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Introduction

Introduction

>

Programs ssql and sisl are trace-driven discrete-event simulations
» Both rely on input data from an external source

v

These realizations of naturally occurring stochastic processes are
limited

v

Cannot perform “what if” studies without modifying the data
Solution

v

» Convert the single server service node and the simple inventory system
to utilize randomly generated input

» Use a random-number generator to produce the randomly generated
input

» Discrete-event simulation programs using the randomly generated input
does not depend on external trace data
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Single Queue Service Node

Single Queue Service Node: Revisited

» Need two stochastic assumptions

» arrival times
> service times

» The assumptions governs how arrival and service times are randomly
generated in discrete-event simulation programs
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Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

» Service time
» Range: between 1.0 and 2.0

» Distribution within the range?
Without further knowledge, we assume no time is more likely than any

other
» To generate service times: use u = Uniform(1.0,2.0) random variate
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Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?
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Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?

It depends.
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Single Queue Service Node Uniform Random Variate

Example: Generating Service Times: Uniform Distribution

Is it reasonable to assume that service times are uniformly distributed, e.g.,
service times are generated using u = Uniform(1.0,2.0) random variate?

It depends.

In most applications, it is unrealistic to assume service times are uniformly
distributed.
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Single Queue Service Node

Exponential Random Variate

Service Time in ssql.dat Trace Data

Is service times in ssql.dat uniformly distributed?
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Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

> In general, it is unreasonable to assume that all possible values are
equally likely.
» Frequently, small values are more likely than large values

> Need a non-linear transformation that maps 0 — 1 to 0 — oo since
0 < u = Uniform(0,1) < 1
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Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» A common nonlinear transformation is

x = —pin(l — u) (1)

» The transformation is monotone increasing, one-to-one, and onto

O<pu<l <= 0>-u>-1 (2)
— 0+1>—-u+1l<-1+1 (3)
<~ 1>1—-u>0 (4)
<= In(1) > In(1 — u) > In(0) (5)
< 0>In(l—u)>o0 (6)
— 0<—In(l-—u)<oo (7)
— 0< —pun(l—u)<oo (8)
— 0<x< o0 (9)
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Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» The common nonlinear transformation x = —u/n(1 — u) is monotone
increasing, one-to-one, and onto

O<pu<l<=0<—puh(l-u)<w<=0<x<x (10)

which generates Exponential(j1) random variate
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Figure: Exponential-variate-generation Geometry
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Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

» The common nonlinear transformation
x = —pln(1l — u) (11)

generates Exponential(1) random variate
> Note that 0 < u < 1 and

1 1

/0 —pin(l — u)du = 7;1,/0 In(1 — u)du (12)
1 1

- 7”/0 —in(1 — u)d(L — u) = ”/o In(1 — w)d(1 — u) (13)
= a{n(l— w1 — u)f} - /01(1 ~ u)din(1 — u)} (14)

1 1
= “{O_(l_u)l,u(l_”)‘o} (15)

_ L 1_ 1

= —H(l—u)liu(l—u)lof —u(l = u)lp (16)
= u (17)

i.e., the parameter 1 specifies the sample mean
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Single Queue Service Node Exponential Random Variate

Generating Exponential(p) Random Variate

Definition 3.1.1 ANSI C Function for Exponential(y)
double Exponential(double 1)

{

return - p * log(1.0 - Random());

}

where Random() generates u = Uniform(0, 1) random variate and f is the

sample mean.
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Single Queue Service Node Exponential Random Variate

Example: Generating Service Times: Exponential

Distribution

In the single-server service node simulation, we use Exponential(us) to
generate service times,

si = Exponential(ps); i=1,2,3,...,n (18)

where ps is the sample mean of service times.
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Single Queue Service Node Exponential Random Variate

Example: Generating Interarrival Times: Exponential

Distribution

In the single-server service node simulation, we use Exponential(j,) to
generate interarrival times,

a;j = aj_1 + Exponential(p,); i=1,2,3,...,n (19)

where 1, is the sample mean of interarrival times.

H. Chen (VSU) Discrete-Event Simulation February 15, 2017 15 / 36



Single Queue Service Node Exponential Random Variate

Example: Recap

» Inter-arrival times

» Generating u
» Generating u

» Service times

» Generating u
» Generating u

H. Chen (VSU)

Uniform(a, b) random variate
Exponential(a) random variate
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Single Queue Service Node Simulation Program

Simulation Program ssq2

» Program ssq2 is an extension of ssql
> Interarrival times are drawn from Exponential(2.0)
> Service times are drawn from Uniform(1.0,2.0)

» The program generates job-averaged and time-averaged statistics

> T: average interarrival time
W: average wait

average delay

average service time

average # in the node

average # in the queue

server utilization

v

vVVYVvVVvy
xlQl ='ulals
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Single Queue Service Node Simulation Program

Exercise L4-1

In this exercise, you are required to complete the following tasks,

» Develop ssq2 by revising ssq1 program.
» Compile and run the ssq2 program.
» When writing the program, meet the following,

> Interarrival times are drawn from Uniform(0.0, 6.0)
> Service times are drawn from Exponential(2.0)

» Submission: the source code of ssq2, the results of the program, and
evidence that your program appears to be correct.
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Single Queue Service Node Simulation Program

Example 3.1.3: Theoretical Result from Analytic Model

» The theoretical averages for a single-server service node using
Exponential(2.0) inter-arrivals and Uniform(1.0,2.0) service times are
(Gross and Harris, 1985),

7 w d 3 1 ] X
200 3.83 233 150 192 117 0.75

» Although the server is busy only 75% of the time, on average there
are approximately two jobs in the service node

» A job can expect to spend more time in the queue than in service

» To achieve these averages, many jobs must pass through node
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Single Queue Service Node Simulation Program

Example 3.1.3: Results from Simulation Program ssq2

> The accumulated average wait was printed every 20 jobs
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Figure: Average wait times

» The convergence of W is slow, erratic, and dependent on the initial
seed
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Single Queue Service Node Simulation Program

Use of Program ssq2

» The program can be used to study the steady-state behavior

» Will the statistics converge independent of the initial seed?
» How many jobs does it take to achieve steady-state behavior?

> It can be used to study the transient behavior

» Fix the number of jobs processed and replicate the program with the
initial state fixed
» Each replication uses a different initial rng seed
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Single Queue Service Node Simulation Program

Exericse L4-2

You are required to reproduce the figure in slide 20. You may take steps
below (using the C/C++ program as an example),
» Convert the main function int main(void) to function void
SimulateOnce(long seed, long last).
> seed: seed of RNG
> last: the number of jobs to process

» Add the main function in which you call SimulateOnce with seed and
last in a loop with /ast as the loop variable to simulate with the
number of jobs as 20, 40, ..., 1000.

» Format the output in the “CSV" format.

» Run the program and graph the results.

» Submission: program source code, running results, and graph.
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Single Queue Service Node Geometric Random Variate

Geometric Random Variables

» The Geometric(p) random variate is the discrete analog to a
continuous Exponential(j1) random variate
Let x = Exponential(p) = uIn(1 — p), y = |x], and p = Pr(y # 0)

y=Ix]#0=x=1 (20)
< pln(l—p) >1 (21)
= In(1—p) < —1/p (22)
= 1-p<e (23)

Since 1 — i is also Uniform(0.0,1.0) and p = Pr(y # 0) = e~ 1/#
Finally, since u = —1/In(p), y = |In(1 — u)/In(p)]
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Single Queue Service Node Geometric Random Variate

Generating Geometric(p) Random Variates

Definition 3.1.2 ANSI C Function for Geometric(p)
long Geometric(double p) use 0.0 < p < 1.0

{
: return (long)(log(1.0 - Random()) / log(p));

» Random() generates u = Uniform(0,1) random variate.
» The mean of a Geometric(p) random variate is p/(1 — p)

> If pis close to zero then the mean will be close to zero
» If pis close to one, then the mean will be large
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Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

Now consider a composite service model

Assume that jobs arrive at random with a steady-state arrival rate of
0.5 jobs per minute

Assume that Job service times are composite with two components

» The number of service tasks is 1 + Geometric(0.9)
> The time (in minutes) per task is Uniform(0.1,0.2)

>
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Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model

ANSI C Function for the Composite Service Model

double GetService(void)
{
long k;
double sum = 0.0;
long tasks = 1 + Geometric(0.9);
for (k = 0; k < tasks; k++)
sum += Uniform(0.1, 0.2);
return (sum);
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Single Queue Service Node Composite Service Model

Example 3.1.4: Composite Service Model: Analytic Model

>

The theoretical steady-state statistics for this model are

7 w d 5 1 g X
200 577 427 150 289 214 0.75
The arrival rate, service rate, and utilization are identical to Example
3.1.3 (See slide 19)

The other four statistics are significantly larger

v

v

v

Performance measures are sensitive to the choice of service time
distribution
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Simple Inventory System

Simple Inventory System: Example 3.1.5

» Program sis2 has randomly generated demands using an
Equilikely(a, b) random variate

» Using random data, we can study transient and steady-state behaviors
» If (a, b) = (10,50) and (s,S) = (20,80), then the approximate
steady-state statistics are
d s u I T
30.00 30.00 0.39 4286 0.26
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Simple Inventory System

Exercise L4-3

In this exercise, you are required to complete the following tasks,

» Compile and run the sis2 program. Document the results.
» Make a copy of the sis2 program, revise it to meet the following,
» The demand is drawn from Geometric(0.967742)

and then compile and run the program.

» Submit your work including both version of the sis2 program and the
results of both runs in Blackboard
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Simple Inventory System

Effects of Number of Time Intervals and Seed of RNG

» The average inventory level | = A approaches steady state after
several hundred time intervals
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Figure: Number of Time Intervals (n)

» Convergence is slow, erratic, and dependent on the initial seed
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Simple Inventory System

Exercise L4-4

You are required to reproduce the figure in slide 30. You may

take
»

steps below (using the Java program as an example),

Convert the main function public static void main(String[] args) to
function public static void SimulateOnce(long seed, long stop).

» seed: seed of RNG; stop: the number of intervals to process
» Format the output in the “CSV” format

Add the public static void main(String[] args function in which you
call SimulateOnce with seed and stop in a loop with stop as the loop
variable to simulate with the number of intervals as 5, 10, 15, ...,
200.

Run the program and graph the results

Submission: program source code, results, and graph.
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Simple Inventory System

Example 3.1.7: Optimal Inventory Policy

> If we fix S, we can find the optimal cost by varying s
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Figure: Dependent Cost for (s, S) Inventory System

where Ceetyp = $1,000, Cholg = 25, Cshort = 700,
min(DependentCost) = $1,624.86, and s = 24.

» Recall that the dependent cost ignores the fixed cost of each item
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Simple Inventory System

Example 3.1.7: Discussion

> Using a fixed initial seed guarantees the exact same demand sequence
» Any changes to the system are caused solely by the change of s
> A steady state study of this system is unreasonable

» All parameters would have to remain fixed for many years
» When n = 100 we simulate approximately 2 years
» When n = 10000 we simulate approximately 192 years
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Simple Inventory System

Statistical Considerations

> Example 3.1.7 illustrates two consideration
» Variance reduction
> Robust estimation

» With Variance Reduction, we eliminate all sources of variance except
one

» Transient behavior will always have some inherent uncertainty
» We kept the same initial seed and changed only s
» Robust Estimation occurs when a data point that is not sensitive to
small changes in assumptions
» Values of s close to 23 have essentially the same cost

» Would the cost be more sensitive to changes in S or other assumed
values?
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Simple Inventory System

Exercise L4-5

You are required to reproduce the figure in slide 32.
Hints (using the Java program as an example):
> Revise

public static void SimulateOnce(long seed, long stop)
throws IOException { ......

to

public static void SimulateOnce(long seed, long stop, int slower)
throws IOException { ......

where slower is s is (s, S) in the inventory system.

> In the main method/function, call the SimulateOnce method/function with
stop = 100 and stop = 10000, respectively in two loops whose loop variable
changes from slower = 0 to slower = 60 with increment 1.

> Let Csetup = $1,000, Chorg = 25, and cshort = 700. Compute the dependent cost in
an Excel workbook. Graph the cost versus s for the two stop values.

— -+ 7
Cdependent = CsetupU + Chotd! 4 Cshort!

» Submission: both the program and the Excel workbook.
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Simple Inventory System

Summary

Discrete-Event Simulations: random variate vs. trace
Revisited SSQ
Revisited SIS

Variance reduction and robust estimation

v

v

v

v
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