Monte Carlo Simulation

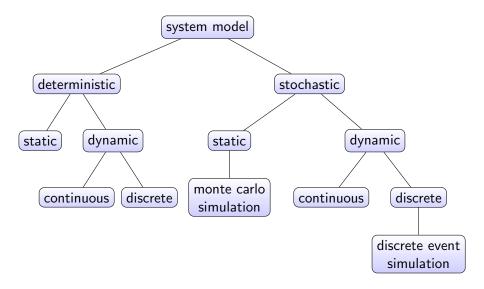
Lawrence M. Leemis and Stephen K. Park, Discrete-Event Simul A First Course, Prentice Hall, 2006

Hui Chen

Department of Engineering & Computer Science Virginia State University Petersburg, Virginia

April 17, 2017

Characterization of Models



Monte Carlo Simulation: Objective

- ▶ Estimate one of more probabilities by using an experimental technique
 - Its validity is based on the frequency theory of probability

3 / 50

Probability

- Empirical (Experimental) Probability. Repeat a random experiment n times and count the number of occurrences n_a of an event A
 - ▶ The relative frequency of occurrence of event A is n_a/n
 - ▶ The frequency theory of probability asserts that the relative frequency converges as $n \to \infty$

$$Pr(A) = \lim_{n \to \infty} \frac{n_a}{n}$$

- Related to the strong and weak laws of large numbers.
- Monte Carlo simulation uses the frequency theory of probability in a natural way.
- Axiomatic Probability.
 - A formal, set-theoretic approach
 - \blacktriangleright Mathematically construct the sample space and calculate the number of events ${\mathcal A}$
 - ▶ The axiomatic theory of probability.

Monte Carlo Simulation & Empirical and Axiomatic Probabilities

- The axiomatic theory of probability and the frequency theory of probability are complementary.
 - Doing one brings insight to the other. The best solution to any probability problem is a mathematical solution established via the axiomatic method and verified experimentally via an independent Monte Carlo simulation.
 - ► Hard problems. Many probability problems are too hard to solve mathematically. Monte Carlo simulation may be the only viable approach.

Example 2.3.1

- Roll two dice and observe the up faces. What is the probability of observing 2, or 3, or 4, or
- Axiomatic approach:
 - Possible outcomes:
 - (1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)
 - (2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)
 - (3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6) (4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

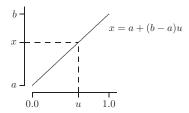
 - (5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)
 - (6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)
 - ▶ If the two up faces are summed, an integer-valued random variable, say X, is defined with possible values 2 through 12 inclusive

sum,
$$x$$
: 2 3 4 5 6 7 8 9 10 11 12 $Pr(X = x)$: $\frac{1}{36}$ $\frac{2}{36}$ $\frac{3}{36}$ $\frac{4}{36}$ $\frac{5}{36}$ $\frac{6}{36}$ $\frac{5}{36}$ $\frac{4}{36}$ $\frac{3}{36}$ $\frac{2}{36}$ $\frac{1}{36}$

ightharpoonup Pr(X=7) could be estimated by replicating the experiment many times and calculating the relative frequency of occurrence of 7's

Random Variates

- A Random Variate is an algorithmically generated realization of a random variable
- u = Random() generates a Uniform(0,1) random variate
- ► How can we generate a *Uniform*(a, b) variate?



Generating a Uniform Random Variate

```
double Uniform(double a, double b) /* use a < b */ \{ return (a + (b - a) * Random());
```

Equilikely Random Variates

► Uniform(0,1) random variates can also be used to generate an Equilikely(a, b) random variate

$$0 < u < 1 \iff 0 < (b - a + 1)u < b - a + 1$$
$$\iff 0 \le \lfloor (b - a + 1)u \rfloor \le b - a$$
$$\iff a \le a + \lfloor b - a + 1)u \rfloor \le b$$
$$\iff a \le x \le b$$

• Specifically, $x = a + \lfloor (b - a + 1)u \rfloor$

Generating an Equilikely Random Variate

```
long Equilikely(long a, long b) /* use a < b */ { return (a + (long)((b - a + 1) * Random())); }
```

Examples

► **Example 2.3.3** To generate a random variate *x* that simulates rolling two fair dice and summing the resulting up faces, use

$$x = Equilikely(1,6) + Equilikely(1,6);$$

Note that this is *note* equivalent to

$$x = Equilikely(2, 12);$$

► **Example 2.3.4** To select an element *x* at random from the array a[0], a[1], ..., a[n-1] use

$$i = Equilikely(0, n-1); x = a[i];$$

Galileo's Dice

- ▶ If three fair dice are rolled, which sum is more likely, a 9 or a 10?
 - ▶ There are $6^3 = 216$ possible outcomes

$$Pr(X = 9) = \frac{25}{216} \cong 0.116$$
 and $Pr(X = 10) = \frac{27}{216} = 0.125$

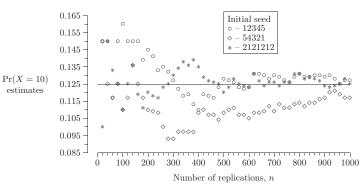
- Program galileo calculates the probability of each possible sum between 3 and 18
- The drawback of Monte Carlo simulation is that it only produces an estimate
 - ▶ Larger *n* does not guarantee a more accurate estimate. However, as *n* becomes larger, the uncertainty and accuracy of the probility estimates will tend to improve.

Exercise L13-1: Varitions of Galileo's Dice

- Run the Galileo's Dice program (in Blackboard) following the following guideline:
 - Choose three different seeds
 - Use the number of replications as 20, 40, 100, 200, 400, 1000, 10000, and 100000
 - Show the result in a graph similar to next slide

Example 2.3.6

 Frequency probability estimates converge slowly and somewhat erratically

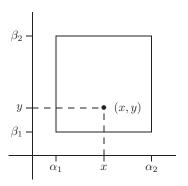


➤ You should always run a Monte Carlo simulation with multiple initial seeds

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 12 / 50

Geometric Applications: Rectangle

Generate a point at random inside a rectangle with opposite corners at (α_1, β_1) and (α_2, β_2)

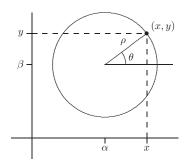


$$x = Uniform(\alpha_1, \alpha_2);$$
 $y = Uniform(\beta_1, \beta_2);$

H. Chen (VSU) Monte Carlo Simulation

Geometric Applications: Circle

▶ Generate a point (x, y) at random on the circumference of a circle with radius ρ and center (α, β)



$$\theta = Uniform(-\pi, \pi); \quad x = \alpha + \rho * cos(\theta); \quad y = \beta + \rho * sin(\theta);$$

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 14 / 50

Example 2.3.8

▶ Generate a point (x, y) at random interior to the circle of radius ρ centered at (α, β)

$$\theta = Uniform(-\pi, \pi); \quad r = Uniform(0, \rho);$$

 $x = \alpha + \rho * cos(\theta); \quad y = \beta + r * sin(\theta);$

Correct?

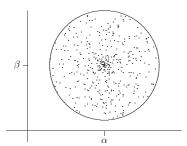
Example 2.3.8

▶ Generate a point (x, y) at random interior to the circle of radius ρ centered at (α, β)

$$\theta = Uniform(-\pi, \pi); \quad r = Uniform(0, \rho);$$

 $x = \alpha + \rho * cos(\theta); \quad y = \beta + r * sin(\theta);$

Correct? INCORRECT!



15 / 50

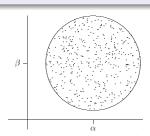
H. Chen (VSU) Monte Carlo Simulation April 17, 2017

Acceptance/Rejection

► Generate a point at random within a circumscribed square and then either accept or reject the point

Generate a Random Point Interior to a Circle

```
do { x = Uniform(-\rho, \rho); y = Uniform(-\rho, \rho); } while (x * x + y * y >= \rho * \rho); x = \alpha + x; y = \beta + y; return (x, y);
```

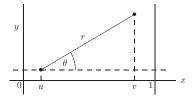


Exercise L13-2 Geometric Application

- Objective: visually examine correctness of a simulation
- ▶ Write a program that randomly generate 1000 points within a rectangle using the method in slide 13 and graph the result
- Write a program that reproduces the incorrect (slide 14) and correct (slide 16 generation of points interior to a circle as shown previous slides.
- \blacktriangleright Write a program to estimate π by extending the above programs.

Buffon's Needle Problem

Suppose that an infinite family of infinitely long vertical lines are spaced one unit apart in the (x, y) plane. If a needle of length r > 0 is dropped at random onto the plane, what is the probability that it will land crossing at least one line?



- ▶ *u* is the *x*-coordinate of the left-hand endpoint
- v is the x-coordinate of the right-hand endpoint,

$$v = u + r\cos\theta$$

18 / 50

▶ The needle crosses at least one line if and only if v > 1

H. Chen (VSU) Monte Carlo Simulation April 17, 2017

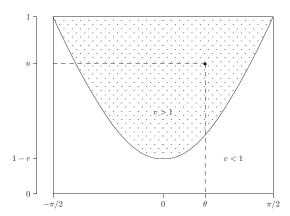
Program buffon

- Program buffon is a Monte Carlo simulation
- Inspection of the program buffon illustrates how to solve the problem axiomatically

19 / 50

Axiomatic Approach to Buffon's Needle

▶ "Dropped at random" is interpreted (modeled) to mean that u and θ are independent Uniform(0,1) and $Uniform(-\pi/2,\pi/2)$ random variables



H. Chen (VSU) Monte Carlo Simulation April 17, 2017

20 / 50

Axiomatic Approach to Buffon's Needle

- ▶ The shaded region has a curved boundary defined by the equation $u = 1 r\cos\theta$
- if $0 < r \le 1$, the area of the shaded region is

$$\pi - \int_{-\pi/2}^{\pi/2} (1 - r\cos\theta) d\theta = r \int_{-\pi/2}^{\pi/2} \cos\theta d\theta = \dots = 2r$$

► Therefore, because the area of the rectangle is π the probability that the needle will cross at least one line is $2r/\pi$

Exercise L13-3: Buffon's Needle

- Objective: Compare simulation and axiomatic results (does your simulation program need a test case?)
- Calculate the probability that it will land crossing at least one line for the Buffon's needle problem using the axiomatic result 21.
- Revise the program buffon to output the estimated probability with at least 6 digits after the decimal point.
- Run the revised program buffon for 100, 1000, 10000, 100000. 1000000 replications with 3 different seeds for each number of replications
- Choose appropriate graphs to graph the following,
 - The results from the simulations
 - ▶ The axiomatic result
 - ▶ The different between the simulations and the axiomatic result (i.e., error)

Axiomatic and Experimental Approaches

- Axiomatic and experimental approaches are complementary
- Slight changes in assumptions can sink an axiomatic solution
- ▶ An axiomatic solution is intractable in some other cases
- Monte Carlo simulation can be used as an alterative in either case
- Four more examples of Monte Carlo simulation
 - Metrics and determinants
 - Craps
 - Hatchek girl
 - Stochastic activity network

Example 1: Matrix and Determinants

- ► Matrix: set of real or complex numbers in a rectangular array
- for matrix A, a_{ii} is the element in row i, column j

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

where A is $m \times n$, i.e., m rows and n columns

▶ Interesting quantities: eigenvalue, trace, rank, and determinant

H. Chen (VSU)

Determinants

▶ The determinant of a 2×2 matrix A is

$$|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{21}a_{12}$$

▶ The determinant of a 3×3 matrix A is

$$|A| = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

H. Chen (VSU)

Random Matrices

- ► Random matrix: matrix whose elements are random variables
- Consider a 3 × 3 matrix whose elements are random with positive diagonal, negative off-diagonal elements
- Question: What is the probability the determinant is positive?

$$\begin{vmatrix} +u_{11} & -u_{12} & -u_{13} \\ -u_{21} & +u_{22} & -u_{23} \\ -u_{31} & -u_{32} & +u_{33} \end{vmatrix} > 0$$

Axiomatic solution is not easily calculated

Specification Model

- lacktriangle Let event ${\mathcal A}$ be that the determinant is positive
- ▶ Generate N 3 \times 3 matrices with random elements
- Compute the determinant for each matrix
- Let n_a = number of matrices with determinant > 0
- ▶ Probability of interest: $Pr(A) \cong N_a/N$

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 27 / 50

Computational Model: Program det

```
det
```

```
for (i = 0; i < N; i++) {
    for (j = 1; j \le 3; j++) {
        for (k = 1; k \le 3; k++) {
            a[j][k] = Random();
            if (i != k)
            a[i][k] = -a[i][k];
    temp1 = a[2][2] * a[3][3] - a[3][2] * a[2][3];
    temp2 = a[2][1] * a[3][3] - a[3][1] * a[2][3];
    temp3 = a[2][1] * a[3][2] - a[3][1] * a[2][2];
    x = a[1][1]*temp1 - a[1][2]*temp2 + a[1][3]*temp3;
    if (x > 0)
        count++:
probability = (double) count/N;
```

Output From det

- ▶ Want *N* sufficiently large for a good point estimate
- Avoid recycling random number sequences
- ▶ Nine calls to Random() per 3×3 matrix $\rightarrow Nm/9 \cong 239000000$
- ▶ For initial seed 987654321 and N = 200000000,

$$Pr(\mathcal{A}) \cong 0.05017347$$

H. Chen (VSU)

Point Estimate Considerations

- How many significant digits should be reported?
- Solution: run the simulation multiple times
- One option: use different initial seeds for each run
 - ► Caveat: Will the same squences of random numbers appear?
- ► Another option: use different a for each run
 - Caveat: Use a that gives a good random sequence
- For two runs with a = 16807 and 41214

$$Pr(A) \cong 0.0502$$

Example 2: Craps

Standard Craps Table

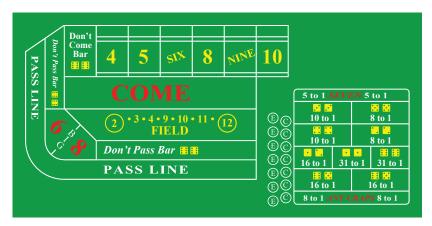


Figure: Retrieved from

http://en.wikipedia.org/wiki/File:Craps_table_layout.svg

H. Chen (VSU) Monte Carlo Simulation April 17, 2017

31 / 50

Example 2: Craps

- Toss a pair of fair dice and sum the up faces
- ► Two phases: "come-out" and "point"
- Come-out. A new round starts after a come-out roll.
 - ▶ A roll of 2, 3 or 12 is a came-out roll called "craps" or "crapping out". Anyone betting the Pass line loses and anyone betting the Don't Pass line wins.
 - A roll of 7 or 11 is also a come-out roll called "natural". Anyone betting The Pass line wins and any one betting the Don't Pass line loses.
- ► Otherwise, sum becomes "point"
 - ▶ Roll until the point is matched or 7, and a new round starts. Anyone betting the Pass line wins if it is a match, loses if it is 7.
- ▶ What is Pr(A), the probability of winning at craps if I am betting the Pass line?

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 32 / 50

Craps: Axiomatic Solution

- Requires conditional probability
- ▶ Axiomatic solution: $244/495 \cong 0.493$
- Underlying mathematics must be changed if assumptions change
 - Example: unfair dice
- Axiomatic solution provides a nice consistency check for (easier)
 Monte Carlo simulation

Craps: Specification Model

▶ Model one die roll with Equilikely(1, 6)

Algorithm 2.4.1

```
wins = 0:
for (i = 1; i \le N; i++)
    roll = Equilikely(1, 6) + Equilikely(1, 6);
    if (roll = 7 \text{ or } roll = 11)
        wins++:
    else if (roll != 2 \text{ and } roll != 3 \text{ and } roll != 12)
         point = roll;
        do {
             roll = Equilikely(1, 6) + Equilikely(1, 6);
             if (roll = point) wins++;
        \} while (roll != point and roll != 7)
  return (wins/N);
```

Craps: Computational Model

- Program craps: uses switch statement to determine rolls
- ▶ For N = 10000 and three different initial seeds (see text)

$$Pr(A) = 0.497, 0.485, and 0.502$$

- ▶ These results are consistent with 0.493 axiomatic solution
- ► This (relatively) high probability is attractive to gamblers, yet ensures the house will win in the long run
- ▶ If using simulation, how big should *N* be?

Example 3: Hatcheck Girl

- ▶ A hatcheck girl at a fancy restaurant collects *n* hats and returns them at random. What is the probability that everyone receives the wrong hat?
- \blacktriangleright Let $\mathcal A$ be that all checked hats are returned to wrong owners
- ▶ Without loss of generality, let the checked hats be numbered 1, 2, . . . , *n*
- ► The girl selects (equally likely) one of the remaining hats to return $\rightarrow n!$ permutations, each with probability 1/n!
- \blacktriangleright Example: When n=3 hats, possible return orders are
 - 1,2,3 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1
- ▶ Only 2, 3, 1 and 3, 1, 2 correspond to all hats returned incorrectly

$$Pr(\mathcal{A}) = 1/3$$

Hatcheck: Specification Model

- Generate a random permutation of the first n integers
- ▶ The permutation corresponds to the order of hats returned

Clever Shuffling Algorithm (see Section 6.5)

```
for (i = 0; i < n - 1; i++) {
    j = Equilikely(i, n - 1);
    hold = a[j];
    a[j] = a[i]; /* swap a[i] and a[j] */
    a[i] = hold;
}</pre>
```

Generates a random permutation of an array a

► Check the permuted array to see if any element matches its index

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 37 / 50

Hatcheck: Computational Model

- Program hat: Monte Carlo simulation of hatcheck problem
- Uses shuffling algorithm to generate random permutation of hats
- For n = 10 hats, N = 10,000 replications, and three different seeds

$$Pr(A) = 0.369, 0.369, and 0.368$$

- ▶ What happens to the probability as $n \to \infty$?
- ▶ If using simulation, how big should *n* and *N* be?

Hatcheck: Axiomatic Solution

▶ The probability Pr(A) of no hat returned correctly is

$$1 - \left(1 - \frac{1}{2!} + \frac{1}{3!} - \ldots + (-1)^{n+1} \frac{1}{n!}\right)$$

- for n = 10, $Pr(A) \cong 0.36787946$
- Important consistency check for validating craps
- As $n \to \infty$, the probability of no hat returned is

$$1/e \cong 0.36787944$$

Exercise L13-4

- ▶ Design an approach to show that the shuffle algorithm in slide 37 is correct.
- Implement the approach and graph the results.

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 40 / 50

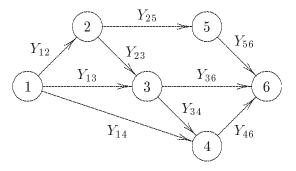
Example 4: Stochastic Activity Network

- Concerning project management. A project consists of many activities, and one may depend on another.
- Modeling project management with a network.
- Activity durations are positive random variables
- n nodes, m arcs (activities) in the network
- ► Single source node (labeled 1), single terminal node (labeled *n*)
- ► Y_{ij} : positive random activity duration for arc a_{ij}
- $ightharpoonup T_j$: completion time of all activities entering node j
- A path is critical with a certain probability

$$p(\pi_k) = Pr(\pi_k \equiv \pi_c), k = 1, 2, \dots, r$$

Example Stochastic Activity Network

Each activity duration is a uniform random variate



Example: Y_{12} has a Uniform(0,3) distribution

Conceptual Model

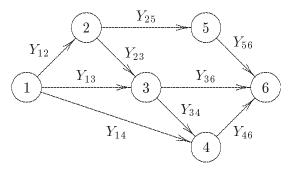
Proof. Represent the network as an $n \times m$ node-arc incidence matrix N

$$N[i,j] = egin{cases} 1 & ext{arc } j ext{ leaves node } i \ -1 & ext{arc } j ext{ enters node } i \ 0 & ext{otherwise} \end{cases}$$

- Use Monte Carlo simulation to estimate:
 - mean time to complete the network
 - probability that each path is critical

Conceptual Model

Each activity duration is a uniform random variate



Example: Y_{12} has a Uniform(0,3) distribution

44 / 50

Specification Model

ightharpoonup Completion time T_j relates to incoming arcs

$$T_j = \max_{i \in \mathcal{B}(j)} \{ T_i + Y_{ij} \} \quad j = 2, 3, \dots, n$$

where B(j) is the set of nodes immediately before node j

Example: in the previous six-node example

$$T_6 = \max\{T_3 + Y_{36}, T_4 + Y_{46}, T_5 + Y_{56}\}$$

▶ We can write a recursive function to compute the T_j

Conceptual Model

▶ The previous 6-node, 9-arc network is represented as follows:

$$N = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & -1 \end{bmatrix}$$

- In each row:
 - ▶ 1's represent arcs exiting that node
 - -1's represent arcs entering that node
- ightharpoonup Exactly one 1 and one -1 in each column

Algorithm 2.4.2

► Returns a random time to complete all activities prior to node *j* for a single SAN with node-arc incidence matrix *N*

Algorithm 2.4.2

```
k = 1; l = 0; tmax = 0.0;
while ( | < | \mbox{\mbox{$\setminus$} mathcal{B}$}( | ) | ) 
    if (N[i][k] = -1) {
         i = 1:
         while (N[j][k] != 1)
              i++:
              t = Ti + Yi;
              if (t >= t_{\max}) t_{\max} = t;
              1++:
return tmax:
```

Computational Model

- Program san: MC simulation of a stochastic activity network
- ▶ Uses recursive function to compute completion times T_i (see text)
- \triangleright Activity durations Y_{ij} are generated at random a priori
- \triangleright Estimates T_n , the time to complete the entire network
- ▶ Computes critical path probabilities $p(\pi_k)$ for k = 1, 2, ..., r
- ► Axiomatic approach does not provide an analytic solution

Computational Model

For 10000 realizations of the network and three initial seeds

$$T_6 = 14.64, 14.59, and 14.57$$

▶ Point estimates for critical path probabilities are

▶ Path π_6 is most likely to be critical – 57.26% of the time

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 49 / 50

Summary

- Concept of Monte Carlo simulation
- ▶ A few Monte Carlo simulation examples

H. Chen (VSU) Monte Carlo Simulation April 17, 2017 50 / 50