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Abstract—A flow-net technique is a logging methodology that 

can build comprehensive system and network logs and help track 
events and event relationships in computer and network systems. 
In this paper, we propose flow-net based fingerprinting (FNF) to 
capture the characteristics of a system or network behavior. 
Furthermore, we propose a fingerprint lookup algorithm to solve 
the fingerprint matching problem, i.e., given a behavior, to check 
whether a flow net logging contains the behavior with the same 
fingerprint. We future apply FNF into detecting the fingerprints 
of malicious behaviors in computer and network systems. Finally, 
evaluation results from experiments demonstrate better 
performance than other schemes. 
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I. INTRODUCTION 
Current computer and network systems are subject to many 

types of intrusion attacks. Intrusion Detection Systems (IDS’s) 
are developed to monitor system and network behaviors 
aiming to discover signs of intrusions, such as unauthorized 
access and data modification [1]. Upon detecting suspected 
intrusions, an IDS typically sends alerts to system and network 
administrators [2, 3, 4]. The ability to detect the intrusions 
increases in importance as the computers and networks are 
increasingly integrated into the systems that we rely on for the 
reliable and efficient functioning of our society [2]. In an IDS, 
one or more sensors collect system or activity data called 
events, which are organized as logs that are typically organized 
as files or stored in databases. An IDS can search the logs for 
intrusions [6, 7, 8, 12].  

The existing logging schemes of IDS’s typically treat the 
events individually without explicitly considering 
“relationship” among events. Flow-net is a logging technique to 
build comprehensive logs, to help track events, and to maintain 
explicit relationships of events in the logs [17, 20]. 

Similar to human fingerprints, there are also unique 
characteristics for activities called fingerprints [22]. 
Fingerprint will be a powerful tool for intrusion detection and 
forensics [22]. 

Typically, a behavior in a computer system or a network 
may be composed of multiple events. The relationship among 
the events can be critical in intrusion detection. In this paper, 
we propose a Flow-Net based Fingerprinting (FNF) method 
and apply it to detect intrusion by examining both the events 
and the relationship among the events. Each type of behaviors 
causes certain events, and the correlation of these events has 
patterns that can be referred to as a fingerprint of the type of 
behaviors. Intrusions to a computer system or a network can be 
detected by checking the fingerprints of different types of 
behaviors appearing in flow-net logs.  

In this paper, we propose flow-net based fingerprinting 
(FNF) to capture the characteristics of a system or network 
behavior. Furthermore, we propose a fingerprint lookup 
algorithm to solve the fingerprint matching problem, i.e., given 
a behavior, to check whether a flow net logging contains the 
behavior with the same fingerprint. We future apply FNF into 
detecting the fingerprints of malicious behaviors in computer 
and network systems. Finally, evaluation results from 

experiments demonstrate better performance than other 
schemes. 

The rest of this paper is organized as follows. In Section II, 
we propose FNF. A fingerprint lookup algorithm is proposed in 
Section III. FNF is applied to intrusion detection in Section IV. 
Evaluation results are presented in Section V. We conclude our 
work in Section VI. 

II. FLOW-NET BASED FINGERPRINT (FNF) 

A. A formal definition of Flow-net 

 
Fig. 1 An example flow-net 

A computing system includes many entities (e.g., files, 
processes, or users). Each entity has a flow. An entity’s flow is 
defines as an event list of all the events in temporal order that 
are associated with the entity [17]. All the flows form a flow-
net. Fig. 1 shows an example of flow-net, in which, all the 
events associated by user 1 and arranged in temporal order 
form the user 1’s flow, i.e., flow f4, and all the events executed 
on file 1 and arranged in temporal order is file 1’s flow, i.e., 
flow f1. The flows in Fig. 1 contain explicitly the relationships 
among the events. 

We denote a flow-net as a directed graph fn = (E, R) in 
which E is the set of nodes and R is the set of edges. In the 
graph, a node e represents an event, and a directed edge 

, , ( , ) 
i je e i j i jr r e e  represents the relationship that Events ei 

and ej are two consecutive events and ei occurs before ej. 
Relationship ri,j , sometimes written as ,i je er , can easily capture 

the causal relation that ei triggers ej or other types of 
relationship or correlation. A flow consists of a set of events 
and the relationships of consecutive events, and thus can be 
represented as f={r1,2, r2,3, … rn-1,n} that shows the relationships 
of two consecutive events in their temporal order. This 
notation is also used to describe a part of a flow, starting from 
event e1 ending at event en. For convenience, in this paper, we 
use “flow” as an abbreviation of a part of a flow. Each event 
has certain properties or attributes (i.e., timestamp, event 
name). Each flow also has certain properties or attributes (i.e., 
flow name, flow type). 

B. Behavior 

We refer a behavior in a computer system or a network to as 
an action of a set of related actions that can be described 
semantically and can have clearly defined beginning and ending 
points. A behavior is typically composed of multiple events. 
Flow-net is designed to record all these events and their 
relationships. Therefore, we may consider a behavior as a set of 



correlated events that are aimed at fulfilling certain purpose or 
performing a function. 

Formally, a behavior in flow-net fn=(E, R) is denoted as a 
graph b = (Eb, Rb) in which Eb represents the nodes of the 
graph and is the set of events of the behavior and in which Rb 
represents the edges of the graph and is the set of the 
relationships among the events in E. Note that b=(Eb, Rb) is a 
subgraph of fn, i.e., Eb  E and Rb  R.  

C. Fingerprint 

A fingerprint represents the pattern of a type of behaviors in 
computer systems and networks. We extract the fingerprint of 
the type of behavior aiming to identify all instances of the 
“establishing TCP connection” behaviors since they belong to a 
single type of behaviors. For convenience, we simply refer an 
instance of a type of behaviors as a behavior from this point 
onward.  

Flow-net records many details of an event. The details consist 
of the values of various attributes of the event, such as 
timestamp, user name, file name, host name and IP address. 
The type of behaviors to which an event belongs to is 
determined not only by the values of the attributes of the event 
but also its context in a flow-net, i.e., the related events that also 
belong to the same behavior.  Although the attributes and their 
values of an event are important, the type that a behavior 
belongs to is of the utmost concern. We assign an essential type 
to each event. For instance, the essential type of a network 
event can be “receiving an IP packet”. We only use events’ 
essential types to extract fingerprints of various types of 
behaviors. For instance, the fingerprint of behavior 
“establishing TCP connection” can be six related events with 
essential types of “sending SYN,” “receiving SYN”, “sending  
SYN-ACK”, “receiving SYN-ACK”, “sending ACK”, and 
“receiving ACK.”  Since the relationships of these events are 
already preserved in the flow-net, the values of the attributes of 
the events become non-essential to infer the event relationships. 
The fingerprint can be expressed by the event relationships and 
their essential types rather than actual values of the attributes.      

Denote e’ be the abstract event of event e. Abstract event e’ 
of event e contains the event’s essential type and does not 
contain the values of event e’s attributes. For an event e, we 
define a mapping denoted as proto from the event e to its 
abstract event e’, i.e., e’ = proto(e). Abstract event e’ of event 
e is a prototype of event e. In the following, we use event 
prototype and abstract event interchangeably. It is not rare that 
two events are of the same essential type.  

Having obtained abstract events of all events, we replace 
event e by its abstract event e’ in relationship set R to obtain the 
relationships among abstract events. The definition of flow-net 
then remains the same except that the flow-net is now on 
abstract events (i.e., event prototypes). The actual mapping 
between an event and its abstract event is determined by the 
specific characteristics of the event. To determine common 
abstract events for TCP/IP networks, it requires an analysis on 
TCP/IP protocols. 

A behavior’s fingerprint is the abstraction of the behavior that 
is expressed as its abstract events and the relationship among 
the abstract events, which have a specific pattern.  

Given a behavior b = (Eb, Rb), for any event e in event set Eb, 
we obtain its prototype e (i.e., abstract event e ). The set of all 
the event prototypes is called event prototype set Eb’, which is 
formally defined as  ' | ( ) and b bE e e proto e e E    . For 

any relationship ,i je e bRr  , we can easily obtain a 

corresponding relationship ', 'i je er  in b’s fingerprint since 

ei’=proto(ei), ej’=proto(ej), ei, ej Eb, and ei’, ej’ Eb’. The set 
of the relationships between event prototypes, denoted as Rb’, 
is called abstract event relationship set (or event prototype 
relationship set). The aforementioned process implies a 
straightforward method to get a behavior’s fingerprint once a 
behavior is defined by its events, i.e., to replace each event 
with its prototype in Eb and Rb to obtain Eb’ and Rb’. Given 
events e1, e2, e3, and e4, and relations 

1 2,e er  and 
3 4,e er , we have 

two same event prototype relationships 
1 2 3 4', ' ', 'e e e er r  if and 

only if proto(e1) = proto(e3) and proto(e2) = proto(e4). 
Formally, given behavior b = (Eb, Rb), b’s fingerprint is 

denoted as fpb = fingerprint(b) = (Eb’, Rb’) in which Eb’ is the 
event prototype set corresponding to the b’s event set Eb, Rb’ is 
the relation set corresponding to the b’s relation set Rb.  

Different behaviors that have the same fingerprint belong to 
a type of behaviors. In other words, we can use the fingerprint 
to exactly and uniquely denote a type of behaviors. Given two 
behaviors b1 and b2, the two behaviors have the same 
fingerprints, i.e., fingerprint(b1)  fingerprint(b2)  if and only if 
the following conditions hold, 
(1) There is a one-to-one correspondence between the event 

prototypes of the fingerprint graph, such that two event 
prototypes are consecutive in fingerprint(b1) if and only if 
their corresponding event prototypes are consecutive in 
fingerprint(b2). This condition ensures that the two 
fingerprints/graphs are isomorphic. 

(2) For any relationship ,i je er  in b1, we must be able to find a 

relationship ,k le er  in b2 such that proto(ei)=proto(ek) and 

proto(ej)=proto(el). 
(3) For any relationship ,i je er  in b2, we must be able to find a 

relationship ,k le er  in b1 such that proto(ei)=proto(ek) and 

proto(ej)=proto(el).  
Conditions (2) and (3) ensure that the event prototype sets 

and the event prototype relationship sets in the two fingerprints 
are identical to each other. 

If any one of above three conditions is left out, the 
fingerprints of behaviors b1 and b2 may not be the same. For 
instance, when 

'2 1 ' '' ' { }
m ne eb bR R r  where 

2
', ' 'm n be e R  and 

1
', ' 'm n be e R , condition (2) may hold, but condition (3) does 

not hold, in which case, the two fingerprints are not the same.  

 
Fig. 2 A behavior and its fingerprint. In this figure, e1’=proto(e1) 
=proto(e5)=proto(e9), e2’=proto(e2)=proto(e6)=proto(e10), e3’=proto(e3) 
=proto(e7)=proto(e11), e4’=proto(e4) =proto(e8) =proto(e12), 1 2 5 6', ' ', 'e e e er r , 

2 4 6 8', ' ', 'e e e er r , 
3 4 7 8', ' ', 'e e e er r , and 

1 3 5 7', ' ', 'e e e er r . Therefore, 

Behavior b1 and b2 have the same fingerprint, called fp. 
Fig. 2 shows an example of some behaviors and their 

fingerprints. In this figure, there are two behaviors, b1 and b2, 
which are composed of different events, and the two graphs 



denoted by b1 and b2 are isomorphic. Both of the behaviors 
have the same fingerprint, denoted as fp, i.e.,  fp = 
fingerprint(b1) = fingerprint(b2), because e1’ = proto(e1) 
=proto(e5), e2’=proto(e2)=proto(e6), e3’=proto(e3) = proto(e7), 
e4’ = proto(e4) = proto(e8), 1 2 5 6', ' ', 'e e e er r , 

2 4 6 8', ' ', 'e e e er r , 

3 4 7 8', ' ', 'e e e er r , 
1 3 5 7', ' ', 'e e e er r , and there does not exist a 

relationship in either 
1
'bR or 

2
'bR  that cannot be found in the 

event prototype set of the other behavior. However, behavior 
b4’s fingerprint is not fp because 

2 4 10 12', ' ', 'e e e er r  since there is a 

relationship between two abstract events in the prototype 
relationship set 

4
'bR   that cannot be found a match in 

1
'bR  (or 

2
'bR  ), or vice versa. Behavior b3’s fingerprint is not fp either 

since there are fewer events in b3 than those in b1 (or b2). 
Having introduced flow-net fingerprint, we can view a flow-

net as a group of fingerprints instead of a collection of 
individual events. Note that some fingerprints may overlap with 
each other, such as behaviors b2 and b3 in Fig. 1. By introducing 
the flow-net fingerprint, we can focus on the identification of 
various types of behaviors without unnecessary costly 
examination of attributes of the events. 

III. FLOW-NET FINGERPRINT MATCHING 

Giving a flow-net fingerprint of a type of behaviors, we are 
interested in identifying the type of behaviors from flow-net 
logs. We refer the process of identifying occurrences of a type 
behavior in flow-net logs fingerprint matching.  

Since both flow-net fingerprints and flow-nets are organized 
as directed graphs in which each vertex has a “color”, i.e., the 
type of event that the vertex represents, the fingerprint 
matching process is to identify from flow-net subgraphs that are 
of the same graphs of the fingerprints of the given type of 
behavior, which is in effect a subgraph isomorphism for colored 
directed graphs. Subgraph isomorphism problem in general is a 
NP-complete problem [14, 19]. Subgraph isomorphism for 
colored directed graph can be less computational expensive if 
certain structure exists in the graph.  

We propose a behavior lookup algorithm that identifies the 
behaviors that match the given fingerprint in the flow-net. In 
the remainder of this paper, we make the following 
assumptions: 1) As a log file, the data of flow-net, which 
includes event information, time stamp, relationship, etc., is 
stored completely; 2) The stored data of flow-net is reliable 
without being tampered with.Behavior LookupAlgorithm 

We propose a behavior lookup algorithm to solve the 
Fingerprint Matching Problem (FMP), i.e., given a behavior 
b and a flow-net fn, check whether fn contains a behavior b2 
such that fingerprint(b)=fingerprint(b2). To solve this problem, 
we have to obtain b’s fingerprint fp first and then check in fn to 
find whether or not there is any behavior with a fingerprint that 
is fp as well. We know that behavior, fingerprint, and flow-net 
are all denoted as graphs. As discussed above, such problem is 
in effect a subgraph isomorphism for colored directed graphs. 
Although general algorithms for solving such graph problem 
have been proposed, we show that an efficient algorithm exists 
to solve the problem due to the unique structure of flow-net 
fingerprints and flow-nets.  

We propose an algorithm called Fingerprint Lookup 
Algorithm (FLA), to solve FMP. As shown in Fig. 3, FLA has a 
function called contain that checks whether behavior b’s 
fingerprint is contained in flow-net fn. Before executing the 
function, we first call getFingerprint function to obtain b’s 
fingerprint fp, and then check if any behavior in fn has the same 

fingerprint as fp. If such a behavior exists in fn, we say fp 
matches (a part of) fn. To check if fp matches any part of fn, we 
have to select prototype e’ of the head event in fp where the 
head event is the event that happens the very first in fp  or a rare 
event in fp. Then check in fn to see whether or not there is an 
event e such that e’=proto(e). After getting e, we start a new 
process that checks whether fp matches this part of fn by 
comparing two graphs. Two events or two event prototypes 
have the relationship denoted by the flow in the flow-net. If two 
events are consecutive in a flow, then they are neighbors. The 
relationship function checks whether two events or events 
prototypes are consecutive. In the following match function, we 
recursively check an event’s and event prototype’s neighbors. If  
all pairs of the events/event prototypes have the same 
relationship, then the fingerprint matches the flow-net. 

We may let the algorithm returns true if and only if the flow-
net contains exactly a given fingerprint, an input parameter of 
the algorithm. However, sometimes a behavior may slightly 
change its details without changing its basic characteristics. For 
example, a Denial of Service Attack (DoS Attack) may include 
a different number of service requests, and this leads to 
different fingerprints for different occurrences of the same DoS 
attack. Therefore, in order to detect whether a behavior’s 
fingerprint is contained in a flow-net, we have to tolerate a 
minor difference between the given fingerprint and that of the 
behavior in the flow-net to detect the type of behaviors with 
minor variations. 

For Fingerprint fp, we count the number of its event 
prototypes and relationships. We denote the number as 
count(fp). For behavior b, we count the number of its events 
and relationships. We denote this number as count(b). 
Assuming that Fingerprint fp1 and fp2 are similar, we count the 
number of events and relationship in fn2 that are different than 
those in fp1, and denote this difference value as diff(fp1, fp2). We 
define difference ratio dr as dr(fp2, fp1)=diff(fp1, fp2)/count(fp1). 
Actually, in the definitions of the difference value and the 
difference ratio above, we can replace the fingerprint with a 
behavior and do not change the meaning of the definitions. 
Therefore, assuming that fingerprint fp and the fingerprint of 
behavior b are similar, we also have the difference ratio dr as 
dr(b, fp)= diff(fp, b)/count(fp). 

Fig. 2 shows an example for calculating the difference ratio. 
In Fingerprint fp shown in Fig. 2(b), there are 4 event 
prototypes and 4 relationships among these events. Therefore, 
count(fp)=8. We have e1’=proto(e9), e2’=proto(e10), 
e3’=proto(e11), e4’=proto(e12), and thus, Fingerprint fp’s event 
prototypes are same as behavior b4’s events’ prototypes. Also, 
the only difference between fp and b4 is that b4 has one 
relationship less than fp so that diff(fp, b4)=1. Therefore, we 
have dr(b4, fp) = diff(fp, b4)/count(fp) = 0.125. Note that the 
value of the difference ratio must always be in the interval [0, 
1]. A value of 0 of the difference ratio implies that the given 
behavior matches the given fingerprint exactly. 

Based upon the above definitions, we define the 
Proportional Fingerprint Matching Problem (PFMP) as 
follows, given behavior b, flow-net fn, and a real number d 
( 0 1d  ), check whether or not fn contains a behavior b2 such 
that 2( , ( ))dr fingerprint b db  . The real number d is a 
threshold called difference ratio limitation.  



As shown in Fig. 3, FLA is capable of solving PFMP. The input 
to the contain function are b, fn, and d, and the output is a 
Boolean value that implies whether the behavior b’s fingerprint 
is contained in the flow-net fn within the difference ratio 
limitation d. 

In FLA, when the threshold d is set as 0, i.e., no variation of 
the type of behavior is allowed, it solves FMP; when d is great 
than 0, it solves PFMP. We use FLA to solve PFMP, i.e., FMP 
is a special case of PFMP when d is set to 0.  

The introduction of the difference ratio limitation d in FLA 
allows us to look up an intrusion even when the intrusion 
changes its details slightly. The use of the difference ratio 
limitation makes FLA more powerful because it is not rare for 
an intrusion to change its behavior slightly every time. We have 
indicated that FMP is a subgraph isomorphism problem for 
colored directed graph. Existing solutions of the problem do not 
support slight changes of the given subgraph. Therefore, the 
existing algorithms that solve the subgraph isomorphism 
problem cannot solve PFMP that allows a slight variation of a 
type of behavior. This is the motivation behind the proposed 
difference ratio of two fingerprints and the FLA.  

In FLA, the key is to find an event prototype and then 
recursively check if its relationship with neighbors match the 
flow-net. Therefore, we should find a suitable event prototype 
e’ for the contain function to  work efficiently. For example, if 
we want to check whether or not a TCP three-way handshake 
exists in a flow-net, we should use the event prototype “sending 
SYN-ACK” as the starting event for prototype e’ since this 
event prototype is not as common as other kinds of event 
prototypes in the flow-net. Some events in the flow-net are rare. 
Rare events are used as starting point of the looking up process 
in the flow-net. By using a rare event, the PFMP or FMP can be 
solved more efficiently using FLA. 

We can improve the performance of the algorithm by adding 
some assisting data structure in the flow-net. When generating a 
new part of the flow-net, we check the new generated 
fingerprints on this flow-net in real time. We store the name of 
the fingerprint, such as TCP connection and file transfer, in the 

assisting data structure. Therefore, when we want to check if a 
behavior’s fingerprint is in the flow-net, we can simply check 
the assisting data structure. This revised algorithm saves time 
than the first one but costs more space to maintain the assisting 
data structure. 

IV. FNF BASED INTRUSION DETECTION  
A. FNS based IDS 

Flow-net stores all the behaviors including their events and 
the relationships between events. Intrusions are harmful 
behaviors to computer systems and networks. To look up an 
attack, it is fundamentally to look up a type of behavior.  

We assume that a host’s or a network’s behaviors are all 
stored in the flow-net, and we can look up the attack’s 
fingerprint in the flow-net in order to detect the attack. In other 
words, detecting an attack is equal to looking up this attack’s 
fingerprint in the flow-net. the FNF-based IDS uses FLA to 
look up intrusions from flow-net logs using the fingerprints of 
the intrusion behaviors. Fingerprints may overlap, and 
furthermore, one fingerprint may contain another fingerprint. 
Looking up each fingerprint by FLA is an independent work 
regardless of the overlap situation of the fingerprint. 

 
Fig. 4 An illustration of FNF based IDS. In the fingerprint library, the colorful 
patterns are actually visual notations of the fingerprints. The scanning area is 
from the time –tsc to now. We only detect attacks in the scanning area of the 
flow-net.  

Fig. 4 shows an illustration of the FNF based IDS. We store 
the attacks’ fingerprints in a fingerprint library. Our goal is to 
detect these target attacks in the flow-net.  

For each target attack, the FNF based IDS stores the 
following values, a) the target intrusion’s fingerprint, b) 
whether the fingerprint of the intrusion exists in the flow-net, c) 
how many times the fingerprint appears in the flow-net, and d) 
the minimum time interval between two occurrences of the type 
of behavior represented by the fingerprints in the flow-net.  

The values (fingerprint, existence, frequency, and minimum 
interval) in the fingerprint library as shown in Fig. 4 denote the 
aforementioned properties and can be used for setting a 
threshold of the intrusion alert.  

Although Flow-net stores all behaviors of a host, in a real-
time intrusion detection, we do not need to detect all the 
intrusions taking place in the entire history. In Fig. 4, the flow-
net stores the behaviors in current time and the past, and the 
future of the flow-net is empty since flow-net does not predict 
the future. In a real-time intrusion detection, we may only need 
to detect intrusions in a small time window in the past. 
However, for other purposes, such as log auditing, we may 
detect the behaviors in a very large time window in the past. No 
matter how “old” the behaviors that we aim to detect, the time 
window between the oldest time from which we start to detect 
intrusions and the present time is called the scanning window. 
The part of flow-net that consists of events happening during 
the scanning window is called the scanning area. In other words, 
we only detect intrusions in the scanning area of the flow-net. 
For real-time intrusion detection, the scanning window and 
scanning area should be small, and therefore, the overhead 

Fingerprint Lookup Algorithm (FLA): 
Input: Behavior b, Flow-net fn=(E, R),  double d 
Output: Boolean value 
contain(Behavior b, Flow-net fn, double d) 
{  Fingerprint fp = getFingerprint(b) 
  nfp = |E| + |R| 
  efp = getHeadEvent(fp) 
  For (efn  E) {  
    if (efp == proto(efn)) { 
      n = matchCount(efp, efn) 
      If (n/nfp ≥ 1 – d) return true 
      Else return false}}} 
 
matchCount(Event Prototype efp, Event efn) 
{  n = 0 
  Xfn ={xfn | isNeighbor(efn, xfn) = true  
              AND !xfn.visited}  
  Xfp ={xfp | isNeighbor(efp, xfp) = true 
              AND !xfp.visited} 
  For (xfn  Xfn) { 
    xfn’ = proto(efn) 
    If (xfn’  Xfp) { 
      n = n + 1 
      xfn.visited = true 
      xfp.visited = true 
      if (relationship(efn, xfn)  
            == relationship (efp, xfp){ 
        n = n + 1 
        n = n + matchCount(x’, x)}}} 
  return n} 
Fig. 3 Flow-net Fingerprint Lookup Algorithm (FLA). 



caused by the flow-net logging will not lower the performance 
of the FNF based IDS. 
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Fig. 5 The flow chart of the FNF based IDS 

Fig. 5 shows a flow chart of the FNF based IDS. According 
to Fig. 5, we first select one fingerprint from the fingerprint 
library and then use FLA to look up the fingerprint from the 
scanning area of the flow-net.  We will set the existence field of 
this fingerprint as true or false in the fingerprint library based 
on whether or not this fingerprint is found. If it is found, we 
also increment the frequency of the occurrences of the 
fingerprint. We continue to look up the fingerprint until we 
reach the end of the scanning area. If multiple occurrences of 
the fingerprint are found, we record the minimum time interval 
among the occurrence; otherwise, we record the interval as 
infinity. We then look up the next fingerprint in the fingerprint 
library. 

Therefore, the FNF based IDS is able to detect intrusions that 
have unique fingerprints. The fingerprint library can be used 
for showing whether an intrusion appears in the flow-net, and 
thus can be used for triggering the intrusion alert to the 
administrator. 

B. FNF based IDS for Anomaly Detection  
An intrusion has its unique fingerprint that can be detected by 

the FNF based IDS scheme. However, some attacks, such as 
Denial-of-Service attack (DoS attack), use normal behaviors 
but repeat for a great number of times to drain the victim’s 
resource.  

In Fig. 5, the fingerprint can be a representative for a type of 
normal behavior. The frequency field in the fingerprint library 
records how many times the type of behavior that a fingerprint 
represents appears in the flow-net, and the minimum interval 
field records the minimum interval between two occurrences of  
the same type of behavior.  

We propose a new method to denote the repeated appearance 
of a type of behavior. We use the star symbol (*) to denote that 
an event prototype and a relationship appear many times. 
Assume that we have a type of behavior’s fingerprint 

    1 2', '1 21= ', ' , e efp e e r , and if this type of behavior appears 

many times, we can denote it as     2 3', '1 21 = ' , ' ,    e efp e e r . 

A DoS attack may be composed by repetition of several 
different regular behaviors, such as fp1, fp2, etc., and we can 
denote the DoS attack by 1 2DoSfp fp fp   . 

Shown in Fig. 5, after looking up fingerprints in the scanning 
area, we update the fingerprint library and get the existence 

frequency, and minimum interval of each fingerprint. The 
intrusion alert may be triggered by checking the frequency and 
minimum interval fields in the fingerprint library. If the 
fingerprint is for an intrusion, the algorithm in Fig. 5 detects 
intrusions; if the fingerprint is for normal behavior and a type of 
normal behavior repeats too many times and too frequently, an 
alert may be triggered by a detected anomaly. 

C. Applications of FNF based IDS on TCP/IP Attacks 

A three-way handshake for the TCP connection 
establishment is normally composed by six consecutive SYN 
and ACK events. Flow-net is able to record not only these six 
events but also their relationship. The pattern of the events and 
the relationship between the events in the three-way handshake 
can be referred to as the fingerprint of the three-way handshake. 
Therefore, flow-net is able to record the network behaviors and 
we can use the FNF based IDS to detect TCP/IP attacks using 
the fingerprint. 

Flow
 α

Flow α

 
Fig. 6 Flow-net of window scanning 

Port scanning may be considered as an attack that are 
attempted too frequently and too many in a short period of time. 
Port scanning sends certain TCP or UDP segments to certain 
port addresses on a host with the goal of prying the 
vulnerabilities of the host [15, 16, 18]. As a type of port 
scanning, window scanning is conducted by sending an ACK 
segment from the attacker to the victim host. After receiving the 
ACK segment, the victim responds by an RST segment which 
contains a window size field. If window size equals 0, then the 
attacker is aware that the port is closed; else the port is open. 

Window scanning takes place only when the ACK and RST 
events are not related with other segment sending events. Fig. 6 
shows the flow-net of a window scanning and its fingerprint 
can be denoted as follows. 

Event e1=“send ACK”, e2=“receive ACK”, e3=“send RST”, 
e4=“receive RST”. 

    1 2 2 3 3 4', ' ', ' ', '1 2 3 4= ', ', ', ' , , , .e e e e e ewindow scanningfp e e e e r r r  

The events e2 and e3 along with the relation 
2 3,e er  on the 

victim is a significant implication of the attack. Then the 
aforementioned fingerprint or the part of the fingerprint on the 
victim side can be added to the fingerprint library for the FNF 
based IDS. Similarly, we can add other TCP/IP attacks’ 
fingerprints to the fingerprint library of the FNF based IDS for 
intrusion detection. This example is very specific for TCP/IP 
intrusion that may result to a misleading consideration about the 
victim’s cooperation.  

V. EVALUATION 

We developed simulation programs in Java programming 
language to test the FNF based IDS.  

A. Comparison of FNF based IDS and log based IDS 

We evaluate the time to find a known intrusion from flow-net 
logs using flow-net based fingerprint and that from non-
relational logs. The time is the indicator how quickly the FNF 
based IDS and the traditional log based IDS can identify an 
intrusion. We assume that there are in total N events in either 
the flow-net log or the non-relational log. We assume that an 
attack is composed of n (n<<N) events. The objective is to 



measure the time needed to find all n evens in either the flow-
net log or the non-relational log. We denote these n events as e1, 
e2, …, en. In the non-relational log, the relationships among the 
N events are not maintained explicitly and the N events are 
stored in the order when they were written to the log. In the 
flow-net log, the relationships among the N events are explicitly 
maintained. Relationships in the flow-net log are stored as 
references (i.e., addresses) to each other and the references 
allow traverse to the related event directly using its reference.  

Since the n events of the intrusion in the non-relational log 
are not necessarily next to each other and there is no direct 
reference among the events, we have to search sequentially 
among all the N events for the n events. On the contrary, the n 
events are referenced to each other in the flow-net log, when 
one event of the n events is found and the rest of the n-1 events 
can be located using the references among them, i.e., we only 
need to trace along the relationships to locate all the n events of 
the attack in the flow-net log. As shown in Fig. 7, each event 
has two related events, and we only need to check these two 
events to determine which one of them is part of the intrusion. 

 
Fig. 7 Event tracing by logging and fingerprint. 

We assume that a) in the non-relational log, it takes te time to 
locate next event in the log and b) in the flow-net, it takes the 
same amount of time to locate a related event. We aim to 
compare the time of locating all the n events of the attack in 
both of the logs starting from event e1 in both logs. 

In the non-relational log, it takes (N-1) searches to locate the 
first event in the worst case scenario since we have to traverse 
all the N events to find out the n events. Similarly, if any event 
among the n-1 event stills need (N-1) searches, the cost is Tl = 
[(N-1) + (N-2) + (N-3) … + (N-n)]te = (2N-1-n)nte/2. In the 
flow-net log, because the log stores the events’ relationships 
using references of the events, we can trace along the 
intrusion’s n events without looking up all the N events after the 
first event is located. However, it takes (N-1) searches to locate 
the first event in the worst case as well. In case of Fig. 7, we 
need to trace both neighbors of an event, and it takes 

( 1) 2( 1) ( 2 3)f e e eN n N nt t tT         to locate all the n 

events of the attack. 
In the aforementioned case, let Tf = Tl, then 

23 33
2

2 4
n N NN     . This result means when 

23 33
2

2 4
n N NN     , we have f lT T . Apparently, 

23 33
2 0

2 4
NN    . Therefore, it is ensured f lT T

 

when n<N. Since typically n<<N, it takes significantly less time 
using flow-net logs than using non-relation logging. 

B. Performance Analysis of FNF based IDS 

We analyze the computational performance of the FNF based 
IDS, which calls the FLA algorithm repeatedly in order to find 
all intrusions that match the corresponding fingerprints in the 
fingerprint library. One execution of the FLA algorithm is to 
find behaviors that match a fingerprint in the library. Therefore, 
in the FNF based IDS, the FLA algorithm is executed in the 

loop by which we search behaviors in flow-net logs matching 
all fingerprints in the fingerprint library as shown in Fig. 5. The 
FLA algorithm solves PFMP that is essential in the intrusion 
detection. Apparently, the difference ratio limitation d affects 
the time cost of the FLA. We look for an optimal value of d. 
The FLA algorithm that takes a difference ratio limitation d as 
the parameter is executed in the loop until we get all the 
matched behaviors in the flow-net. The time cost for the FNF 
based IDS are composed by two parts: a) the time for executing 
the FLA algorithm in the loop and b) the time for updating the 
fingerprint library and handling and storing the behaviors that 
match the fingerprint. The value of d affects both of these two 
time costs.  

On one hand, We have to check more event prototypes and 
relationships in the FLA. Therefore, as d decreases, the time 
cost for checking the behaviors increases. For a Behavior b in 
the flow-net fn, the time cost for checking if b matches 
Fingerprint fp is denoted by tb(d, fp). As d decreases, tb(d, fp) 
increases. The total time cost for checking all the behaviors is 

( , )b
b fn

d fpt

 . 

On the other hand, as d increases, an increased number of 
behaviors match the input fingerprint, and therefore, the time 
cost handling and storing all the matched behaviors in Flow-net 
fn is larger. We assume that the time cost for handling and 
storing one behavior is a constant value Tconst, and the number 
of behaviors that match the Fingerprint fp is denoted as nmatch(d, 
fp). As d increases, nmatch(d, fp) increases. The total time cost for 
handling and storing all matched behaviors is 

( , ) constmatch d fpn T . 

Therefore, in the FNF based IDS, the total time cost for 
getting all the matched behaviors with a given difference ratio d 
in Flow-net fn is 

( , , ) ( , ) ( , )allmatch constb match
b fn

d fp fn d fp d fpt nT T


   . We are 

looking for a value d that minimizes Tallmatch. In other words,  

 

 arg min ( , , )

arg min ( , ) ( , ) .

allmatch
d

constb match
d b fn

d d fp fnT

d fp d fpt n T




 
   

 


 

C. Performance simulation of the FNF based IDSscheme 
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Fig. 8 The time for matching all fingerprints when Tconst=20 

Given a fingerprint and a difference ratio limitation d, the 
previous subsection shows the calculation of the total time 
called Tallmatch, for getting all the matching behaviors by 
comparing to the fingerprints in the fingerprint library. The 
difference ratio reflects the difference between the fingerprint 
and the matched behaviors. Tallmatch is affected by both d and the 
time cost for handling and storing one matched behavior, Tconst. 
We simulate a flow-net with 10000 behavior types. We provide 
a fingerprint library and get all the behaviors with fingerprints 
that have a different ratio less than d when compared to the 
given fingerprints. Then, we process the matched fingerprints 



by storing them in a different location. The total time of these 
two parts of time cost is denoted as Tallmatch.  

Given a value of d and a given fingerprint, we can look up 
the behaviors that are similar to the fingerprint. We want to 
know an optimal value of d such that the value of Tallmatch is 
minimum, and this means that that we are looking for an 
optimal value of d that saves time for behavior matching and 
handling. 

In Figs 8 and 9, Tallmatch is the y-axis and the value of d is the 
x-axis. In Fig. 8, we set Tconst=20, and it shows that when d=0.1, 
we have the smallest value of Tallmatch. As shown in Fig. 8, a 
very small value of d (such as 0.05) causes a large value of 
Tallmatch because a smaller d requires a longer time for 
fingerprint matching as explained in the previous subsection. 
The value of Tallmatch gets larger after d=0.1 because a larger d 
causes more numbers of matched fingerprints. Thus, the 
handling time is longer.  

However, when d is approaching 1, the value of Tallmatch is 
decreasing because only a small amount of time is spent to 
compare the given fingerprint and a behavior. The small 
amount of time is enough to make sure that their similarity is 
more than 1-d. Therefore, when d is close to 1, the time for 
fingerprint matching is very little although the time for behavior 
handling is very large. Thus, in this situation, the total time, 
Tallmatch, is relatively small. This is why the value of Tallmatch 
drops down when d approaches 1 in Fig. 8. 
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Fig. 9 The time for matching all fingerprints when Tconst varies 

Fig. 9 shows the same trend of Tallmatch, corresponding to 
different values of Tconst. An extremely small value of Tconst 
makes Tallmatch drops down quickly, and an extremely large 
value of Tconst makes Tallmatch drop down slowly as d approaches 
to 1. These simulation results show that our design and analysis 
in the previous sections are reliable. 

VI. CONCLUSION  
In this paper, we proposed a formal definition of flow-net, 

based upon which we propose an accurate description of 
behaviors in computer and network systems. Each type of 
behavior has its unique fingerprint. We propose a Flow-net 
based Fingerprint (FNF). Furthermore, we proposed a 
fingerprint lookup algorithm to solve the fingerprint matching 
problem. We future applied FNF into detecting the fingerprints 
of malicious behaviors in computer and network systems. 
Finally, evaluation results from experiments demonstrate better 
performance than other schemes. 
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