Discrete-Event Simulation

Lawrence M. Leemis and Stephen K. Park, Discrete-Event Simul A First Course, Prentice
Hall, 2006

Hui Chen

Computer Science
Virginia State University
Petersburg, Virginia

February 15, 2017

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 1/36

Introduction

Introduction

>

Programs ssql and sisl are trace-driven discrete-event simulations
» Both rely on input data from an external source

v

These realizations of naturally occurring stochastic processes are
limited

v

Cannot perform “what if” studies without modifying the data
Solution

v

» Convert the single server service node and the simple inventory system
to utilize randomly generated input

» Use a random-number generator to produce the randomly generated
input

» Discrete-event simulation programs using the randomly generated input
does not depend on external trace data

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 2 /36

Single Queue Service Node

Single Queue Service Node: Revisited

» Need two stochastic assumptions

» arrival times
> service times

» The assumptions governs how arrival and service times are randomly
generated in discrete-event simulation programs

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 3/36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

» Service time
» Range: between 1.0 and 2.0

» Distribution within the range?
Without further knowledge, we assume no time is more likely than any

other
» To generate service times: use u = Uniform(1.0,2.0) random variate

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 4 /36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 5/ 36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?

It depends.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 6 /36

Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?

It depends.

In most applications, it is unrealistic to assume service times are uniformly
distributed.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 7/ 36

Single Queue Service Node

Exponential Random Variate

Service Time in ssql.dat Trace Data

Is service times in ssql.dat uniformly distributed?

600

500

400

300

Frequency

200

100

H. Chen (VSU)

min(s) = 0.0030 max(s) = 59.9240

20 40 60
S

Discrete-Event Simulation

80

February 15, 2017

8/ 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

> In general, it is unreasonable to assume that all possible values are
equally likely.
» Frequently, small values are more likely than large values

> Need a non-linear transformation that maps 0 — 1 to 0 — oo since
0 < u = Uniform(0,1) < 1

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 9 /36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» A common nonlinear transformation is

x = —pin(l — u) (1)

» The transformation is monotone increasing, one-to-one, and onto

O<pu<l <= 0>-u>-1 (2)
— 0+1>—-u+1l<-1+1 (3)
<~ 1>1—-u>0 (4)
<= In(1) > In(1 — u) > In(0) (5)
< 0>In(l—u)>o0 (6)
— 0<—In(l-—u)<oo (7)
— 0< —pun(l—u)<oo (8)
— 0<x< o0 (9)

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 10 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» The common nonlinear transformation x = —u/n(1 — u) is monotone
increasing, one-to-one, and onto

O<pu<l<=0<—puh(l-u)<w<=0<x<x (10)

which generates Exponential(j1) random variate

|
I
I
!
0.0 H 1.0
Figure: Exponential-variate-generation Geometry
H. Chen (VSU) Discrete-Event Simulation February 15, 2017 11 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» The common nonlinear transformation
x = —pln(1l — u) (11)

generates Exponential(1) random variate
> Note that 0 < u < 1 and

1 1

/0 —pin(l — u)du = 7;1,/0 In(1 — u)du (12)
1 1

- 7”/0 —in(1 — u)d(L — u) = ”/o In(1 — w)d(1 — u) (13)
= a{n(l— w1 — u)f} - /01(1 ~ u)din(1 — u)} (14)

1 1
= “{O_(l_u)l,u(l_”)‘o} (15)

_ L 1_ 1

= —H(l—u)liu(l—u)lof —u(l = u)lp (16)
= u (17)

i.e., the parameter 1 specifies the sample mean

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 12 / 36

Single Queue Service Node Exponential Random Variate

Generating Exponential(p) Random Variate

Definition 3.1.1 ANSI C Function for Exponential(y)
double Exponential(double 1)

{

return - p * log(1.0 - Random());

}

where Random() generates u = Uniform(0, 1) random variate and f is the

sample mean.

H. Chen (VSU) Discrete-Event Simulation

February 15, 2017

13 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

In the single-server service node simulation, we use Exponential(us) to
generate service times,

si = Exponential(ps); i=1,2,3,...,n (18)

where ps is the sample mean of service times.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 14 / 36

Single Queue Service Node Exponential Random Variate

Example: Generating Interarrival Times: Exponential

Distribution

In the single-server service node simulation, we use Exponential(j,) to
generate interarrival times,

a;j = aj_1 + Exponential(p,); i=1,2,3,...,n (19)

where 1, is the sample mean of interarrival times.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 15 / 36

Single Queue Service Node Exponential Random Variate

Example: Recap

» Inter-arrival times

» Generating u
» Generating u

» Service times

» Generating u
» Generating u

H. Chen (VSU)

Uniform(a, b) random variate
Exponential(a) random variate

Uniform(a, b) random variate
Exponential(a) random variate

Discrete-Event Simulation

February 15, 2017

16 / 36

Single Queue Service Node Simulation Program

Simulation Program ssq2

» Program ssq2 is an extension of ssql
> Interarrival times are drawn from Exponential(2.0)
> Service times are drawn from Uniform(1.0,2.0)

» The program generates job-averaged and time-averaged statistics

> T: average interarrival time
W: average wait

average delay

average service time

average # in the node

average # in the queue

server utilization

v

vVVYVvVVvy
xlQl ='ulals

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 17 / 36

Single Queue Service Node Simulation Program

Exercise L4-1

In this exercise, you are required to complete the following tasks,

» Develop ssq2 by revising ssq1 program.
» Compile and run the ssq2 program.
» When writing the program, meet the following,

> Interarrival times are drawn from Uniform(0.0, 6.0)
> Service times are drawn from Exponential(2.0)

» Submission: the source code of ssq2, the results of the program, and
evidence that your program appears to be correct.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 18 / 36

Single Queue Service Node Simulation Program

Example 3.1.3: Theoretical Result from Analytic Model

» The theoretical averages for a single-server service node using
Exponential(2.0) inter-arrivals and Uniform(1.0,2.0) service times are
(Gross and Harris, 1985),

7 w d 3 1] X
200 3.83 233 150 192 117 0.75

» Although the server is busy only 75% of the time, on average there
are approximately two jobs in the service node

» A job can expect to spend more time in the queue than in service

» To achieve these averages, many jobs must pass through node

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 19 / 36

Single Queue Service Node Simulation Program

Example 3.1.3: Results from Simulation Program ssq2

> The accumulated average wait was printed every 20 jobs

9 E—— T T T T T T T
o Seed: 12345
sl ° o Seed: 54321 ||
° « Seed:2121212
° o Analytic Model
7 o .l
3 6f 1
= oy
° 000
£ st o ° Ceo, p
2 o, 009000000000
= * M o %o, ©°90005,0
4r ; *u %000400 009060 PO o
o;a’ 059 M AR T T *
3700000«700000 7
.

2
0 100 200 300 400 500 600 700 800 900 1000
Number of jobs (n)

Figure: Average wait times

» The convergence of W is slow, erratic, and dependent on the initial
seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 20 / 36

Single Queue Service Node Simulation Program

Use of Program ssq2

» The program can be used to study the steady-state behavior

» Will the statistics converge independent of the initial seed?
» How many jobs does it take to achieve steady-state behavior?

> It can be used to study the transient behavior

» Fix the number of jobs processed and replicate the program with the
initial state fixed
» Each replication uses a different initial rng seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 21/ 36

Single Queue Service Node Simulation Program

Exericse L4-2

You are required to reproduce the figure in slide 20. You may take steps
below (using the C/C++ program as an example),
» Convert the main function int main(void) to function void
SimulateOnce(long seed, long last).
> seed: seed of RNG
> last: the number of jobs to process

» Add the main function in which you call SimulateOnce with seed and
last in a loop with /ast as the loop variable to simulate with the
number of jobs as 20, 40, ..., 1000.

» Format the output in the “CSV" format.

» Run the program and graph the results.

» Submission: program source code, running results, and graph.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 22 / 36

Single Queue Service Node Geometric Random Variate

Geometric Random Variables

» The Geometric(p) random variate is the discrete analog to a
continuous Exponential(j1) random variate
Let x = Exponential(p) = uIn(1 — p), y = |x], and p = Pr(y # 0)

y=Ix]#0=x=1 (20)
< pln(l—p) >1 (21)
= In(1—p) < —1/p (22)
= 1-p<e (23)

Since 1 — i is also Uniform(0.0,1.0) and p = Pr(y # 0) = e~ 1/#
Finally, since u = —1/In(p), y = |In(1 — u)/In(p)]

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 23 / 36

Single Queue Service Node Geometric Random Variate

Generating Geometric(p) Random Variates

Definition 3.1.2 ANSI C Function for Geometric(p)
long Geometric(double p) use 0.0 < p < 1.0

{
: return (long)(log(1.0 - Random()) / log(p));

» Random() generates u = Uniform(0,1) random variate.
» The mean of a Geometric(p) random variate is p/(1 — p)

> If pis close to zero then the mean will be close to zero
» If pis close to one, then the mean will be large

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 24 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

Now consider a composite service model

Assume that jobs arrive at random with a steady-state arrival rate of
0.5 jobs per minute

Assume that Job service times are composite with two components

» The number of service tasks is 1 + Geometric(0.9)
> The time (in minutes) per task is Uniform(0.1,0.2)

>

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 25 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

ANSI C Function for the Composite Service Model

double GetService(void)
{
long k;
double sum = 0.0;
long tasks = 1 + Geometric(0.9);
for (k = 0; k < tasks; k++)
sum += Uniform(0.1, 0.2);
return (sum);

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 26 / 36

Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model: Analytic Model

>

The theoretical steady-state statistics for this model are

7 w d 5 1 g X
200 577 427 150 289 214 0.75
The arrival rate, service rate, and utilization are identical to Example
3.1.3 (See slide 19)

The other four statistics are significantly larger

v

v

v

Performance measures are sensitive to the choice of service time
distribution

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 27 / 36

Simple Inventory System

Simple Inventory System: Example 3.1.5

» Program sis2 has randomly generated demands using an
Equilikely(a, b) random variate

» Using random data, we can study transient and steady-state behaviors
» If (a, b) = (10,50) and (s,S) = (20,80), then the approximate
steady-state statistics are
d s u I T
30.00 30.00 0.39 4286 0.26

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 28 / 36

Simple Inventory System

Exercise L4-3

In this exercise, you are required to complete the following tasks,

» Compile and run the sis2 program. Document the results.
» Make a copy of the sis2 program, revise it to meet the following,
» The demand is drawn from Geometric(0.967742)

and then compile and run the program.

» Submit your work including both version of the sis2 program and the
results of both runs in Blackboard

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 29 / 36

Simple Inventory System

Effects of Number of Time Intervals and Seed of RNG

» The average inventory level | = A approaches steady state after
several hundred time intervals

54 :
M o Seed: 12345
52 o Seed:54321 1
Seed: 2121212
501 s Analytic Model ||
T 48t]
g
;46* o0 ooo 4
= o, og
44, * + * 4
o . $E T 0590090000000
L |- o Ea 2 |
40 °° ¢]
o
38l © E
B
36 ‘ ‘ ‘
0 50 100 150 200

Number of Time Intervals (n)

Figure: Number of Time Intervals (n)

» Convergence is slow, erratic, and dependent on the initial seed

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 30/ 36

Simple Inventory System

Exercise L4-4

You are required to reproduce the figure in slide 30. You may

take
»

steps below (using the Java program as an example),

Convert the main function public static void main(String[] args) to
function public static void SimulateOnce(long seed, long stop).

» seed: seed of RNG; stop: the number of intervals to process
» Format the output in the “CSV” format

Add the public static void main(String[] args function in which you
call SimulateOnce with seed and stop in a loop with stop as the loop
variable to simulate with the number of intervals as 5, 10, 15, ...,
200.

Run the program and graph the results

Submission: program source code, results, and graph.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 31/ 36

Simple Inventory System

Example 3.1.7: Optimal Inventory Policy

> If we fix S, we can find the optimal cost by varying s

2500
° n=100
24001+ + n=10000
2300¢,° ogt]
%o o
H
*00 .
- s i
. oot
M oe® 1
v oo 0%
. o
o @
"2 g0t 1
’; ﬂ"
1700+ 08e3°"° . 1
e, 0® 80
1600 ‘ +07,2020028 ‘ ‘
10 20 30 40 50 60

Inventory Parameter

Figure: Dependent Cost for (s, S) Inventory System

where Ceetyp = $1,000, Cholg = 25, Cshort = 700,
min(DependentCost) = $1,624.86, and s = 24.

» Recall that the dependent cost ignores the fixed cost of each item

H. Chen (VSU) Discrete-Event Simulation February 15, 2017

32 /36

Simple Inventory System

Example 3.1.7: Discussion

> Using a fixed initial seed guarantees the exact same demand sequence
» Any changes to the system are caused solely by the change of s
> A steady state study of this system is unreasonable

» All parameters would have to remain fixed for many years
» When n = 100 we simulate approximately 2 years
» When n = 10000 we simulate approximately 192 years

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 33 /36

Simple Inventory System

Statistical Considerations

> Example 3.1.7 illustrates two consideration
» Variance reduction
> Robust estimation

» With Variance Reduction, we eliminate all sources of variance except
one

» Transient behavior will always have some inherent uncertainty
» We kept the same initial seed and changed only s
» Robust Estimation occurs when a data point that is not sensitive to
small changes in assumptions
» Values of s close to 23 have essentially the same cost

» Would the cost be more sensitive to changes in S or other assumed
values?

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 34 / 36

Simple Inventory System

Exercise L4-5

You are required to reproduce the figure in slide 32.
Hints (using the Java program as an example):
> Revise

public static void SimulateOnce(long seed, long stop)
throws IOException {

to

public static void SimulateOnce(long seed, long stop, int slower)
throws IOException {

where slower is s is (s, S) in the inventory system.

> In the main method/function, call the SimulateOnce method/function with
stop = 100 and stop = 10000, respectively in two loops whose loop variable
changes from slower = 0 to slower = 60 with increment 1.

> Let Csetup = $1,000, Chorg = 25, and cshort = 700. Compute the dependent cost in
an Excel workbook. Graph the cost versus s for the two stop values.

— -+ 7
Cdependent = CsetupU + Chotd! 4 Cshort!

» Submission: both the program and the Excel workbook.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 35 / 36

Simple Inventory System

Summary

Discrete-Event Simulations: random variate vs. trace
Revisited SSQ
Revisited SIS

Variance reduction and robust estimation

v

v

v

v

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 36 / 36

	Introduction
	Single Queue Service Node
	Uniform Random Variate
	Exponential Random Variate
	Simulation Program
	Geometric Random Variate
	Composite Service Model

	Simple Inventory System

