
FNF: Flow-Net Based Fingerprinting
Bo Fu&, Yang Xiao+, and Hui Chen*

&Cisco, 170 West Tasman Dr., San Jose, CA 95134 USA
+Dept. of Computer Science, The Univ. of Alabama, Tuscaloosa, AL 35487-0290 USA

*Dept. of Mathematics and Computer Science, Virginia State Univ., Petersburg, VA 23806 USA
Abstract—A flow-net technique is a logging methodology that

can build comprehensive system and network logs and help track
events and event relationships in computer and network systems.
In this paper, we propose flow-net based fingerprinting (FNF) to
capture the characteristics of a system or network behavior.
Furthermore, we propose a fingerprint lookup algorithm to solve
the fingerprint matching problem, i.e., given a behavior, to check
whether a flow net logging contains the behavior with the same
fingerprint. We future apply FNF into detecting the fingerprints
of malicious behaviors in computer and network systems. Finally,
evaluation results from experiments demonstrate better
performance than other schemes.

Keywords—Flow-net, intrusion detection, fingerprint;

I. INTRODUCTION
Current computer and network systems are subject to many

types of intrusion attacks. Intrusion Detection Systems (IDS’s)
are developed to monitor system and network behaviors
aiming to discover signs of intrusions, such as unauthorized
access and data modification [1]. Upon detecting suspected
intrusions, an IDS typically sends alerts to system and network
administrators [2, 3, 4]. The ability to detect the intrusions
increases in importance as the computers and networks are
increasingly integrated into the systems that we rely on for the
reliable and efficient functioning of our society [2]. In an IDS,
one or more sensors collect system or activity data called
events, which are organized as logs that are typically organized
as files or stored in databases. An IDS can search the logs for
intrusions [6, 7, 8, 12].

The existing logging schemes of IDS’s typically treat the
events individually without explicitly considering
“relationship” among events. Flow-net is a logging technique to
build comprehensive logs, to help track events, and to maintain
explicit relationships of events in the logs [17, 20].

Similar to human fingerprints, there are also unique
characteristics for activities called fingerprints [22].
Fingerprint will be a powerful tool for intrusion detection and
forensics [22].

Typically, a behavior in a computer system or a network
may be composed of multiple events. The relationship among
the events can be critical in intrusion detection. In this paper,
we propose a Flow-Net based Fingerprinting (FNF) method
and apply it to detect intrusion by examining both the events
and the relationship among the events. Each type of behaviors
causes certain events, and the correlation of these events has
patterns that can be referred to as a fingerprint of the type of
behaviors. Intrusions to a computer system or a network can be
detected by checking the fingerprints of different types of
behaviors appearing in flow-net logs.

In this paper, we propose flow-net based fingerprinting
(FNF) to capture the characteristics of a system or network
behavior. Furthermore, we propose a fingerprint lookup
algorithm to solve the fingerprint matching problem, i.e., given
a behavior, to check whether a flow net logging contains the
behavior with the same fingerprint. We future apply FNF into
detecting the fingerprints of malicious behaviors in computer
and network systems. Finally, evaluation results from

experiments demonstrate better performance than other
schemes.

The rest of this paper is organized as follows. In Section II,
we propose FNF. A fingerprint lookup algorithm is proposed in
Section III. FNF is applied to intrusion detection in Section IV.
Evaluation results are presented in Section V. We conclude our
work in Section VI.

II. FLOW-NET BASED FINGERPRINT (FNF)

A. A formal definition of Flow-net

Fig. 1 An example flow-net

A computing system includes many entities (e.g., files,
processes, or users). Each entity has a flow. An entity’s flow is
defines as an event list of all the events in temporal order that
are associated with the entity [17]. All the flows form a flow-
net. Fig. 1 shows an example of flow-net, in which, all the
events associated by user 1 and arranged in temporal order
form the user 1’s flow, i.e., flow f4, and all the events executed
on file 1 and arranged in temporal order is file 1’s flow, i.e.,
flow f1. The flows in Fig. 1 contain explicitly the relationships
among the events.

We denote a flow-net as a directed graph fn = (E, R) in
which E is the set of nodes and R is the set of edges. In the
graph, a node e represents an event, and a directed edge

, , (,) 
i je e i j i jr r e e represents the relationship that Events ei

and ej are two consecutive events and ei occurs before ej.
Relationship ri,j , sometimes written as ,i je er , can easily capture

the causal relation that ei triggers ej or other types of
relationship or correlation. A flow consists of a set of events
and the relationships of consecutive events, and thus can be
represented as f={r1,2, r2,3, … rn-1,n} that shows the relationships
of two consecutive events in their temporal order. This
notation is also used to describe a part of a flow, starting from
event e1 ending at event en. For convenience, in this paper, we
use “flow” as an abbreviation of a part of a flow. Each event
has certain properties or attributes (i.e., timestamp, event
name). Each flow also has certain properties or attributes (i.e.,
flow name, flow type).

B. Behavior

We refer a behavior in a computer system or a network to as
an action of a set of related actions that can be described
semantically and can have clearly defined beginning and ending
points. A behavior is typically composed of multiple events.
Flow-net is designed to record all these events and their
relationships. Therefore, we may consider a behavior as a set of

correlated events that are aimed at fulfilling certain purpose or
performing a function.

Formally, a behavior in flow-net fn=(E, R) is denoted as a
graph b = (Eb, Rb) in which Eb represents the nodes of the
graph and is the set of events of the behavior and in which Rb
represents the edges of the graph and is the set of the
relationships among the events in E. Note that b=(Eb, Rb) is a
subgraph of fn, i.e., Eb  E and Rb  R.

C. Fingerprint

A fingerprint represents the pattern of a type of behaviors in
computer systems and networks. We extract the fingerprint of
the type of behavior aiming to identify all instances of the
“establishing TCP connection” behaviors since they belong to a
single type of behaviors. For convenience, we simply refer an
instance of a type of behaviors as a behavior from this point
onward.

Flow-net records many details of an event. The details consist
of the values of various attributes of the event, such as
timestamp, user name, file name, host name and IP address.
The type of behaviors to which an event belongs to is
determined not only by the values of the attributes of the event
but also its context in a flow-net, i.e., the related events that also
belong to the same behavior. Although the attributes and their
values of an event are important, the type that a behavior
belongs to is of the utmost concern. We assign an essential type
to each event. For instance, the essential type of a network
event can be “receiving an IP packet”. We only use events’
essential types to extract fingerprints of various types of
behaviors. For instance, the fingerprint of behavior
“establishing TCP connection” can be six related events with
essential types of “sending SYN,” “receiving SYN”, “sending
SYN-ACK”, “receiving SYN-ACK”, “sending ACK”, and
“receiving ACK.” Since the relationships of these events are
already preserved in the flow-net, the values of the attributes of
the events become non-essential to infer the event relationships.
The fingerprint can be expressed by the event relationships and
their essential types rather than actual values of the attributes.

Denote e’ be the abstract event of event e. Abstract event e’
of event e contains the event’s essential type and does not
contain the values of event e’s attributes. For an event e, we
define a mapping denoted as proto from the event e to its
abstract event e’, i.e., e’ = proto(e). Abstract event e’ of event
e is a prototype of event e. In the following, we use event
prototype and abstract event interchangeably. It is not rare that
two events are of the same essential type.

Having obtained abstract events of all events, we replace
event e by its abstract event e’ in relationship set R to obtain the
relationships among abstract events. The definition of flow-net
then remains the same except that the flow-net is now on
abstract events (i.e., event prototypes). The actual mapping
between an event and its abstract event is determined by the
specific characteristics of the event. To determine common
abstract events for TCP/IP networks, it requires an analysis on
TCP/IP protocols.

A behavior’s fingerprint is the abstraction of the behavior that
is expressed as its abstract events and the relationship among
the abstract events, which have a specific pattern.

Given a behavior b = (Eb, Rb), for any event e in event set Eb,
we obtain its prototype e (i.e., abstract event e). The set of all
the event prototypes is called event prototype set Eb’, which is
formally defined as  ' | () and b bE e e proto e e E    . For

any relationship ,i je e bRr  , we can easily obtain a

corresponding relationship ', 'i je er in b’s fingerprint since

ei’=proto(ei), ej’=proto(ej), ei, ej Eb, and ei’, ej’ Eb’. The set
of the relationships between event prototypes, denoted as Rb’,
is called abstract event relationship set (or event prototype
relationship set). The aforementioned process implies a
straightforward method to get a behavior’s fingerprint once a
behavior is defined by its events, i.e., to replace each event
with its prototype in Eb and Rb to obtain Eb’ and Rb’. Given
events e1, e2, e3, and e4, and relations

1 2,e er and
3 4,e er , we have

two same event prototype relationships
1 2 3 4', ' ', 'e e e er r if and

only if proto(e1) = proto(e3) and proto(e2) = proto(e4).
Formally, given behavior b = (Eb, Rb), b’s fingerprint is

denoted as fpb = fingerprint(b) = (Eb’, Rb’) in which Eb’ is the
event prototype set corresponding to the b’s event set Eb, Rb’ is
the relation set corresponding to the b’s relation set Rb.

Different behaviors that have the same fingerprint belong to
a type of behaviors. In other words, we can use the fingerprint
to exactly and uniquely denote a type of behaviors. Given two
behaviors b1 and b2, the two behaviors have the same
fingerprints, i.e., fingerprint(b1)  fingerprint(b2) if and only if
the following conditions hold,
(1) There is a one-to-one correspondence between the event

prototypes of the fingerprint graph, such that two event
prototypes are consecutive in fingerprint(b1) if and only if
their corresponding event prototypes are consecutive in
fingerprint(b2). This condition ensures that the two
fingerprints/graphs are isomorphic.

(2) For any relationship ,i je er in b1, we must be able to find a

relationship ,k le er in b2 such that proto(ei)=proto(ek) and

proto(ej)=proto(el).
(3) For any relationship ,i je er in b2, we must be able to find a

relationship ,k le er in b1 such that proto(ei)=proto(ek) and

proto(ej)=proto(el).
Conditions (2) and (3) ensure that the event prototype sets

and the event prototype relationship sets in the two fingerprints
are identical to each other.

If any one of above three conditions is left out, the
fingerprints of behaviors b1 and b2 may not be the same. For
instance, when

'2 1 ' '' ' { }
m ne eb bR R r  where

2
', ' 'm n be e R and

1
', ' 'm n be e R , condition (2) may hold, but condition (3) does

not hold, in which case, the two fingerprints are not the same.

Fig. 2 A behavior and its fingerprint. In this figure, e1’=proto(e1)
=proto(e5)=proto(e9), e2’=proto(e2)=proto(e6)=proto(e10), e3’=proto(e3)
=proto(e7)=proto(e11), e4’=proto(e4) =proto(e8) =proto(e12), 1 2 5 6', ' ', 'e e e er r ,

2 4 6 8', ' ', 'e e e er r ,
3 4 7 8', ' ', 'e e e er r , and

1 3 5 7', ' ', 'e e e er r . Therefore,

Behavior b1 and b2 have the same fingerprint, called fp.
Fig. 2 shows an example of some behaviors and their

fingerprints. In this figure, there are two behaviors, b1 and b2,
which are composed of different events, and the two graphs

denoted by b1 and b2 are isomorphic. Both of the behaviors
have the same fingerprint, denoted as fp, i.e., fp =
fingerprint(b1) = fingerprint(b2), because e1’ = proto(e1)
=proto(e5), e2’=proto(e2)=proto(e6), e3’=proto(e3) = proto(e7),
e4’ = proto(e4) = proto(e8), 1 2 5 6', ' ', 'e e e er r ,

2 4 6 8', ' ', 'e e e er r ,

3 4 7 8', ' ', 'e e e er r ,
1 3 5 7', ' ', 'e e e er r , and there does not exist a

relationship in either
1
'bR or

2
'bR that cannot be found in the

event prototype set of the other behavior. However, behavior
b4’s fingerprint is not fp because

2 4 10 12', ' ', 'e e e er r since there is a

relationship between two abstract events in the prototype
relationship set

4
'bR that cannot be found a match in

1
'bR (or

2
'bR), or vice versa. Behavior b3’s fingerprint is not fp either

since there are fewer events in b3 than those in b1 (or b2).
Having introduced flow-net fingerprint, we can view a flow-

net as a group of fingerprints instead of a collection of
individual events. Note that some fingerprints may overlap with
each other, such as behaviors b2 and b3 in Fig. 1. By introducing
the flow-net fingerprint, we can focus on the identification of
various types of behaviors without unnecessary costly
examination of attributes of the events.

III. FLOW-NET FINGERPRINT MATCHING

Giving a flow-net fingerprint of a type of behaviors, we are
interested in identifying the type of behaviors from flow-net
logs. We refer the process of identifying occurrences of a type
behavior in flow-net logs fingerprint matching.

Since both flow-net fingerprints and flow-nets are organized
as directed graphs in which each vertex has a “color”, i.e., the
type of event that the vertex represents, the fingerprint
matching process is to identify from flow-net subgraphs that are
of the same graphs of the fingerprints of the given type of
behavior, which is in effect a subgraph isomorphism for colored
directed graphs. Subgraph isomorphism problem in general is a
NP-complete problem [14, 19]. Subgraph isomorphism for
colored directed graph can be less computational expensive if
certain structure exists in the graph.

We propose a behavior lookup algorithm that identifies the
behaviors that match the given fingerprint in the flow-net. In
the remainder of this paper, we make the following
assumptions: 1) As a log file, the data of flow-net, which
includes event information, time stamp, relationship, etc., is
stored completely; 2) The stored data of flow-net is reliable
without being tampered with.Behavior LookupAlgorithm

We propose a behavior lookup algorithm to solve the
Fingerprint Matching Problem (FMP), i.e., given a behavior
b and a flow-net fn, check whether fn contains a behavior b2
such that fingerprint(b)=fingerprint(b2). To solve this problem,
we have to obtain b’s fingerprint fp first and then check in fn to
find whether or not there is any behavior with a fingerprint that
is fp as well. We know that behavior, fingerprint, and flow-net
are all denoted as graphs. As discussed above, such problem is
in effect a subgraph isomorphism for colored directed graphs.
Although general algorithms for solving such graph problem
have been proposed, we show that an efficient algorithm exists
to solve the problem due to the unique structure of flow-net
fingerprints and flow-nets.

We propose an algorithm called Fingerprint Lookup
Algorithm (FLA), to solve FMP. As shown in Fig. 3, FLA has a
function called contain that checks whether behavior b’s
fingerprint is contained in flow-net fn. Before executing the
function, we first call getFingerprint function to obtain b’s
fingerprint fp, and then check if any behavior in fn has the same

fingerprint as fp. If such a behavior exists in fn, we say fp
matches (a part of) fn. To check if fp matches any part of fn, we
have to select prototype e’ of the head event in fp where the
head event is the event that happens the very first in fp or a rare
event in fp. Then check in fn to see whether or not there is an
event e such that e’=proto(e). After getting e, we start a new
process that checks whether fp matches this part of fn by
comparing two graphs. Two events or two event prototypes
have the relationship denoted by the flow in the flow-net. If two
events are consecutive in a flow, then they are neighbors. The
relationship function checks whether two events or events
prototypes are consecutive. In the following match function, we
recursively check an event’s and event prototype’s neighbors. If
all pairs of the events/event prototypes have the same
relationship, then the fingerprint matches the flow-net.

We may let the algorithm returns true if and only if the flow-
net contains exactly a given fingerprint, an input parameter of
the algorithm. However, sometimes a behavior may slightly
change its details without changing its basic characteristics. For
example, a Denial of Service Attack (DoS Attack) may include
a different number of service requests, and this leads to
different fingerprints for different occurrences of the same DoS
attack. Therefore, in order to detect whether a behavior’s
fingerprint is contained in a flow-net, we have to tolerate a
minor difference between the given fingerprint and that of the
behavior in the flow-net to detect the type of behaviors with
minor variations.

For Fingerprint fp, we count the number of its event
prototypes and relationships. We denote the number as
count(fp). For behavior b, we count the number of its events
and relationships. We denote this number as count(b).
Assuming that Fingerprint fp1 and fp2 are similar, we count the
number of events and relationship in fn2 that are different than
those in fp1, and denote this difference value as diff(fp1, fp2). We
define difference ratio dr as dr(fp2, fp1)=diff(fp1, fp2)/count(fp1).
Actually, in the definitions of the difference value and the
difference ratio above, we can replace the fingerprint with a
behavior and do not change the meaning of the definitions.
Therefore, assuming that fingerprint fp and the fingerprint of
behavior b are similar, we also have the difference ratio dr as
dr(b, fp)= diff(fp, b)/count(fp).

Fig. 2 shows an example for calculating the difference ratio.
In Fingerprint fp shown in Fig. 2(b), there are 4 event
prototypes and 4 relationships among these events. Therefore,
count(fp)=8. We have e1’=proto(e9), e2’=proto(e10),
e3’=proto(e11), e4’=proto(e12), and thus, Fingerprint fp’s event
prototypes are same as behavior b4’s events’ prototypes. Also,
the only difference between fp and b4 is that b4 has one
relationship less than fp so that diff(fp, b4)=1. Therefore, we
have dr(b4, fp) = diff(fp, b4)/count(fp) = 0.125. Note that the
value of the difference ratio must always be in the interval [0,
1]. A value of 0 of the difference ratio implies that the given
behavior matches the given fingerprint exactly.

Based upon the above definitions, we define the
Proportional Fingerprint Matching Problem (PFMP) as
follows, given behavior b, flow-net fn, and a real number d
(0 1d ), check whether or not fn contains a behavior b2 such
that 2(, ())dr fingerprint b db  . The real number d is a
threshold called difference ratio limitation.

As shown in Fig. 3, FLA is capable of solving PFMP. The input
to the contain function are b, fn, and d, and the output is a
Boolean value that implies whether the behavior b’s fingerprint
is contained in the flow-net fn within the difference ratio
limitation d.

In FLA, when the threshold d is set as 0, i.e., no variation of
the type of behavior is allowed, it solves FMP; when d is great
than 0, it solves PFMP. We use FLA to solve PFMP, i.e., FMP
is a special case of PFMP when d is set to 0.

The introduction of the difference ratio limitation d in FLA
allows us to look up an intrusion even when the intrusion
changes its details slightly. The use of the difference ratio
limitation makes FLA more powerful because it is not rare for
an intrusion to change its behavior slightly every time. We have
indicated that FMP is a subgraph isomorphism problem for
colored directed graph. Existing solutions of the problem do not
support slight changes of the given subgraph. Therefore, the
existing algorithms that solve the subgraph isomorphism
problem cannot solve PFMP that allows a slight variation of a
type of behavior. This is the motivation behind the proposed
difference ratio of two fingerprints and the FLA.

In FLA, the key is to find an event prototype and then
recursively check if its relationship with neighbors match the
flow-net. Therefore, we should find a suitable event prototype
e’ for the contain function to work efficiently. For example, if
we want to check whether or not a TCP three-way handshake
exists in a flow-net, we should use the event prototype “sending
SYN-ACK” as the starting event for prototype e’ since this
event prototype is not as common as other kinds of event
prototypes in the flow-net. Some events in the flow-net are rare.
Rare events are used as starting point of the looking up process
in the flow-net. By using a rare event, the PFMP or FMP can be
solved more efficiently using FLA.

We can improve the performance of the algorithm by adding
some assisting data structure in the flow-net. When generating a
new part of the flow-net, we check the new generated
fingerprints on this flow-net in real time. We store the name of
the fingerprint, such as TCP connection and file transfer, in the

assisting data structure. Therefore, when we want to check if a
behavior’s fingerprint is in the flow-net, we can simply check
the assisting data structure. This revised algorithm saves time
than the first one but costs more space to maintain the assisting
data structure.

IV. FNF BASED INTRUSION DETECTION
A. FNS based IDS

Flow-net stores all the behaviors including their events and
the relationships between events. Intrusions are harmful
behaviors to computer systems and networks. To look up an
attack, it is fundamentally to look up a type of behavior.

We assume that a host’s or a network’s behaviors are all
stored in the flow-net, and we can look up the attack’s
fingerprint in the flow-net in order to detect the attack. In other
words, detecting an attack is equal to looking up this attack’s
fingerprint in the flow-net. the FNF-based IDS uses FLA to
look up intrusions from flow-net logs using the fingerprints of
the intrusion behaviors. Fingerprints may overlap, and
furthermore, one fingerprint may contain another fingerprint.
Looking up each fingerprint by FLA is an independent work
regardless of the overlap situation of the fingerprint.

Fig. 4 An illustration of FNF based IDS. In the fingerprint library, the colorful
patterns are actually visual notations of the fingerprints. The scanning area is
from the time –tsc to now. We only detect attacks in the scanning area of the
flow-net.

Fig. 4 shows an illustration of the FNF based IDS. We store
the attacks’ fingerprints in a fingerprint library. Our goal is to
detect these target attacks in the flow-net.

For each target attack, the FNF based IDS stores the
following values, a) the target intrusion’s fingerprint, b)
whether the fingerprint of the intrusion exists in the flow-net, c)
how many times the fingerprint appears in the flow-net, and d)
the minimum time interval between two occurrences of the type
of behavior represented by the fingerprints in the flow-net.

The values (fingerprint, existence, frequency, and minimum
interval) in the fingerprint library as shown in Fig. 4 denote the
aforementioned properties and can be used for setting a
threshold of the intrusion alert.

Although Flow-net stores all behaviors of a host, in a real-
time intrusion detection, we do not need to detect all the
intrusions taking place in the entire history. In Fig. 4, the flow-
net stores the behaviors in current time and the past, and the
future of the flow-net is empty since flow-net does not predict
the future. In a real-time intrusion detection, we may only need
to detect intrusions in a small time window in the past.
However, for other purposes, such as log auditing, we may
detect the behaviors in a very large time window in the past. No
matter how “old” the behaviors that we aim to detect, the time
window between the oldest time from which we start to detect
intrusions and the present time is called the scanning window.
The part of flow-net that consists of events happening during
the scanning window is called the scanning area. In other words,
we only detect intrusions in the scanning area of the flow-net.
For real-time intrusion detection, the scanning window and
scanning area should be small, and therefore, the overhead

Fingerprint Lookup Algorithm (FLA):
Input: Behavior b, Flow-net fn=(E, R), double d
Output: Boolean value
contain(Behavior b, Flow-net fn, double d)
{ Fingerprint fp = getFingerprint(b)
 nfp = |E| + |R|
 efp = getHeadEvent(fp)
 For (efn  E) {
 if (efp == proto(efn)) {
 n = matchCount(efp, efn)
 If (n/nfp ≥ 1 – d) return true
 Else return false}}}

matchCount(Event Prototype efp, Event efn)
{ n = 0
 Xfn ={xfn | isNeighbor(efn, xfn) = true
 AND !xfn.visited}
 Xfp ={xfp | isNeighbor(efp, xfp) = true
 AND !xfp.visited}
 For (xfn  Xfn) {
 xfn’ = proto(efn)
 If (xfn’  Xfp) {
 n = n + 1
 xfn.visited = true
 xfp.visited = true
 if (relationship(efn, xfn)
 == relationship (efp, xfp){
 n = n + 1
 n = n + matchCount(x’, x)}}}
 return n}
Fig. 3 Flow-net Fingerprint Lookup Algorithm (FLA).

caused by the flow-net logging will not lower the performance
of the FNF based IDS.

Start

End

Get a fingerprint from
fingerprint library

Call FLA to look up the
fingerprint in the scanning area

Set existence of the
fingerprint as false
Set frequency as 0

Set existence as true
Increment frequency

More fingerprint to
look up?

Yes

Reach the end of
scanning area?

No

Found the fingerprint?
Yes

Yes

No

No

Fig. 5 The flow chart of the FNF based IDS

Fig. 5 shows a flow chart of the FNF based IDS. According
to Fig. 5, we first select one fingerprint from the fingerprint
library and then use FLA to look up the fingerprint from the
scanning area of the flow-net. We will set the existence field of
this fingerprint as true or false in the fingerprint library based
on whether or not this fingerprint is found. If it is found, we
also increment the frequency of the occurrences of the
fingerprint. We continue to look up the fingerprint until we
reach the end of the scanning area. If multiple occurrences of
the fingerprint are found, we record the minimum time interval
among the occurrence; otherwise, we record the interval as
infinity. We then look up the next fingerprint in the fingerprint
library.

Therefore, the FNF based IDS is able to detect intrusions that
have unique fingerprints. The fingerprint library can be used
for showing whether an intrusion appears in the flow-net, and
thus can be used for triggering the intrusion alert to the
administrator.

B. FNF based IDS for Anomaly Detection
An intrusion has its unique fingerprint that can be detected by

the FNF based IDS scheme. However, some attacks, such as
Denial-of-Service attack (DoS attack), use normal behaviors
but repeat for a great number of times to drain the victim’s
resource.

In Fig. 5, the fingerprint can be a representative for a type of
normal behavior. The frequency field in the fingerprint library
records how many times the type of behavior that a fingerprint
represents appears in the flow-net, and the minimum interval
field records the minimum interval between two occurrences of
the same type of behavior.

We propose a new method to denote the repeated appearance
of a type of behavior. We use the star symbol (*) to denote that
an event prototype and a relationship appear many times.
Assume that we have a type of behavior’s fingerprint

    1 2', '1 21= ', ' , e efp e e r , and if this type of behavior appears

many times, we can denote it as     2 3', '1 21 = ' , ' ,    e efp e e r .

A DoS attack may be composed by repetition of several
different regular behaviors, such as fp1, fp2, etc., and we can
denote the DoS attack by 1 2DoSfp fp fp   .

Shown in Fig. 5, after looking up fingerprints in the scanning
area, we update the fingerprint library and get the existence

frequency, and minimum interval of each fingerprint. The
intrusion alert may be triggered by checking the frequency and
minimum interval fields in the fingerprint library. If the
fingerprint is for an intrusion, the algorithm in Fig. 5 detects
intrusions; if the fingerprint is for normal behavior and a type of
normal behavior repeats too many times and too frequently, an
alert may be triggered by a detected anomaly.

C. Applications of FNF based IDS on TCP/IP Attacks

A three-way handshake for the TCP connection
establishment is normally composed by six consecutive SYN
and ACK events. Flow-net is able to record not only these six
events but also their relationship. The pattern of the events and
the relationship between the events in the three-way handshake
can be referred to as the fingerprint of the three-way handshake.
Therefore, flow-net is able to record the network behaviors and
we can use the FNF based IDS to detect TCP/IP attacks using
the fingerprint.

Flow
 α

Flow α

Fig. 6 Flow-net of window scanning

Port scanning may be considered as an attack that are
attempted too frequently and too many in a short period of time.
Port scanning sends certain TCP or UDP segments to certain
port addresses on a host with the goal of prying the
vulnerabilities of the host [15, 16, 18]. As a type of port
scanning, window scanning is conducted by sending an ACK
segment from the attacker to the victim host. After receiving the
ACK segment, the victim responds by an RST segment which
contains a window size field. If window size equals 0, then the
attacker is aware that the port is closed; else the port is open.

Window scanning takes place only when the ACK and RST
events are not related with other segment sending events. Fig. 6
shows the flow-net of a window scanning and its fingerprint
can be denoted as follows.

Event e1=“send ACK”, e2=“receive ACK”, e3=“send RST”,
e4=“receive RST”.

    1 2 2 3 3 4', ' ', ' ', '1 2 3 4= ', ', ', ' , , , .e e e e e ewindow scanningfp e e e e r r r

The events e2 and e3 along with the relation
2 3,e er on the

victim is a significant implication of the attack. Then the
aforementioned fingerprint or the part of the fingerprint on the
victim side can be added to the fingerprint library for the FNF
based IDS. Similarly, we can add other TCP/IP attacks’
fingerprints to the fingerprint library of the FNF based IDS for
intrusion detection. This example is very specific for TCP/IP
intrusion that may result to a misleading consideration about the
victim’s cooperation.

V. EVALUATION

We developed simulation programs in Java programming
language to test the FNF based IDS.

A. Comparison of FNF based IDS and log based IDS

We evaluate the time to find a known intrusion from flow-net
logs using flow-net based fingerprint and that from non-
relational logs. The time is the indicator how quickly the FNF
based IDS and the traditional log based IDS can identify an
intrusion. We assume that there are in total N events in either
the flow-net log or the non-relational log. We assume that an
attack is composed of n (n<<N) events. The objective is to

measure the time needed to find all n evens in either the flow-
net log or the non-relational log. We denote these n events as e1,
e2, …, en. In the non-relational log, the relationships among the
N events are not maintained explicitly and the N events are
stored in the order when they were written to the log. In the
flow-net log, the relationships among the N events are explicitly
maintained. Relationships in the flow-net log are stored as
references (i.e., addresses) to each other and the references
allow traverse to the related event directly using its reference.

Since the n events of the intrusion in the non-relational log
are not necessarily next to each other and there is no direct
reference among the events, we have to search sequentially
among all the N events for the n events. On the contrary, the n
events are referenced to each other in the flow-net log, when
one event of the n events is found and the rest of the n-1 events
can be located using the references among them, i.e., we only
need to trace along the relationships to locate all the n events of
the attack in the flow-net log. As shown in Fig. 7, each event
has two related events, and we only need to check these two
events to determine which one of them is part of the intrusion.

Fig. 7 Event tracing by logging and fingerprint.

We assume that a) in the non-relational log, it takes te time to
locate next event in the log and b) in the flow-net, it takes the
same amount of time to locate a related event. We aim to
compare the time of locating all the n events of the attack in
both of the logs starting from event e1 in both logs.

In the non-relational log, it takes (N-1) searches to locate the
first event in the worst case scenario since we have to traverse
all the N events to find out the n events. Similarly, if any event
among the n-1 event stills need (N-1) searches, the cost is Tl =
[(N-1) + (N-2) + (N-3) … + (N-n)]te = (2N-1-n)nte/2. In the
flow-net log, because the log stores the events’ relationships
using references of the events, we can trace along the
intrusion’s n events without looking up all the N events after the
first event is located. However, it takes (N-1) searches to locate
the first event in the worst case as well. In case of Fig. 7, we
need to trace both neighbors of an event, and it takes

(1) 2(1) (2 3)f e e eN n N nt t tT        to locate all the n

events of the attack.
In the aforementioned case, let Tf = Tl, then

23 33
2

2 4
n N NN     . This result means when

23 33
2

2 4
n N NN     , we have f lT T . Apparently,

23 33
2 0

2 4
NN    . Therefore, it is ensured f lT T

when n<N. Since typically n<<N, it takes significantly less time
using flow-net logs than using non-relation logging.

B. Performance Analysis of FNF based IDS

We analyze the computational performance of the FNF based
IDS, which calls the FLA algorithm repeatedly in order to find
all intrusions that match the corresponding fingerprints in the
fingerprint library. One execution of the FLA algorithm is to
find behaviors that match a fingerprint in the library. Therefore,
in the FNF based IDS, the FLA algorithm is executed in the

loop by which we search behaviors in flow-net logs matching
all fingerprints in the fingerprint library as shown in Fig. 5. The
FLA algorithm solves PFMP that is essential in the intrusion
detection. Apparently, the difference ratio limitation d affects
the time cost of the FLA. We look for an optimal value of d.
The FLA algorithm that takes a difference ratio limitation d as
the parameter is executed in the loop until we get all the
matched behaviors in the flow-net. The time cost for the FNF
based IDS are composed by two parts: a) the time for executing
the FLA algorithm in the loop and b) the time for updating the
fingerprint library and handling and storing the behaviors that
match the fingerprint. The value of d affects both of these two
time costs.

On one hand, We have to check more event prototypes and
relationships in the FLA. Therefore, as d decreases, the time
cost for checking the behaviors increases. For a Behavior b in
the flow-net fn, the time cost for checking if b matches
Fingerprint fp is denoted by tb(d, fp). As d decreases, tb(d, fp)
increases. The total time cost for checking all the behaviors is

(,)b
b fn

d fpt

 .

On the other hand, as d increases, an increased number of
behaviors match the input fingerprint, and therefore, the time
cost handling and storing all the matched behaviors in Flow-net
fn is larger. We assume that the time cost for handling and
storing one behavior is a constant value Tconst, and the number
of behaviors that match the Fingerprint fp is denoted as nmatch(d,
fp). As d increases, nmatch(d, fp) increases. The total time cost for
handling and storing all matched behaviors is

(,) constmatch d fpn T .

Therefore, in the FNF based IDS, the total time cost for
getting all the matched behaviors with a given difference ratio d
in Flow-net fn is

(, ,) (,) (,)allmatch constb match
b fn

d fp fn d fp d fpt nT T


   . We are

looking for a value d that minimizes Tallmatch. In other words,

 arg min (, ,)

arg min (,) (,) .

allmatch
d

constb match
d b fn

d d fp fnT

d fp d fpt n T




 
   

 


C. Performance simulation of the FNF based IDSscheme

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
150,000

200,000

250,000

300,000

350,000

400,000

d

T
al

lm
at

ch

T
const

=20

Fig. 8 The time for matching all fingerprints when Tconst=20

Given a fingerprint and a difference ratio limitation d, the
previous subsection shows the calculation of the total time
called Tallmatch, for getting all the matching behaviors by
comparing to the fingerprints in the fingerprint library. The
difference ratio reflects the difference between the fingerprint
and the matched behaviors. Tallmatch is affected by both d and the
time cost for handling and storing one matched behavior, Tconst.
We simulate a flow-net with 10000 behavior types. We provide
a fingerprint library and get all the behaviors with fingerprints
that have a different ratio less than d when compared to the
given fingerprints. Then, we process the matched fingerprints

by storing them in a different location. The total time of these
two parts of time cost is denoted as Tallmatch.

Given a value of d and a given fingerprint, we can look up
the behaviors that are similar to the fingerprint. We want to
know an optimal value of d such that the value of Tallmatch is
minimum, and this means that that we are looking for an
optimal value of d that saves time for behavior matching and
handling.

In Figs 8 and 9, Tallmatch is the y-axis and the value of d is the
x-axis. In Fig. 8, we set Tconst=20, and it shows that when d=0.1,
we have the smallest value of Tallmatch. As shown in Fig. 8, a
very small value of d (such as 0.05) causes a large value of
Tallmatch because a smaller d requires a longer time for
fingerprint matching as explained in the previous subsection.
The value of Tallmatch gets larger after d=0.1 because a larger d
causes more numbers of matched fingerprints. Thus, the
handling time is longer.

However, when d is approaching 1, the value of Tallmatch is
decreasing because only a small amount of time is spent to
compare the given fingerprint and a behavior. The small
amount of time is enough to make sure that their similarity is
more than 1-d. Therefore, when d is close to 1, the time for
fingerprint matching is very little although the time for behavior
handling is very large. Thus, in this situation, the total time,
Tallmatch, is relatively small. This is why the value of Tallmatch
drops down when d approaches 1 in Fig. 8.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

d

T
al

lm
at

ch

T
const

=50

T
const

=25

T
const

=10

T
const

=1

Fig. 9 The time for matching all fingerprints when Tconst varies

Fig. 9 shows the same trend of Tallmatch, corresponding to
different values of Tconst. An extremely small value of Tconst
makes Tallmatch drops down quickly, and an extremely large
value of Tconst makes Tallmatch drop down slowly as d approaches
to 1. These simulation results show that our design and analysis
in the previous sections are reliable.

VI. CONCLUSION
In this paper, we proposed a formal definition of flow-net,

based upon which we propose an accurate description of
behaviors in computer and network systems. Each type of
behavior has its unique fingerprint. We propose a Flow-net
based Fingerprint (FNF). Furthermore, we proposed a
fingerprint lookup algorithm to solve the fingerprint matching
problem. We future applied FNF into detecting the fingerprints
of malicious behaviors in computer and network systems.
Finally, evaluation results from experiments demonstrate better
performance than other schemes.

REFERENCES
[1] V. Marinova-Boncheva, “A Short Survey of Intrusion Detection

Systems,” Problems of Engineering Cybernetics And Robotics, 2007.
[2] A. Jones, and R. Sielken, “Computer System Intrusion Detection: A

Survey,” Technical Report, 1999.
[3] S. Axelsson, “Intrusion Detection Systems: A Survey and Taxonomy,”

Technical Report, 2000.
[4] K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention

Systems (IDPS),” Computer Security Resource Center. 2007.
[5] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous Payload-Based

Network Intrusion Detection,” Recent Advances in Intrusion Detection.
Springer Berlin. 2011.

[6] M. Sebring, E. Shellhouse, M. Hanna, and R. Whitehurst, “Expert
Systems in Intrusion Detection: A Case Study,” In Proceedings of the
11th National Computer Security Conference, pp. 74–81, Baltimore,
Maryland, 1988.

[7] K. Jackson, D. DuBois, and C. Stallings, “An Expert System Application
for Network Intrusion Detection,” In Proceedings of the 14th National
Computer Security Conference, pp. 215–225, Washington, D.C., 1991.

[8] D. Anderson, T. Frivold, and A. Valdes, “Next-generation intrusion-
detection expert system (NIDES),” Technical Report SRI-CSL-95-07,
Computer Science Laboratory, SRI International, 1995.

[9] K. Ilgun , R. Kemmerer, and P. Porras, “State Transition Analysis: A
Rule-Based Intrusion Detection Approach,” IEEE Transactions on
Software Engineering, Vol. 21, pp. 181–199, 1995.

[10] S. Eckmann1, G. Vigna1, and R. Kemmerer, “STATL: An attack
language for state-based intrusion detection,” Journal of Computer
Security, Vol. 10, No. 1–2, pp. 71–103, 2002.

[11] C. Michael and A. Ghosh, “Simple, State-Based Approaches to Program-
Based Anomaly Detection,” ACM Transactions on Information and
System Security, Vol. 5, No. 3, pp. 203–237, August 2002.

[12] F. Sailhan and J. Bourgeois, “Log-Based Distributed Intrusion Detection
for Hybrid Networks,” Proceedings of the 4th Annual Workshop on
Cyber Security And Information Intelligence Research: Developing
Strategies to Meet the Cyber Security And Information Intelligence
Challenges Ahead, pp. 1–3, 2008.

[13] P. Porras and R. Kemmerer, “Penetration State Transition Analysis: A
Rule-Based Intrusion Detection Approach,” Proceedings of the Eighth
Annual Computer Security Applications Conference, December 1992.

[14] J. Ullmann, “An algorithm for subgraph isomorphism”, Journal of the
ACM, Vol. 23, pp. 31–42, 1976.

[15] W. Du, “Attack Lab: Attacks on TCP/IP Protocols”, Laboratory for
Computer Security Education, 2010. Available:
http://www.cis.syr.edu/~wedu/seed/Labs/Attacks_TCPIP/TCPIP.pdf

[16] M. Tanase, “IP Spoofing: An Introduction,” 2003. Available:
http://www.symantec.com/connect/articles/ip-spoofing-introduction

[17] Y. Xiao, “Flow-Net Methodology for Accountability in Wireless
Networks,” IEEE Network, Vol. 23, No. 5, Sept./Oct. 2009, pp. 30-37.

[18] R. Shirey, “Internet Security Glossary,” RFC2828. Available:
http://tools.ietf.org/html/rfc2828

[19] S. A. Cook, “The complexity of theorem-proving procedures”, Proc. 3rd
ACM Symposium on Theory of Computing, pp. 151–158, 1971.

[20] Y. Xiao, K. Meng, and D. Takahashi, “Accountability using Flow-net:
Design, Implementation, and Performance Evaluation,” (Wiley Journal
of) Security and Communication Networks, Vol.5, NO. 1, pp. 29–49,
Jan. 2012.

[21] S. Lim and A. Jones, “Network Anomaly Detection System: The State of
Art of Network Behaviour Analysis,” Proceedings of the 2008
International Conference on Convergence and Hybrid Information
Technology (ICHIT '08), pp. 459-465, 28-30 Aug. 2008.

[22] D. Takahashi, Y. Xiao, Y. Zhang, P. Chatzimisios, and H.-H. Chen,
"IEEE 802.11 User Fingerprinting and Its Applications," (Elsevier)
Computers and Mathematics with Applications, Vol. 60, No. 2, July
2010, pp. 307-318.

