Discrete-Event Simulation: Multi-Stream Lehmer RNGs

Lawrence M. Leemis and Stephen K. Park, Discrete-Event Simulation - A First Course,
Prentice Hall, 2006

Hui Chen

Computer Science
Virginia State University
Petersburg, Virginia

March 1, 2017

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 1/37

Table of Contents

@ Project

© Introduction
© Streams

O Jump Multipliers
@ Numerical Examples

© 55Q with Multiple Job Types

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 2 /37

Project

Discussion on Project and Other Assignments

» Exercises L4-1, L4-2, L4-3, L4-4, and L4-5
» Project 1

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 3/37

Introduction

Introduction

» Typical DES models have many stochastic components.
> e.g., arrivals and services
» Have a unique randomness for each stochastic component
» One option: multiple RNGs
» Often considered a poor option
» One RNG with multiple “streams” of random numbers

» One stream per stochastic component
» Considered a better option
» Method: partition output from a RNG into multiple streams

> We have been using the Lehmer RNG from the authors of the textbook

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 4 /37

Lehmer RNG

» Lehmer RNG used in ssq2 and sis2
» in C/C++: rng.h and rng.c

double Random(void);

void PutSeed (long x);
void GetSeed (long *x);
void TestRandom(void);

» in Java (and C++): Rng.java (and Rng.cpp with minor syntax
difference)

class Rng {
public double random() {[...]}
public void putSeed(long x) {[...]}
public long getSeed() {[...]}
public void testRandom() {[...]}

}

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 5 /37

Streams
Revisit Simulation Program ssq2

> ssq2 has two stochastic components: arrival process and service
process, e.g.,

double GetArrival(void) {
static double arrival = START;

arrival += Exponential (2.0);
return (arrival);

}

double GetService(void) {
return (Uniform (1.0, 2.0));
}

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 6 /37

Streams

Lehmer RNG: Partition Output into Multiple Streams: 1st

Approach

» First attempt: partition output from our Lehmer RNG into multiple
streams

» Method: allocate and retain internal state of the RNG for each
stochastic process

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 7/37

Streams

Lehmer RNG: Partition Output into Multiple Streams: 1st

Approach

> Allocate a different generator state variable to each process and retain
it before switching to the other process
> In the Lehmer RNG, the generator state is fully represented by the seed
» Allocate to the service process its own static variable and initialized
with a value.

GetService with Unique Seed

double GetService(void) {
double s;
static long x = 12345;
PutSeed (x);
s = Uniform (1.0, 2.0);
GetSeed(&x);
return (s);

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 8 /37

Streams

Lehmer RNG: Partition Output into Multiple Streams: 1st

Approach

» Allocate to arrival process its own static variable and initialized with a
different value from the service process

GetArrival with Unique Seed

double GetArrival(void) {
static double arrival = START;
static long x = 54321;
PutSeed (x);
arrival += Exponential (2.0);
GetSeed(&x);
return (arrival);

where x represents the current state of the service process

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 9 /37

Streams

Modified Arrival and Service Processes

» As modified, arrival and service times are drawn from different
streams of random numbers

» Provided the streams do not overlap, the processes are uncoupled

» Although the choice of seed for each stream is deceivingly simple, the
choices may in fact be poor ones.

» Execution time cost is negligible (see Example 3.2.3 in next slide)

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 10 / 37

Streams
Exericse L6-1

Complete Example 3.2.3 as instructed as follows,

>

>

Make a copy of ssq2. To ease the discussion, call the new copy ssq2b

Replace GetArrival and GetService by those introduced in the 1st
approach

Set LAST to 1,000,000 jobs

Compile and run the program. Measure the execution time of new
and original programs

Compare the results with from those using ssq2 (without any
modification). Are they the same?

Compare execution time of the new and original programs, how much
slower is the new program?

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 11 /37

Streams

Exericse L6-1: Hints

To measure program execution time in Windows, use PowerShell. Below is
an example that measures the execution time of a dir command,

Measure Program Execution Time

C:> powershell

PS C:> Measure—Command {dir | Out—Default}
Directory: C:\
Mode LastWriteTime Length Name
[..]
Days : 0
Hours : 0
Minutes : 0
Seconds : 0
Milliseconds ;129
Ticks : 1299779
TotalDays : 1.50437384259259E—06
TotalHours : 3.61049722222222E—-05
TotalMinutes : 0.00216629833333333
TotalSeconds : 0.1299779
TotalMilliseconds : 129.9779

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 12 / 37

https://technet.microsoft.com/en-us/library/hh849910.aspx

Streams

Exercise L6-1: Hints

To measure program execution time in Linux, use the time command.
Below is an example that measures the execution time of a /s command,

Measure Program Execution Time

$ time Is ssq2.cpp

ssq2.c

real 0m0.012s
user 0m0.004s
sys 0m0.008s

$

For more detail on the command, see its manual page (i.e., man time).

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 13 / 37

Jump Multipliers

Streams using Multiple Seeds: Discussion

» Objective: allocate a unique stream of random numbers of each
stochastic component

» Examples of stochastic components: arrival and service processes

» Discussed approach: using multiple seeds of RNGs to produce
multiple unique streams of random numbers
» Potential problem: assignment of initial seeds (or initial state)

» Initial states should be chosen to produce disjoint streams

> |If states are picked at whim, no guarantee of disjoint streams

> Some initial states could be just a few calls to Random() away from
one another

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 14 / 37

Jump Multipliers
Jump Multipliers

» Objective: produce multiple disjoint streams of random numbers

» Theorem 3.2.1 is the key to creating streams

Theorem 3.2.1

Given g(x) = ax mod m and integer j with j =1,2,... ., m—1, the
associated jump function is
g/(x)=(& mod m)x mod m (1)

and has the jump multiplier & mod m
if (g(-)) generates xg, X1, X2, ... then g/(-) generates xo, X;, x2j, - . ..

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 15 / 37

Jump Multipliers Numerical Examples

Numerical Examples

» If m=31and a=3 and j =6, the jump multiplier is &/
mod m =36 mod 31 =16
» If xo = 1 then g(x) = 3x mod 31 generates

1,3,9,27,19,26, 16, 17, 20, 29, 25, 13,
8,24,10,30,28,22,4,12,5,15, 14,11,
2,6...

» The jump function g®(x) = 16x mod 31 generates 1,16,8,4,2, ...
i.e., the first sequence is xg, x1, X2, . . .; the second is xg, Xg, X12, - . .

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 16 / 37

Jump Multipliers Numerical Examples

Program for Numerical Example

#include <stdio.h> import java.io.x;
#include <math.h> import java.lang.Math;

import java.text.x;
int main() {

long m= 31, a =3, j 6, jm, i, n = public class Ex3.2.4{
32, x 1;
public static void main(String [] args) {
jm = (long)pow(a, j) % m; String format " %2d" ;
printf("%21d”, x); long m=31, a=3, j=6, jm, i, n
for (i 0; i <n; i ++){ =32, x = 1;

printf (", %2Id", x = a * x % m);
jm = (long)Math.pow(a, j) % m;

printf("\n\nJump Multiplier = %ld\n\n", System.out.format (format, x);
jm); for (i =0; i <n; i ++){
System.out.format (", " +
x = 1; format, x = a * x % m);
printf("%21d” , x);
for (i = 0; i <n/6; i ++) { System.out.format (" \n\nJump
printf (", %2Id”, x = jm * x % m); Multiplier =" + format +
“\o\n", m) ;
printf("\n");
x = 1; System.out.format(format, x);
return O; for (i =0; i <n/6; i ++) {
} System.out.format (", " +
format, x = jm * x % m);
}

System.out. print(”\n");

}
H. Chen (VSU) Multiple Stream RNGs March 1, 2017 17 / 37

Jump Multipliers Numerical Examples

Using Jumper Function

1. Compute the jump multiplier g/(-) = & mod m, which is a one time
cost.

g’(+) permits jumping from xg to x; to xp; to ...
User supplies one initial seed
If j is chosen well, g/(-) can “plant” additional initial seeds

Each planted seed corresponds to a different stream

o ok w N

Each planted seed is separated by j calls to Random()

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 18 / 37

Jump Multipliers Numerical Examples

Maximal Modulus-Compatible Jump Multiplier

Definition 3.2.1

Given a Lehmer random-number generator with prime modulus m, full-period
modulus-compatible multiplier a, and a requirement for s disjoint streams as widely
separated as possible, the maximal jump multiplier is @ mod m, where j is the largest
integer less than |m/s| such that & mod m is modulus-compatible with m.

| \

Example 3.2.6
Jump multipliers for (a, m) = (48271,2% — 1) = (48271, 2147483647) RNG
of streams s | [m/s] jump size j | jump multiplier @ mod m
1024 21 =] 2082675 | 48271207675
2097151 mod 2147483647 = 97070
512 Tl = | 4170283 | 4827147028
4194303 mod 2147483647 = 44857
256 2ol —| 8367782 | 482718772
8388607 mod 2147483647 = 22925
128 21| — | 16775552 | 4827117752
16777215 mod 2147483647 = 40509

T — S ——— S —
H. Chen (VSU) Multiple Stream RNGs March 1, 2017 19 / 37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

Jump Multiplier Sea Program in C

#include <stdio.h>

long find_m_compatible(long upper,

long a, long m);
long modular_pow (long long base,

long long exponent, long long modulus);
int main()

long a = 482711, m = 21474836471,
nstreams [] = {10241, 5121, 2561, 1281}, i,

for (i = 0;

n =

n;

i < sizeof(nstreams)/sizeof(long); i ++) {
find_m_compatible(m/nstreams [i], a, m);
printf ("%ld _%ld %ld %ld\n", nstreams[i], m/nstreams[i], n,

modular_pow ((long long)a, (long long)n, (long long)m));

return 0;

H. Chen (VS

Multiple Stream RNGs March 1, 2017 20 / 37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

Definition 2.2.1

The multiplier a is modulus-compatible with the prime modulus m if and only if r < g
where r = m mod a and g = |[m/a|

Functions in Jump Multiplier Search Program

| A\

long modular_pow (long long base, long long exponent, long long modulus);

long find_m_compatible(long upper, long a, long m)
{

long i, n, r, q;

for (i = upper; i >=1; i —)

{
n = modular_pow ((long long)a, (long long)i, (long long)m);
r=m%n;

q m/ n;
if (r<aq){ /+ if n is modulus—compatibl with m x/
return i;
}
+
return 0;

v

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 21 /37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

This function is to compute base®P°"®"* mod modulus

Functions in Jump Multiplier Search Program

/*
* Reference
* http://www. sanfoundry .com/cpp—program—implement—modular—exponentiation—algorithm/

* x/
long modular_pow (long long base, long long exponent, long long modulus)
long long result = 111;
while (exponent > 011) {
if (exponent % 211 = 111) {
result = (result * base) % modulus;
exponent = exponent >> 111l ;

base = (base * base) % modulus;

}

return (long) result;

H. Chen (VSU) Multiple Stream RNGs March 1, 2017

22 /37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

Jump Multiplier Search Program in Java

public class JumpMultiplier {
public static void main(String [] args) {
JumpMultiplier jm = new JumpMultiplier ();

long a = 482711, m = 21474836471,
nstreams [] = {10241, 5121, 2561, 1281}, n

for (int i = 0; i < nstreams.length; i ++) {
n = jm.find_.m_compatible(m/nstreams[i], a, m);
System . out.format ("%d_%d _%d _%d\n" , nstreams[i], m/nstreams[i], n
jm.modular_pow(a, n, m));

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 23 /37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

Jump Multiplier Search Program in Java

private long modular_pow(long base, long exponent, long modulus) {
long result = 11;

while (exponent > 01) {

if (exponent % 21 = 11) {
result = (result * base) % modulus;
}
exponent = exponent >> 11;
base = (base * base) % modulus;

return result;

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 24 / 37

Jump Multipliers Numerical Examples

Jump Multiplier: A Simple Search Program

Jump Multiplier Search Program in Java

private long find_m_compatible(long upper, long a, long m) {
long i, n, r, q;
for (i = upper; i >=1; i —) {
n = modular_pow(a, i, m);
r=m%n;
q=m/ n;
if (r<aq) { /x if n is modulus—compatibl with m %/
return i;
}
}
return O0;
}
}

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 25 / 37

Jump Multipliers Numerical Examples

Exericse L6-2

> Use the program discussed above to compute the jump multiplier
table similar to slide 19.

» You will enter, compile, and run the programs.

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 26 / 37

Jump Multipliers Numerical Examples

Library rngs

> rngs is an upward-compatible multi-stream replacement for rng

» By default, provides 256 streams, indexed 0 to 255 (0 is the default)
» Only one stream is active at any time
» Six available functions:
» Random(void)
» PutSeed(long x): superseded by PlantSeeds
> GetSeed(long *x)
» TestRandom(void)
» SelectStream(int s): used to define the active stream
> PlantSeeds(long x): “plants” one seed per stream
» Henceforth, rngs is the library of choice

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 27 / 37

Jump Multipliers Numerical Examples

Example 3.2.7: ssq2 Revisited

» Use rngs functions for GetArrival, GetService
» Include rngs.h and use PlantSeeds(12345)

GetArrival Method

double GetArrival(void) {
static double arrival = START;
SelectStream (0);
arrival += Exponential (2.0);
return (arrival);

GetService Method

—
A,

double GetService (void) {
SelectStream (2);
return (Uniform (1.0, 2.0));

v

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 28 / 37

Jump Multipliers Numerical Examples

Exericse L6-3

Complete Example 3.2.7 as instructed as follows,
» Make a copy of ssq2. To ease the discussion, call the new copy ssq2c

> Replace GetArrival and GetService by those using library rngs. Find
library rngs in Blackboard.

» Set LAST to 1,000,000 jobs

» Compile and run the program. Measure the execution time of new
and original programs

» Compare the results with from those using ssq2 (without any
modification) and those using ssq2b(Exercise L6-1). Are they the
same?

» Compare execution time of the new and originial programs, how much
slower is the new program?

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 29 /37

Jump Multipliers Numerical Examples

Uncoupling Stochastic Processes

>

Per modifications, arrival and service processes are uncoupled

v

Consider changing the service process to
Uniform(0.0,1.5) + Uniform(0.0, 1.5)

Without uncoupling, arrival process sequence would change!

v

With uncoupling, the service process sees exactly the same arrival
sequence

v

v

Important variance reduction technique

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 30 /37

SSQ with Multiple Job Types

Single-Server Service Node with Multiple Job Types

» Extend the single-server service node model from Chapter 1

» Consider multiple job types, each with its own arrival and service
process

» Examples 3.2.8 and 3.2.9: Suppose there are two job types

1. Exponential(4.0) interarrivals, Uniform(1.0, 3.0) service
2. Exponential(6.0) interarrivals, Uniform(0.0, 4.0) service

Use rngs to allocate a different stream to each stochastic process

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 31/37

SSQ with Multiple Job Types

Arrival Process for Multiple Job Types

The arrival process generator in program ssq2 can be modified as follows,

Example 3. Arrival Process

double GetArrival(int xj) { /* returns job type in j x/
const double mean[2] = {4.0, 6.0}; /x two job types x/
static double arrival [2] = {START, START};
static int init = 1;
double temp;
if (init) { /x initialize the arrival array =/
SelectStream (0);
arrival [0] += Exponential(mean[0]);
SelectStream (1);
arrival [1] += Exponential(mean[1]);
init = 0;

}
if (arrlvaI[O] <= arrival [1])

j = 0; / next arrival is job type 0 %/
else
j = 1; / next arrival is job type 1 x/
temp = arrival[xj]; /* next arrival time to be returned x/

SelectStream (*j);
arrival [xj] += Exponential(mean([*j]);/*x arrival after next arrival x/
return (temp);

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 32 /37

SSQ with Multiple Job Types

Service Process for Multiple Job Types

The service process generator in program ssq2 can be modified as follows,

Example 3.2.9: Service Progress

double GetService(int j)

{
const double min[2] = {1.0, 0.0};
const double max[2] = {3.0, 4.0};
/*
* Two RNG streams, i.e., streams 0 and 1 are used in the arrival
% process generator. We now use streams 2 and 3 for the service
* process generator. In the following , j should be either 0 or 1.
* %/
SelectStream (j + 2);
return (Uniform (min[j], max[j]));

}

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 33 /37

SSQ with Multiple Job Types

Service Process for Multiple Job Types

» Index j matches service time to appropriate job type

» All four simulated stochastic processes are uncoupled

» Any process could be changed without altering the random sequence
of others!

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 34 /37

SSQ with Multiple Job Types
Consistency Check

» Additional modification to ssq2
> job-type-specific statistics-gathering needs to be added in the main
method /function

» How do we know if our modifications are correct? Use consistency
check to increase confidence.

»W=d+3

» I=g+%X

» How about average service time of both job types?
Since (1.0 +3.0)/2 = (0.0 +4.0)/2 = 2.0, we expect 5 = 2.0

» How about the net arrival rate of both job types?
Since the arrival rates of job types 0 and 1 are 1/4 and 1/6,
respectively, we expect the net arrival rate should be
1/4+1/6=5/12,ie.,7=1/(5/12) =12/5=2.4.

» The steady-state utilization should be the ratio of the arrival rate to
the service rate, i.e., (5/12)/(1/20 =5/6 ~ 0.83

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 35 /37

SSQ with Multiple Job Types
Exercise L6-4

Modify program ssq2 to support two job types as discussed.
» Make a copy of ssq2. To ease the discussion, call the new copy ssq2d
» Modify program ssq2d as suggested in Examples 3.2.8 and 3.2.9.
» Modify the main method/function to include job-type-specific statisics

» Answer the following questions,
» What portion of processed jobs are of type 07

» What are W, d, 5/, g, and X for each job type?

» What did you do to convince yourself that your results are valid (hint:
consistency check)?

» Why are W, d, and § the same for both job types, while /, G, and 5 are

different?

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 36 / 37

SSQ with Multiple Job Types

Summary

» Multiple stream RNGs

» Generate disjoint random number streams
» Want the streams are far apart

» More simulation examples to be discussed

H. Chen (VSU) Multiple Stream RNGs March 1, 2017 37 /37

	Project
	Introduction
	Streams
	Jump Multipliers
	Numerical Examples

	SSQ with Multiple Job Types

