
Discrete-Event Simulation

Lawrence M. Leemis and Stephen K. Park, Discrete-Event Simul A First Course, Prentice

Hall, 2006

Hui Chen

Computer Science
Virginia State University

Petersburg, Virginia

February 15, 2017

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 1 / 36

Introduction

Introduction

◮ Programs ssq1 and sis1 are trace-driven discrete-event simulations
◮ Both rely on input data from an external source

◮ These realizations of naturally occurring stochastic processes are
limited

◮ Cannot perform “what if” studies without modifying the data

◮ Solution
◮ Convert the single server service node and the simple inventory system

to utilize randomly generated input
◮ Use a random-number generator to produce the randomly generated

input
◮ Discrete-event simulation programs using the randomly generated input

does not depend on external trace data

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 2 / 36

Single Queue Service Node

Single Queue Service Node: Revisited

◮ Need two stochastic assumptions
◮ arrival times
◮ service times

◮ The assumptions governs how arrival and service times are randomly
generated in discrete-event simulation programs

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 3 / 36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

◮ Service time
◮ Range: between 1.0 and 2.0
◮ Distribution within the range?

Without further knowledge, we assume no time is more likely than any
other

◮ To generate service times: use u = Uniform(1.0, 2.0) random variate

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 4 / 36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0, 2.0) random variate?

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 5 / 36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0, 2.0) random variate?

It depends.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 6 / 36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0, 2.0) random variate?

It depends.

In most applications, it is unrealistic to assume service times are uniformly
distributed.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 7 / 36

Single Queue Service Node Exponential Random Variate

Service Time in ssq1.dat Trace Data

Is service times in ssq1.dat uniformly distributed?

0 20 40 60 80
0

100

200

300

400

500

600

s

F
re

q
u

e
n

c
y

min(s) = 0.0030 max(s) = 59.9240

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 8 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential
Distribution

◮ In general, it is unreasonable to assume that all possible values are
equally likely.

◮ Frequently, small values are more likely than large values

◮ Need a non-linear transformation that maps 0 → 1 to 0 → ∞ since
0 < u = Uniform(0, 1) < 1

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 9 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential
Distribution

◮ A common nonlinear transformation is

x = −µln(1− u) (1)

◮ The transformation is monotone increasing, one-to-one, and onto

0 < µ < 1 ⇐⇒ 0 > −u > −1 (2)

⇐⇒ 0 + 1 > −u + 1 < −1 + 1 (3)

⇐⇒ 1 > 1− u > 0 (4)

⇐⇒ ln(1) > ln(1− u) > ln(0) (5)

⇐⇒ 0 > ln(1− u) > ∞ (6)

⇐⇒ 0 < −ln(1− u) < ∞ (7)

⇐⇒ 0 < −µln(1− u) < ∞ (8)

⇐⇒ 0 < x < ∞ (9)

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 10 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential
Distribution

◮ The common nonlinear transformation x = −µln(1− u) is monotone
increasing, one-to-one, and onto

0 < µ < 1 ⇐⇒ 0 < −µln(1− u) < ∞ ⇐⇒ 0 < x < ∞ (10)

which generates Exponential(µ) random variate

0.0 1.0
0.0

x

µ

Figure: Exponential-variate-generation Geometry
H. Chen (VSU) Discrete-Event Simulation February 15, 2017 11 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential
Distribution

◮ The common nonlinear transformation

x = −µln(1− u) (11)

generates Exponential(µ) random variate
◮ Note that 0 < u < 1 and

∫ 1

0
−µln(1 − u)du = −µ

∫ 1

0
ln(1 − u)du (12)

= −µ

∫ 1

0
−ln(1 − u)d(1 − u) = µ

∫ 1

0
ln(1 − u)d(1 − u) (13)

= µ{ln(1 − u)(1 − u)|
1
0 −

∫
1

0
(1 − u)dln(1 − u)} (14)

= µ{0 − (1 − u)
1

1 − u
(1 − u)|

1
0} (15)

= −µ(1 − u)
1

1 − u
(1 − u)|

1
0 = −µ(1 − u)|

1
0 (16)

= µ (17)

i.e., the parameter µ specifies the sample mean

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 12 / 36

Single Queue Service Node Exponential Random Variate

Generating Exponential(µ) Random Variate

Definition 3.1.1 ANSI C Function for Exponential(µ)

double Exponential(double µ)
{
return - µ * log(1.0 - Random());

}

where Random() generates u = Uniform(0, 1) random variate and µ is the
sample mean.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 13 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential
Distribution

In the single-server service node simulation, we use Exponential(µs) to
generate service times,

si = Exponential(µs); i = 1, 2, 3, . . . , n (18)

where µs is the sample mean of service times.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 14 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Interarrival Times: Exponential
Distribution

In the single-server service node simulation, we use Exponential(µa) to
generate interarrival times,

ai = ai−1 + Exponential(µa); i = 1, 2, 3, . . . , n (19)

where µa is the sample mean of interarrival times.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 15 / 36

Single Queue Service Node Exponential Random Variate

Example: Recap

◮ Inter-arrival times
◮ Generating u = Uniform(a, b) random variate
◮ Generating u = Exponential(a) random variate

◮ Service times
◮ Generating u = Uniform(a, b) random variate
◮ Generating u = Exponential(a) random variate

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 16 / 36

Single Queue Service Node Simulation Program

Simulation Program ssq2

◮ Program ssq2 is an extension of ssq1
◮ Interarrival times are drawn from Exponential(2.0)
◮ Service times are drawn from Uniform(1.0, 2.0)

◮ The program generates job-averaged and time-averaged statistics
◮ r : average interarrival time
◮ w : average wait
◮ d : average delay
◮ s: average service time
◮ l : average # in the node
◮ q: average # in the queue
◮ x: server utilization

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 17 / 36

Single Queue Service Node Simulation Program

Exercise L4-1

In this exercise, you are required to complete the following tasks,

◮ Develop ssq2 by revising ssq1 program.

◮ Compile and run the ssq2 program.

◮ When writing the program, meet the following,
◮ Interarrival times are drawn from Uniform(0.0, 6.0)
◮ Service times are drawn from Exponential(2.0)

◮ Submission: the source code of ssq2, the results of the program, and
evidence that your program appears to be correct.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 18 / 36

Single Queue Service Node Simulation Program

Example 3.1.3: Theoretical Result from Analytic Model

◮ The theoretical averages for a single-server service node using
Exponential(2.0) inter-arrivals and Uniform(1.0, 2.0) service times are
(Gross and Harris, 1985),

r w d s l q x
2.00 3.83 2.33 1.50 1.92 1.17 0.75

◮ Although the server is busy only 75% of the time, on average there
are approximately two jobs in the service node

◮ A job can expect to spend more time in the queue than in service

◮ To achieve these averages, many jobs must pass through node

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 19 / 36

Single Queue Service Node Simulation Program

Example 3.1.3: Results from Simulation Program ssq2

◮ The accumulated average wait was printed every 20 jobs

0 100 200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

8

9

Number of jobs (n)

A
v
er

a
g
e

w
a
it

(w
)

Seed: 12345

Seed: 54321

Seed: 2121212

Analytic Model

Figure: Average wait times

◮ The convergence of w is slow, erratic, and dependent on the initial
seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 20 / 36

Single Queue Service Node Simulation Program

Use of Program ssq2

◮ The program can be used to study the steady-state behavior
◮ Will the statistics converge independent of the initial seed?
◮ How many jobs does it take to achieve steady-state behavior?

◮ It can be used to study the transient behavior
◮ Fix the number of jobs processed and replicate the program with the

initial state fixed
◮ Each replication uses a different initial rng seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 21 / 36

Single Queue Service Node Simulation Program

Exericse L4-2

You are required to reproduce the figure in slide 20. You may take steps
below (using the C/C++ program as an example),

◮ Convert the main function int main(void) to function void
SimulateOnce(long seed, long last).

◮ seed: seed of RNG
◮ last: the number of jobs to process

◮ Add the main function in which you call SimulateOnce with seed and
last in a loop with last as the loop variable to simulate with the
number of jobs as 20, 40, . . . , 1000.

◮ Format the output in the “CSV” format.

◮ Run the program and graph the results.

◮ Submission: program source code, running results, and graph.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 22 / 36

Single Queue Service Node Geometric Random Variate

Geometric Random Variables

◮ The Geometric(p) random variate is the discrete analog to a
continuous Exponential(µ) random variate
Let x = Exponential(µ) = µln(1− µ), y = ⌊x⌋, and p = Pr(y 6= 0)

y = ⌊x⌋ 6= 0 ⇐⇒ x ≥ 1 (20)

⇐⇒ µln(1− µ) ≥ 1 (21)

⇐⇒ ln(1− µ) ≤ −1/µ (22)

⇐⇒ 1− µ ≤ e−1/µ (23)

Since 1− µ is also Uniform(0.0, 1.0) and p = Pr(y 6= 0) = e−1/µ

Finally, since µ = −1/ln(p), y = ⌊ln(1− µ)/ln(p)⌋

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 23 / 36

Single Queue Service Node Geometric Random Variate

Generating Geometric(p) Random Variates

Definition 3.1.2 ANSI C Function for Geometric(p)

long Geometric(double p) use 0.0 < p < 1.0
{
return (long)(log(1.0 - Random()) / log(p));

}

◮ Random() generates u = Uniform(0, 1) random variate.

◮ The mean of a Geometric(p) random variate is p/(1− p)
◮ If p is close to zero then the mean will be close to zero
◮ If p is close to one, then the mean will be large

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 24 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

Now consider a composite service model

◮ Assume that jobs arrive at random with a steady-state arrival rate of
0.5 jobs per minute

◮ Assume that Job service times are composite with two components
◮ The number of service tasks is 1 + Geometric(0.9)
◮ The time (in minutes) per task is Uniform(0.1, 0.2)

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 25 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

ANSI C Function for the Composite Service Model

double GetService(void)
{
long k;
double sum = 0.0;
long tasks = 1 + Geometric(0.9);
for (k = 0; k < tasks; k++)
sum += Uniform(0.1, 0.2);

return (sum);
}

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 26 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model: Analytic Model

◮ The theoretical steady-state statistics for this model are

r w d s l q x
2.00 5.77 4.27 1.50 2.89 2.14 0.75

◮ The arrival rate, service rate, and utilization are identical to Example
3.1.3 (See slide 19)

◮ The other four statistics are significantly larger

◮ Performance measures are sensitive to the choice of service time
distribution

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 27 / 36

Simple Inventory System

Simple Inventory System: Example 3.1.5

◮ Program sis2 has randomly generated demands using an
Equilikely(a, b) random variate

◮ Using random data, we can study transient and steady-state behaviors

◮ If (a, b) = (10, 50) and (s,S) = (20, 80), then the approximate
steady-state statistics are

d o u l
+

l
−

30.00 30.00 0.39 42.86 0.26

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 28 / 36

Simple Inventory System

Exercise L4-3

In this exercise, you are required to complete the following tasks,

◮ Compile and run the sis2 program. Document the results.

◮ Make a copy of the sis2 program, revise it to meet the following,
◮ The demand is drawn from Geometric(0.967742)

and then compile and run the program.

◮ Submit your work including both version of the sis2 program and the
results of both runs in Blackboard

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 29 / 36

Simple Inventory System

Effects of Number of Time Intervals and Seed of RNG

◮ The average inventory level l = l
+
− l approaches steady state after

several hundred time intervals

0 50 100 150 200
36

38

40

42

44

46

48

50

52

54

Number of Time Intervals (n)

A
ve

ra
g
e

In
ve

n
to

ry
(l

)

Seed: 12345

Seed: 54321

Seed: 2121212

Analytic Model

Figure: Number of Time Intervals (n)

◮ Convergence is slow, erratic, and dependent on the initial seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 30 / 36

Simple Inventory System

Exercise L4-4

You are required to reproduce the figure in slide 30. You may
take steps below (using the Java program as an example),

◮ Convert the main function public static void main(String[] args) to
function public static void SimulateOnce(long seed, long stop).

◮ seed: seed of RNG; stop: the number of intervals to process
◮ Format the output in the “CSV” format

◮ Add the public static void main(String[] args function in which you
call SimulateOnce with seed and stop in a loop with stop as the loop
variable to simulate with the number of intervals as 5, 10, 15, . . .,
200.

◮ Run the program and graph the results

◮ Submission: program source code, results, and graph.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 31 / 36

Simple Inventory System

Example 3.1.7: Optimal Inventory Policy

◮ If we fix S , we can find the optimal cost by varying s

0 10 20 30 40 50 60
1600

1700

1800

1900

2000

2100

2200

2300

2400

2500

Inventory Parameter

D
ep

en
d
en

t
C

o
st

($
)

n = 100

n = 10000

Figure: Dependent Cost for (s, S) Inventory System

where csetup = $1, 000, chold = 25, cshort = 700,
min(DependentCost) = $1, 624.86, and s = 24.

◮ Recall that the dependent cost ignores the fixed cost of each item

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 32 / 36

Simple Inventory System

Example 3.1.7: Discussion

◮ Using a fixed initial seed guarantees the exact same demand sequence
◮ Any changes to the system are caused solely by the change of s

◮ A steady state study of this system is unreasonable
◮ All parameters would have to remain fixed for many years
◮ When n = 100 we simulate approximately 2 years
◮ When n = 10000 we simulate approximately 192 years

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 33 / 36

Simple Inventory System

Statistical Considerations

◮ Example 3.1.7 illustrates two consideration
◮ Variance reduction
◮ Robust estimation

◮ With Variance Reduction, we eliminate all sources of variance except
one

◮ Transient behavior will always have some inherent uncertainty
◮ We kept the same initial seed and changed only s

◮ Robust Estimation occurs when a data point that is not sensitive to
small changes in assumptions

◮ Values of s close to 23 have essentially the same cost
◮ Would the cost be more sensitive to changes in S or other assumed

values?

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 34 / 36

Simple Inventory System

Exercise L4-5

You are required to reproduce the figure in slide 32.
Hints (using the Java program as an example):

◮ Revise
public static void SimulateOnce(long seed, long stop)

throws IOException {

to

public static void SimulateOnce(long seed, long stop, int slower)

throws IOException {

where slower is s is (s,S) in the inventory system.

◮ In the main method/function, call the SimulateOnce method/function with
stop = 100 and stop = 10000, respectively in two loops whose loop variable
changes from slower = 0 to slower = 60 with increment 1.

◮ Let csetup = $1, 000, chold = 25, and cshort = 700. Compute the dependent cost in
an Excel workbook. Graph the cost versus s for the two stop values.

Cdependent = csetupu + chold l
+
+ cshort l

−

◮ Submission: both the program and the Excel workbook.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 35 / 36

Simple Inventory System

Summary

◮ Discrete-Event Simulations: random variate vs. trace

◮ Revisited SSQ

◮ Revisited SIS

◮ Variance reduction and robust estimation

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 36 / 36

	Introduction
	Single Queue Service Node
	Uniform Random Variate
	Exponential Random Variate
	Simulation Program
	Geometric Random Variate
	Composite Service Model

	Simple Inventory System

