Discrete-Event Simulation: Examples

Hui Chen

Computer Science
Virginia State University
Petersburg, Virginia

March 22, 2017
Table of Contents

1. Single-server Service node with immediate feedback

2. Simple inventory system with delivery lag

3. A single-server machine shop
We now consider *immediate feedback* in the single-server service node model, i.e.,

- the possibility that the service a job just received was incomplete or otherwise unsatisfactory and the job feedback immediately to request service once again.
- Completion of service and departure now have different meanings
 - At the completion of service, jobs either depart the service node forever or immediately feed back and once again seek service.
Model Considerations

- As it completes its service, each job departs the service node with probability $1 - \beta$, or feeds back with probability β
 - When feedback occurs the job joins the queue consistent with the queue discipline
 - The decision to depart or feed back is random with feedback probability β

\[\lambda \rightarrow \nu \rightarrow 1 - \beta \]

- λ is the arrival rate
- ν is the service rate
Model Considerations

- Feedback is independent of past history
- In theory, a job may feed back arbitrarily many times
- Typically, β is close to 0.0

```java
int GetFeedback(double beta) /* 0.0 <= beta < 1.0 */ {
    SelectStream(2);
    if (Random() < beta)
        return 1; /* feedback occurs */
    else
        return 0; /* no feedback */
}
```
Index $i = 1, 2, 3, \ldots$ counts jobs that enter the service node
- fed-back jobs are not recounted
- Using this indexing, all job-averaged statistics remain valid
- We must update delay times, wait times, and service times for each feedback
- Jobs from outside the system are merged with jobs from the feedback process by the positive additive factor $\lambda \bar{x} \nu$
- Note that \bar{s} increases with feedback but $1/\nu$ is the average service time per request
Example 3.3.1

<table>
<thead>
<tr>
<th>job index</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrival/feedback</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>10</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>19</td>
<td>24</td>
</tr>
<tr>
<td>service</td>
<td>9</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>completion</td>
<td>10</td>
<td>13</td>
<td>15</td>
<td>19</td>
<td>26</td>
<td>31</td>
<td>37</td>
<td>40</td>
<td>44</td>
<td>50</td>
</tr>
</tbody>
</table>

At the computational level, some algorithm and data structure is necessary.
Algorithm and Data Structure Considerations

- Need to insert fed-back jobs into arrival stream
- Need a data structure to hold fed-back jobs and arrivals
Exercise L7-1 (Hints in Next Slide)

- Make a copy of ssq2 and name the copy as ssq2ex332.
- Modify ssq2ex332 to account for immediate feedback
 - Use an array to store arrivals including both fed-back and new arrivals
 - hint: how big the array should be? which array element contains earliest arrival in the array including the fed-back one?
- Use the following parameters
 - The arrival process has Exponential(2.0) random-variate interarrival times
 - The service process has Uniform(1.0, 2.0) random-variate service times
 - The feed-back probability is $0.0 \leq \beta < 1.0$. To illustrate the effect of feedback, the modified program is to simulate the operation of a single-server service node with 9 different values of levels of feedback, varied from $\beta = 0.0$ to $\beta = 0.20$
 - In each case, 100,000 arrivals are to be simulated.
- Graph utilization \bar{x} as a function of β and the average number in the queue \bar{q} as a function of β
Exercise L7-1: Hints

- Change the main method/function to `SimulateOnce(double feedbackProbability)`
 - Let it print out the output as CSV format;
 - Declare an array to hold arrivals including fed-back arrivals
 - Insert arrivals to the array
 - Search earliest arrival from the array

- Add `int GetFeedback(double beta)` method/function in slide 5 to the program

- Add a main method/function that has the logic similar to the following,

```java
double step = 0.2/8.0, feedbackProbability; int i;
for (i = 0; i <= 8; i++) {
    feedbackProbability = step * i;
    SimulateOnce(feedbackProbability);
}
```
Example 3.3.2: Sample Result for Exercise L7-1

- Left-hand side: Utilization \bar{x} versus feedback probability β
- Right-hand side: The average number of jobs in the queue \bar{q} versus feedback probability β
Discussion

- Is *array* a good choice to store arrivals in Exercise L7-1?
- What checks can you do to have an improved confidence on the program and the result?
Flow Balance and Saturation

- Jobs flow into the service node at the average rate of λ
- To remain flow balanced jobs must flow out of the service node at the same average rate
- The average rate at which jobs flow out of the service node is $\bar{x}(1 - \beta)\nu$
- Flow balance is achieved when $\lambda = \bar{x}(1 - \beta)\nu$
- Saturation occurs when $\bar{x} = 1$ or as $\beta \to 1 - \lambda/\nu = 0.25$
An extension to the periodic-review simple-inventory-system model

- Delivery lag (or lead time)
 - An inventory replacement order placed with the supplier will not be delivered immediately
 - There will be a lag between the time an order is placed and the time the order is delivered
 - Lag is assumed to be random and independent of order size
Simple inventory system with delivery lag

Inventory Levels With and Without Delivery Lag

- Without lag, inventory jumps occur only at inventory review times

 ![Graph showing inventory levels without delivery lag]

- With delivery lag, inventory jumps occur at arbitrary times

 ![Graph showing inventory levels with delivery lag]
The last order is *assumed* to have no lag

We *assume* that orders are delivered before the next inventory review

With these assumptions, there is no change to the specification model. However, there is a significant change in how the system statistics are computed.
Simple inventory system with delivery lag

SIS with Lag: Statistical Consideration

There is a significant change in how the system statistics are computed.

Figure: Inventory level *without* delivery lag

Figure: Inventory level *with* delivery lag
Time Evolution of Inventory Level

How should we revise Algorithm 1.3.1?

Algorithm 1.3.1

\[l_0 = S; \]
\[i = 0; \]
while (more demand to process) {
 \[i + +; \]
 if \(l_{i-1} < s \)
 \[o_{i-1} = S - l_{i-1}; \]
 else
 \[o_{i-1} = 0; \]
 \[d_i = \text{GetDemand}(); \]
 \[l_i = l_{i-1} + o_{i-1} - d_i; \]
}
\[n = i; \]
\[o_n = S - l_n \]
\[l_n = S; \]
return \(l_1, l_2, l_3, ..., l_n \) and \(o_1, o_2, ..., o_n; \)
Statistical Considerations

- If $l_{i-1} \geq s$ the equations for T_i^+ and T_i^- remain correct since there is no order, hence no delivery lag.
- When delivery lag occurs the time-averaged holding and shortage intervals must be modified.
 - The delivery lag for interval i is $0 < \delta_i < 1$.

Figure: Inventory level *with* delivery lag.
How should we revise Algorithm 1.3.1?

Algorithm 1.3.1

\[l_0 = S; \]
\[i = 0; \]
while (more demand to process) {
 \[i++; \]
 if \((l_{i-1} < s)\)
 \[o_{i-1} = S - l_{i-1}; \quad \delta_i = \text{GetDeliveryLag}() \]
 else
 \[o_{i-1} = 0; \]
 \[d_i = \text{GetDemand}(); \]
 \[/* compute statistics before the delivery arrives */ \]
 \[............... \]
 \[/* compute statistics after the delivery arrives */ \]
 \[............... \]
 \[l_i = l_{i-1} + o_{i-1} - d_i; \]
}\n\[n = i; \]
\[o_n = S - l_n \]
\[l_n = S; \]
return \(l_1, l_2, l_3, ...l_n; \quad o_1, o_2, ...o_n; \) and \(\delta_1, \delta_2, ...\delta_n; \)
Revising Algorithm 1.3.1

- Determining delivery lag
 - Recall: lag is *assumed* to be random and independent of order size

- Computing statistics
 - Calculations of statistics remain the same: average order, average demand, and relative frequency of setups
 - Calculations of statistics need to change: time-averaged holding level, and time-averaged shortage level
 - How to calculate: view the calculation as estimating the area of trapezoids.
Consistency Checks

- It is fundamentally important to verify extended models with the parent model
 - Set system parameters to special values
- Set $\beta = 0$ for the SSQ with feedback
 - Verify that all statistics agree with parent
- Using the library rngs facilitates this kind of comparison
- It is a good practice to check for intuitive “small-perturbation” consistency
 - Use a small, but non-zero β and check that appropriate statistics are slightly larger
Example 3.3.3

- For the SIS with delivery lag, $\delta_i = 0.0$ if and only if no order during i-th interval, $0 < \delta_i < 1.0$;
- Otherwise, the SIS is lag-free if and only if $\delta_i = 0.0$ for all i;
- If (S, s) are fixed then, even with small delivery lags:
 - $\bar{\sigma}$, \bar{d}, and \bar{u} are the same regardless of delivery lag
 - Compared to the lag-free system, \bar{T}^+ will decrease
 - Compared to the lag-free system, \bar{T} will increase or remain unchanged
Example 3.3.4

- Delivery lags are independent Uniform(0.0, 1.0) random variates.

![Graph showing the effect of delivery lag on dependent cost.]

- Delivery lag causes \bar{T}^+ to decrease and \bar{T} to increase or remain the same.

- $C_{\text{Setup}} = $1,000, $C_{\text{hold}} = $25 and $C_{\text{short}} = $700 cause it to shift up and to the left.
Exercise L7-2

You will complete examples 3.3.3 and example 3.3.4, for which, you will revise sis2 program.

- Make a copy of the sis2 program. Name the copy as sis2ex72 that you will be working on.
- Replace library rng by library rngs
- Use two random streams to generate demand and delivery lag
 - Revise GetDemand() in C or getDemand() in Java
 - Add a new function GetDeliveryLag() in C or getDeliveryLag() in Java
 - Use Uniform(0, 1) random variate delivery lag.
- Calculate statistics: average order, average demand, relative frequency of setups, time-averaged holding level, and time-averaged shortage level, and dependent cost (i.e., the sum of the average setup, holding, and shortage costs)
Exercise L7-2: Recap

Complete the consistency checks as outlined in slides 22 and 23 using the instructor’s sample solution.

- Compute statistics when the delivery lag is generated using random variates $\text{Uniform}(0, 0.00)$, $\text{Uniform}(0, 0.01)$, $\text{Uniform}(0, 0.02)$, ... and $\text{Uniform}(0, 0.10)$.
- Perform consistency checks:
 - Special value: we expect that the statistics should be the same as those obtained from sis2 when the delivery lag is 0
 - Small-perturbation: when the delivery lag is small, we expect that the statistics should be different from those obtained from sis2, but the different should be small.
 - Intuition: if there is a delivery lag, we expect to observe that average holding should decrease and average shortage should increase when compared to the lag-free system; average order, average demand, and order frequency are independent of delivery lags.
- Use a well-designed graph to show the results of the consistency checks.
Let us consider a machine shop.

- It has a finite number of identical machines.
- Each machine operates continuously until failure.
- As machines fail, they are repaired, in the order in which they fail, by a service technician.
- As soon as a failed machine is repaired, it is put back into operation.

The machines when they are operate produce an income.

- e.g., a machine operates 8 hours per day, 250 days a year, and produces a net income of $20 per hour of operation.

The service technician takes time to repair machine which leads to a cost.

- Hiring a technician costs money.
- However, more technicians would allow machines to be repaired more quickly and put back to operations, which leads to more income.

The objective is how one may maximize the profit by hiring the right number of technicians.
The machine shop model is *closed* because there are a finite number of machines in the system.

Assume repair times are *Uniform*(1.0, 2.0) random variates
 - To reduce the average pair times, one may hire more technicians.
 - There are M machines that fail after an *Exponential*(100.0) random variate
C₀ = 0.0;
i = 0;
for each machine i in {m₁, m₂, ... m_M}
 initialize f[i];
while (more failure to process) {
 i ++;
 (aᵢ, m) = NextFailure();
 if (aᵢ < cᵢ₋₁)
 dᵢ = cᵢ₋₁ − aᵢ;
 else
 dᵢ = 0.0;
 sᵢ = GetService();
 cᵢ = aᵢ + dᵢ + sᵢ;
 f[m] = cᵢ + GetFailure();
}
n = i;
return d₁, d₂, ..., dₙ;
Program \textit{ssms} simulates a single-server machine shop

The library \textit{rngs} is used to uncouple the random processes

The failure process is defined by the array \textit{failures}

 A $\mathcal{O}(M)$ search is used to find the next failure

 Alternate data structures can be used to increase computational efficiency
Example 3.3.5

- The time-averaged number of working machines is $M - \bar{l}$

- For small values of M the time-averaged number of operational machines is essentially M

- For large values of M this value is essentially constant at approximately 67
Exercise L7-3

Complete the following tasks using ssms

- Relative to Example 3.3.5 in slide 31, construct a figure illustrating how \bar{x} (utilization) depends on M.
- If you extrapolate linearly from small values of M, at what value of M will saturation ($\bar{x} = 1$) occur?
- Can you provide an empirical argument or equation to justify this value?
Summary

Three examples:
- SSQ with immediate feedback
- SIS with delivery lag
- Single-Server Machine shop