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Fundamentals

Monte Carlo Simulation: Objective

» Estimate one of more probabilities by using an experimental technique

» Its validity is based on the frequency theory of probability
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Fundamentals

Probability

» Empirical (Experimental) Probability.
Repeat a random experiment n times and count the number of
occurrences n, of an event A
» The relative frequency of occurrence of event A is n,/n
» The frequency theory of probability asserts that the relative frequency
converges as n — oo

Pr(A) = lim =2

n—oo Nn
» Related to the strong and weak laws of large numbers.
» Monte Carlo simulation uses the frequency theory of probability in a
natural way.

» Axiomatic Probability.
A formal, set-theoretic approach

» Mathematically construct the sample space and calculate the number
of events A
» The axiomatic theory of probability.
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Fundamentals

Monte Carlo Simulation & Empirical and Axiomatic

Probabilities

» The axiomatic theory of probability and the frequency theory of
probability are complementary.

» Doing one brings insight to the other. The best solution to any
probability problem is a mathematical solution established via the
axiomatic method and verified experimentally via an independent
Monte Carlo simulation.

» Hard problems. Many probability problems are too hard to solve
mathematically. Monte Carlo simulation may be the only viable
approach.
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Fundamentals
Example 2.3.1

» Roll two dice and observe the up faces. What is the probability of
observing 2, or 3, or 4, or ....
» Axiomatic approach:
» Possible outcomes:

(1,1) (1,2) (1,3) (1,4 (1,5 (1,6)
2,1) (22) (23) (2.4 (25 (2 6)
(31) (3.2) (3.3 (3.4 (35 (3606
(4,1) (42) (43 (44 45 (40
(5,1) (5.2) (5.3) (5.4) (5.5) (5 6)
(6,1) (6.2) (6,3) (6:4) (6,5 (6 6)

> If the two up faces are summed, an integer-valued random variable, say
X, is defined with possible values 2 through 12 inclusive

sum, X: 2 3 4 5 6 7 8 9 10 11 12
.. 1 2 3 4 5 6 5 4 3 2 1
PriX=x): 35 3% 3% 3 3 3 3 3 3 3% 3
» Pr(X =7) could be estimated by replicating the experiment many
times and calculating the relative frequency of occurrence of 7's
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Fundamentals
Random Variates

» A Random Variate is an algorithmically generated realization of a
random variable

» u = Random() generates a Uniform(0,1) random variate
» How can we generate a Uniform(a, b) variate?

Generating a Uniform Random Variate

double Uniform(double a, double b) /¥usea<b*/{
return (a + (b - a) * Random());
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Fundamentals
Equilikely Random Variates

» Uniform(0, 1) random variates can also be used to generate an
Equilikely(a, b) random variate

O<u<l <= O0<(b—a+1lu<b—a+l
— 0<|(b—a+1)u/<b-a
< a<a+|b—a+1l)ul <b
<— a<x<b

» Specifically, x =a+ [(b—a+ 1)u|

Generating an Equilikely Random Variate

long Equilikely(long a, long b) [¥usea<b*/{
return (a + (long)((b - a + 1) * Random()));
}
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Fundamentals
Examples

» Example 2.3.3 To generate a random variate x that simulates rolling
two fair dice and summing the resulting up faces, use

x = Equilikely(1,6) + Equilikely(1,6);
Note that this is note equivalent to
x = Equilikely(2,12);

» Example 2.3.4 To select an element x at random from the array
al0], a[1], ..., a[n-1] use

i = Equilikely(0,n — 1); x = a[i];
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Fundamentals Example Applications

Galileo’'s Dice

> If three fair dice are rolled, which sum is more likely, a 9 or a 107
» There are 63 = 216 possible outcomes

PrX =0)= 22 20116  and  Pr(X —10) = = —0.125

- 216 - 216
» Program galileo calculates the probability of each possible sum
between 3 and 18
» The drawback of Monte Carlo simulation is that it only produces an
estimate
» Larger n does not guarantee a more accurate estimate. However, as n
becomes larger, the uncertainty and accuracy of the probility estimates

will tend to improve.

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 10 / 50



Fundamentals Example Applications

Exercise L13-1: Varitions of Galileo's Dice

» Run the Galileo's Dice program (in Blackboard) following the
following guideline:

» Choose three different seeds

» Use the number of replications as 20, 40, 100, 200, 400, 1000, 10000,
and 100000

» Show the result in a graph similar to next slide

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 11 / 50



Example 2.3.6

Fundamentals Example Applications

» Frequency probability estimates converge slowly and somewhat

erratically

Pr(X = 10)

estimates
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Number of replications, n

» You should always run a Monte Carlo simulation with multiple initial

seeds
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Fundamentals

Rectangle

Example Applications

Geometric Applications:

» Generate a point at random inside a rectangle with opposite corners

at (a1, 41) and (a2, 52)

Ba
Y- e @)
B :

T I

(&3] x

x = Uniform(a, az);
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Fundamentals Example Applications

Geometric Applications: Circle

» Generate a point (x, y) at random on the circumference of a circle
with radius p and center («, )

0 = Uniform(—m,7); x=a+ pxcos(f); y =L+ pxsin(6)
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Fundamentals Example Applications

Example 2.3.8

» Generate a point (x, y) at random interior to the circle of radius p
centered at («, 53)

0 = Uniform(—n,m); r = Uniform(0, p);
x=a+pxcos(f);, y=p+r=sin(6),

Correct?
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Fundamentals Example Applications

Example 2.3.8

» Generate a point (x, y) at random interior to the circle of radius p
centered at («, 53)

0 = Uniform(—n,m); r = Uniform(0, p);
x=a+pxcos(f);, y=p+r=sin(6),
Correct? INCORRECT!

8-
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Fundamentals Example Applications

Acceptance/Rejection

» Generate a point at random within a circumscribed square and then
either accept or reject the point

Generate a Random Point Interior to a Circle
do {
x = Uniform(—p, p);
y = Uniform(—p, p); } while (x xx + y *xy >= px* p);
x=a+x; y=p+y;
return (x, y);
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Fundamentals Example Applications

Exercise L13-2 Geometric Application

>

Objective: visually examine correctness of a simulation

v

Write a program that randomly generate 1000 points within a
rectangle using the method in slide 13 and graph the result

v

Write a program that reproduces the incorrect (slide 14) and correct
(slide 16 generation of points interior to a circle as shown previous
slides.

v

Write a program to estimate 7 by extending the above programs.
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Fundamentals Example Applications

Buffon's Needle Problem

» Suppose that an infinite family of infinitely long vertical lines are
spaced one unit apart in the (x,y) plane. If a needle of length r > 0
is dropped at random onto the plane, what is the probability that it
will land crossing at least one line?

» u is the x-coordinate of the left-hand endpoint
» v is the x-coordinate of the right-hand endpoint,

v = u + rcosf

» The needle crosses at least one line if and only if v > 1
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Fundamentals Example Applications

Program buffon

» Program buffon is a Monte Carlo simulation

> Inspection of the program buffon illustrates how to solve the problem
axiomatically
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Fundamentals Example Applications

Axiomatic Approach to Buffon's Needle

» “Dropped at random” is interpreted (modeled) to mean that u and 6
are independent Uniform(0, 1) and Uniform(—m /2,7 /2) random
variables

1—r+

I
I
I
I
I
T
—7/2 0 0 /2
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Fundamentals Example Applications

Axiomatic Approach to Buffon's Needle

» The shaded region has a curved boundary defined by the equation
u=1— rcosf

» if 0 < r <1, the area of the shaded region is

w/2 w/2
T — / (1 — rcost)dl = r/ cosfdf = ... =2r
—7/2 —7/2

» Therefore, because the area of the rectangle is 7 the probability that
the needle will cross at least one line is 2r/m
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Fundamentals Example Applications

Exercise L13-3: Buffon's Needle

» Objective: Compare simulation and axiomatic results (does your
simulation program need a test case?)

» Calculate the probability that it will land crossing at least one line for
the Buffon's needle problem using the axiomatic result 21.

> Revise the program buffon to output the estimated probability with at
least 6 digits after the decimal point.

» Run the revised program buffon for 100, 1000, 10000, 100000,
1000000 replications with 3 different seeds for each number of
replications

» Choose appropriate graphs to graph the following,

» The results from the simulations

» The axiomatic result

» The different between the simulations and the axiomatic result (i.e.,
error)
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Monte Carlo Simulation Examples

Axiomatic and Experimental Approaches

>

Axiomatic and experimental approaches are complementary

v

Slight changes in assumptions can sink an axiomatic solution

v

An axiomatic solution is intractable in some other cases

v

Monte Carlo simulation can be used as an alterative in either case

v

Four more examples of Monte Carlo simulation

v

Metrics and determinants
Craps

Hatchek girl

Stochastic activity network

v VvYyy
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Monte Carlo Simulation Examples Matrics and Determinants

Example 1: Matrix and Determinants

» Matrix: set of real or complex numbers in a rectangular array

» for matrix A, ajj is the element in row /, column j

a1 4a12 dln

ap1 a2 azn
A=

dml dm2 --- Admn

where A is m x n, i.e., m rows and n columns

> Interesting quantities: eigenvalue, trace, rank, and determinant
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Monte Carlo Simulation Examples Matrics and Determinants

Determinants

» The determinant of a 2 x 2 matrix A is

a1l 412

A= 17
21 4a22

= d11d22 — d21412

» The determinant of a 3 x 3 matrix A is

anl a2 a3
|Al = |a21 a2 ax3|=an
d31 432 4as3

a  az
a32 433

asl
a3l

az1 a»
das1 a3

—d12

a3
+a13
33
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Monte Carlo Simulation Examples Matrics and Determinants

Random Matrices

Random matrix: matrix whose elements are random variables
Consider a 3 x 3 matrix whose elements are random with positive
diagonal, negative off-diagonal elements

Question: What is the probability the determinant is positive?

v

v

>
+u11 —u2 —ui3
—up1 +upp —ux3| >0
—u31 —u3p +uss

» Axiomatic solution is not easily calculated
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Monte Carlo Simulation Examples Matrics and Determinants

Specification Model

>

Let event A be that the determinant is positive

Generate N 3 x 3 matrices with random elements

v

v

Compute the determinant for each matrix
» Let n, = number of matrices with determinant > 0
Probability of interest: Pr(A) = N,/N

v
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Monte Carlo Simulation Examples Matrics and Determinants

Computational Model: Program det

det

for (i = 0; i <N; i++) {

for (j =1; j <= 3; j++) {
for (k= 1; k <= 3; k++4) {
alj][k] = Random();
if (j = k)
al[j][k] =—a[j]l[k]:
; }
templ = a[2][2] * a[3][3] — a[3][2] * a[2][3];

temp2 = a[2][1] = a[3][3] — a[3][1] = a[2][3];
temp3 = a[2][1] = a[3][2] — a[3][1] = a[2][2];
x = a[l][1]+templ — a[l][2]«temp2 + a[l][3]*temp3;
if (x> 0)

count++;

}

probability = double)count/N;
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Monte Carlo Simulation Examples Matrics and Determinants

Output From det

» Want N sufficiently large for a good point estimate

> Avoid recycling random number sequences

» Nine calls to Random() per 3 x 3 matrix — Nm/9 = 239000000
» For initial seed 987654321 and N = 200000000,

Pr(A) 2 0.05017347
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Monte Carlo Simulation Examples Matrics and Determinants

Point Estimate Considerations

» How many significant digits should be reported?

v

Solution: run the simulation multiple times
One option: use different initial seeds for each run
» Caveat: Will the same squences of random numbers appear?

v

v

Another option: use different a for each run
» Caveat: Use a that gives a good random sequence

For two runs with a = 16807 and 41214

v

Pr(A) = 0.0502
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Monte Carlo Simulation Examples Craps

Example 2: Craps

» Standard Craps Table

BH BB 1vg ssvq 1, uoq

S5to1 Stol
.- LX)
@.3.4.9.10.11. 10 to 1 8tol
FIELD B 8 2E

10to 1 8tol
| Don’t Pass Bar B8 1] - -] ;)

16to1 | 31tol | 31to1l
PASS LINE D T

16 to 1 16 to 1
8tol 8tol

HANIT SSVd \

=

Figure: Retrieved from
http://en.wikipedia.org/wiki/File:Craps_table_layout.svg
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Monte Carlo Simulation Examples Craps

Example 2: Craps

» Toss a pair of fair dice and sum the up faces
» Two phases: “come-out” and “point”
» Come-out. A new round starts after a come-out roll.

» A roll of 2, 3 or 12 is a came-out roll called “craps” or “crapping out”.
Anyone betting the Pass line loses and anyone betting the Don't Pass
line wins.

» A roll of 7 or 11 is also a come-out roll called “natural”. Anyone
betting The Pass line wins and any one betting the Don’t Pass line
loses.

» Otherwise, sum becomes “point”

» Roll until the point is matched or 7, and a new round starts. Anyone
betting the Pass line wins if it is a match, loses if it is 7.

» What is Pr(A), the probability of winning at craps if | am betting the

Pass line?
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Monte Carlo Simulation Examples Craps

Craps: Axiomatic Solution

>

Requires conditional probability
Axiomatic solution: 244 /495 = 0.493
Underlying mathematics must be changed if assumptions change

v

v

» Example: unfair dice

Axiomatic solution provides a nice consistency check for (easier)
Monte Carlo simulation

v
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Monte Carlo Simulation Examples Craps

Craps: Specification Model

» Model one die roll with Equilikely(1, 6)
Algorithm 2.4.1

wins = 0;
for (i = 1; i <=N; i++) {
roll = Equilikely (1, 6) + Equilikely (1, 6);
if (roll =7 or roll = 11)
wins—++;
else if (roll != 2 and roll != 3 and roll I= 12) {
point = roll;
do {
roll = Equilikely (1, 6) + Equilikely (1, 6);
if (roll = point) wins++;
} while (roll != point and roll != 7)
} return (wins/N);

4
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Monte Carlo Simulation Examples Craps

Craps: Computational Model

>

Program craps: uses switch statement to determine rolls
For N = 10000 and three different initial seeds (see text)

v

Pr(A) = 0.497,0.485, and 0.502

These results are consistent with 0.493 axiomatic solution

v

v

This (relatively) high probability is attractive to gamblers, yet ensures
the house will win in the long run

v

If using simulation, how big should N be?
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Monte Carlo Simulation Examples Hatcheck Girl

Example 3: Hatcheck Girl

» A hatcheck girl at a fancy restaurant collects n hats and returns them
at random. What is the probability that everyone receives the wrong
hat?

> Let A be that all checked hats are returned to wrong owners

» Without loss of generality, let the checked hats be numbered
1,2,...,n

» The girl selects (equally likely) one of the remaining hats to return
— n! permutations, each with probability 1/n!

» Example: When n = 3 hats, possible return orders are
1,23 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
» Only 2,3,1 and 3,1,2 correspond to all hats returned incorrectly
Pr(A)=1/3
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Specification Model

» Generate a random permutation of the first n integers

» The permutation corresponds to the order of hats returned

Clever Shuffling Algorithm (see Section 6.5)

for (i =0; i <n—1; i+4) {
j = Equilikely (i, n — 1);

hold = a[j];
a[j] =alil; /x swap a[i] and a[j] */
a[i] = hold;

Generates a random permutation of an array a

» Check the permuted array to see if any element matches its index
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Computational Model

» Program hat: Monte Carlo simulation of hatcheck problem

v

Uses shuffling algorithm to generate random permutation of hats
For n = 10 hats, N = 10,000 replications, and three different seeds

v

Pr(A) = 0.369,0.369, and 0.368

v

What happens to the probability as n — oco?

v

If using simulation, how big should n and N be?
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Axiomatic Solution

» The probability Pr(.A) of no hat returned correctly is

» for n =10, Pr(.A) = 0.36787946
» Important consistency check for validating craps

» As n — oo, the probability of no hat returned is

1/e = 0.36787944
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Monte Carlo Simulation Examples Hatcheck Girl

Exercise L13-4

> Design an approach to show that the shuffle algorithm in slide 37 is
correct.

» Implement the approach and graph the results.
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Monte Carlo Simulation Examples Stochastic Activity Network

Example 4: Stochastic Activity Network

» Concerning project management. A project consists of many
activities, and one may depend on another.

» Modeling project management with a network.

» Activity durations are positive random variables

» n nodes, m arcs (activities) in the network

» Single source node (labeled 1), single terminal node (labeled n)
> Y : positive random activity duration for arc aj;

» T; : completion time of all activities entering node j

v

A path is critical with a certain probability

p(mk) = Pr(mk =me) k=1,2,...,r
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Monte Carlo Simulation Examples Stochastic Activity Network

Example Stochastic Activity Network

» Each activity duration is a uniform random variate

Example: Yi2 has a Uniform(0, 3) distribution
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

> Represent the network as an n x m node-arc incidence matrix N

1 arc j leaves node |
N[i,j] = ¢ —1 arcj enters node i
0 otherwise

» Use Monte Carlo simulation to estimate:

» mean time to complete the network
» probability that each path is critical
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

» Each activity duration is a uniform random variate

Example: Yi2 has a Uniform(0, 3) distribution
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Monte Carlo Simulation Examples Stochastic Activity Network

Specification Model

» Completion time T; relates to incoming arcs

T, = Ti+Y;} j=23,...,
I AR "

where B(j) is the set of nodes immediately before node j

» Example: in the previous six-node example
T6 = max{ T3 + Y36, T4 + Y46, T5 + Y56}

» We can write a recursive function to compute the T;
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

> The previous 6-node, 9-arc network is represented as follows:

1 1 1 0 0 0 0 0 ©
10 0 1 1 0 0 0 O
v_|0 -1 0o -1 0 1 1 0 0
0 0 -1 0 0 -1 0 1 0
o 0 0 0 -1 0 0 0 1
0 0 0 0 0 0 -1 -1 -1

» In each row:

» 1's represent arcs exiting that node
» -1's represent arcs entering that node

> Exactly one 1 and one —1 in each column
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Monte Carlo Simulation Examples Stochastic Activity Network

Algorithm 2.4.2

» Returns a random time to complete all activities prior to node j for a
single SAN with node-arc incidence matrix N

Algorithm 2.4.2

k =1; | = 0; tmax = 0.0;
whlle (I < |$\mathcal{B}$(j)|) {
f (N [J_][k] = 1 {
while (N[j J[k] != 1)
|++
t=Ti +Yi ;
if (t>= $t_{max}$) $t_{max}$ =
I+
}
k++;
}
return tmax;
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Monte Carlo Simulation Examples Stochastic Activity Network

Computational Model

» Program san: MC simulation of a stochastic activity network

» Uses recursive function to compute completion times T; (see text)
» Activity durations Yj; are generated at random a priori

» Estimates T,, the time to complete the entire network

» Computes critical path probabilities p(7x) for k =1,2,...,r

» Axiomatic approach does not provide an analytic solution
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Monte Carlo Simulation Examples Stochastic Activity Network

Computational Model

» For 10000 realizations of the network and three initial seeds
Te = 14.64,14.59,and 14.57
» Point estimates for critical path probabilities are

Tk pi(mi) Pack) Ps(an)  Palik)

{a13, az6} 0.0168 0.0181 0.0193 0.0181
{312, an3, 336} 0.0962 0.0970 0.0904 0.0945
{a12, azs, as6 } 0.0013 0.0020 0.0013 0.0015
{a14, as6} 0.1952 0.1974 0.1907 0.1944
{a13, a34, as6} 0.1161 0.1223 0.1182 0.1189
{312, dn3, di4, 346} 0.5744 0.5632 0.5801 0.5726

SOl WN R X

» Path 7g is most likely to be critical — 57.26% of the time
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Monte Carlo Simulation Examples Stochastic Activity Network

Summary

» Concept of Monte Carlo simulation

» A few Monte Carlo simulation examples
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