machines,” In Proc. ACSAC’07, 2007.

[19] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D. Song,

“Provable data possession at untrusted stores,” In

ACM CCS, pages 598-609, 2007.

[20] G. Ateniese, R. D. Pietro, L. V. Mancini, and

G. Tsudik, “Scalable and efficient provable data

possession,” SecureComm, 2008.

http://research.cens.ucla.edu/

[21] K.D. Bowers, A. Juels, and A. Oprea,

“HAIL: A high-availability and integrity layer

for cloud storage,” Proc. 16th ACM conference

on Computer and communications security,

2009, pp. 187-198.

[22] H. Liu, “A New Form of DOS Attack in a

Cloud and Its Avoidance Mechanism”, Cloud

Computing Security Workshop 2010.

[23] J. Idziorek, M. Tannian, and D. Jacobson,

“Detecting fraudulent use of cloud resources,” in

Proc. 3rd ACM workshop on Cloud computing

security workshop, New York, NY, USA, 2011,

pp. 61-72.

[24] Z. Xiao and Y. Xiao, “Achieving

Accountable MapReduce in cloud computing,”

Future Generation Computer Systems, Vol. 30,

No.1, Jan. 2014, pp. 1–13.

[25] http://aws.amazon.com/ec2/

[26] http://code.google.com/appengine/

[27] http://www.microsoft.com/windowsazure/

[28] Introducing the Window Azure Platform,

http://view.atdmt.com/action/mrtyou_FY10Azu

rewhitepapterIntroWindowsAzurePl_1

[29] S. Pearson and A. Charlesworth,

“Accountability as a Way Forward for Privacy

Protection in the Cloud,” Proceedings of the 1st

International Conference on Cloud Computing,

Beijing, China: Springer-Verlag, 2009, pp.

131-144.

[30] M. Barua, X. Liang, R. Lu, X. Shen,

"ESPAC: Enabling Security and Patient-centric

Access Control for eHealth in cloud computing

," International Journal of Security and

Networks, Vol. 6 Nos. 2/3, 2011, pp. 67-76.

[31] D. Sun, G. Chang, C. Miao, and X.

Wang,"Modelling and evaluating a high

serviceability fault tolerance strategy in cloud

computing environments," International Journal

of Security and Networks," Vol. 7, No. 4, 2012,

pp. 196-210.

[32] S. Kalra and S. Sood, "ECC-based

anti-phishing protocol for cloud computing

services," International Journal of Security and

Networks, Vol. 8, No. 3, 2013, pp. 130-138,

[33] D. Santos, T. Nascimento, C. Westphall, M.

Leandro, and C. Westphall, "Privacy-preserving

identity federations in the cloud: a proof of

concept," International Journal of Security and

Networks, Vol. 9, No. 1, 2014, pp. 1-11.

[34] A. Olteanu, Y. Xiao, F. Hu, B. Sun, and H.

Deng, " A Lightweight Block Cipher Based on a

Multiple Recursive Generator for Wireless

Sensor Networks and RFID," Wireless

Communications and Mobile Computing

(WCMC) Journal, John Wiley & Sons, Vol. 11,

No. 2, pp. 254-266, Feb. 2011.

[35] S. Ozdemir, M. Peng, and Y. Xiao, " PRDA:

Polynomial Regression Based Privacy

Preserving Data Aggregation for Wireless

Sensor Networks," Wireless Communications

and Mobile Computing (WCMC), accepted.

DOI: 10.1002/wcm.2369

[36] S. Yue, Y. Xiao, and G. Xie, "Fault

Tolerance Experiments in 4D Future Internet

Architecture," Journal of Internet Technology,

Vol. 11 No. 4, pp. 543-552, July 2010.

[37] X. Yan, B. Chen, L. Tong, X. Hu, and Y.

Pan, "Adaptive dual cluster heads collaborative

target tracking in wireless sensor networks,"

International Journal of Sensor Networks, Vol.

15, No. 1, 2014, pp. 11-22.

[38] P. Zou and Y. Liu,"Low energy WSN data

aggregation algorithm based on improved

aggregation tree model," International Journal of

Sensor Networks, Vol. 15, No. 3, 2014,

pp.149-156.

[39] C. Liu, K. Wu, Y. Xiao, and B. Sun,"

Random Coverage with Guaranteed

Connectivity: Joint Scheduling for Wireless

Sensor Networks," IEEE Transactions on

Parallel and Distributed Systems, Vol. 17, No. 6,

June 2006, pp. 562-575.

[40] S. Ozdemir and Y. Xiao, "Secure Data

Aggregation in Wireless Sensor Networks: A

Comprehensive Overview," Computer

Networks, Vol. 53, No. 12, Aug. 2009, pp.

2022–2037.

[41] Y. Wang, W. Chu, Y. Zhang, and X. Li,

"Partial sensing coverage with connectivity in

lattice wireless sensor networks," International

Journal of Sensor Networks, Vol. 14, No. 4,

2013, pp. 226-240.

[42] K. Wu, Y. Gao, F. Li, and Y. Xiao,

"Lightweight Deployment-Aware Scheduling

for Wireless Sensor Networks," ACM/Springer

Mobile Networks and Applications (MONET),

Vol. 10, No.6, pp. 837–852, Dec. 2005.

[43] L. Wang and Y. Xiao, "A Survey of

Energy-Efficient Scheduling Mechanisms in

Sensor Networks,” ACM/Springer Mobile

Networks and Applications (MONET), Vol. 11,

No. 5, 2006, pp. 723-740.

[44] Y. Xiao, V. Rayi, B. Sun, X. Du, F. Hu, and

M. Galloway, "A Survey of Key Management

Schemes in Wireless Sensor Networks,"

Computer communications, Vol. 30 No. 11-12,

Sep. 2007. pp. 2314–2341.

[45] Wen-Lung Shiau, Han-Chieh Chao,

Chia-Pin Chou, “An Innovation of an Academic

http://aws.amazon.com/ec2/
http://code.google.com/appengine/
http://www.microsoft.com/windowsazure/
http://view.atdmt.com/action/mrtyou_FY10AzurewhitepapterIntroWindowsAzurePl_1
http://view.atdmt.com/action/mrtyou_FY10AzurewhitepapterIntroWindowsAzurePl_1

Cloud Computing Service”, Journal of Software

Engineering and Applications, Vol. 5, No 11, pp.

938-943, November 2012.

