Single-Server Queue

Hui Chen, Ph.D.

Department of Engineering & Computer Science

Virginia State University

Outline

- Discussion on project 0
- Single-server queue
 - Concept model
 - Specification model
 - Simulation model and program
 - Numerical examples (Test cases for simulation program)
 - Job-averaged statistics
 - Time-averaged statistics
 - Applications

Single-Server Queue

- A single-server service node consists of a server plus its queue
- Example Applications
 - Switches & routers
 - Telephony switching
 - Frame/packet forwarding (switching & routing)
 - Blanket paging in PCS
 - Single-CPU server
 - Single elevator building
 - Drive-by restaurant with a single waiter

•

Building DES Model

- Algorithm 1.1: How to develop a model?
 - Determine goals and objectives
 - Build a conceptual model
 - Convert into a specification model
 - Convert into a computational model
 - Verify: do we build the model right (do we meet the specification)?
 - Validate: do we build the right model (do we analyze the system to be analyzed)?
- An iterative process

Building DES Model: Three Levels

Conceptual

- How comprehensive should the model be?
- What are the state variables, which are dynamic, which are stochastic, which are important?
- System diagrams
- Specification
 - On paper
 - May involve equations, pseudo-code, algorithms, etc
 - How will the model receive input, what the output are
- Computational
 - A computer program
 - General purpose or simulation programming language?

Verification vs. Validation

Verification

- Did we build the model right?
 - Computational model should be consistent with specification

Validation

- Did we building the right model?
 - Computational model should be consistent with the system analyzed
 - Can an expert distinguish simulation output from system output?

Single-Server Queue

• From "<u>Dear Mona, Which Is The Fastest Check-Out Lane At The Grocery Store?</u>" by Mona Chalabi, originally appears in Operations Management, 5th Edition by "R. Dan Reid, Nada R. Sanders", 2010

Let's Answer a Few Questions

- What should the goals and objectives be?
- What should the conceptual model be?
 - How comprehensive should the model be?
 - What are the state variables, which are dynamic, which are stochastic, which are important?
 - Can we illustrate the conceptual model in a diagram?

```
System Diagram
```


Queue and Service Model

- Queue
 - Queuing discipline: how to select a job from the queue
 - FIFO/FCFS: first in, first out/first come, first serve
 - LIFO: last in, first out
 - SIRO: serve in random order
 - Priority: e.g., shortest job first (SJF)
 - Capacity
 - Unless otherwise noted, assume FIFO with *infinite* queue capacity
- Service model
 - Non-preemptive
 - Once initiated, service of job will continue until completed
 - Conservative
 - Server will never remain idle if there is any job in the service node

Let's Answer a Few More Questions

- How do we specify the model?
 - How will the model receive input, what the output are?
 - How will the input affect the output?
 - How will we meet the goals and objectives?
- We need to specify those without ambiguity.

Specification

- Arrival time: a_i
- Delay in queue (queuing delay): d_i
- Time that service begins: $b_i = a_i + d_i$
- Service time: s_i
- Wait in the node (total delay): $w_i = d_i + s_i$
- Departure time: $c_i = a_i + w_i$

Arrivals

• Inter-arrival time between jobs *i*-1 and *i*

 $r_i = a_i - a_{i-1}$ where $r_1 = 0$

Note

Let's Answer a Few More Questions

• Given the arrival times and service times, how may the delay times be computed? (Computational Model)

How do jobs experience delay?

• If $a_i < c_{i-1}$, job *i* arrives before job *i-1* completes

• If $a_i \ge c_{i-1}$, job *i* arrives after job *i-1* completes

Algorithm 1.2.1 Delay of Each Job (Single-Server FIFO Service Node with Infinite Capacity)

```
c_0 = 0.0;
                               /* assumes that a_0 = 0.0 */
i = 0:
while ( more jobs to process ) {
     i++:
     a_i = \text{GetArrival}();
     if (a_i < c_{i-1})
          d_i = c_{i-1} - a_i;
     else
          d_i = 0.0;
     s_i = \text{GetService}();
     c_i = a_i + d_i + s_i
n = i;
return d_1, d_2, \ldots, d_n;
```

Trace-driven Simulation

- Simulation driven by external data (i.e., a trace)
- Trace can be a running record of a real system

Algorithm 1.2.1 Processing 10 Jobs

	i	1	2	3	4	5	6	7	8	9	10
read from file	ai	15	47	71	111	123	152	166	226	310	320
from algorithm	di	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

• Running algorithm manually

Let's Answer a Few More Questions

• What were our goals and objectives?

Output Statistics

- Gain insight from various statistics!
- Examples
 - Job/Customer perspective: waiting time
 - Managing perspective: utilization
- Job-averaged statistics
- Time-average statistics

Job-Averaged Statistics (1)

• Average inter-arrival time

$$\overline{r} = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{a_n}{n}$$

- Arrival rate: inverse of average inter-arrival time
- Average service time

$$\overline{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

• Service rate: inverse of average service time

Exercise L2-1

	i	1	2	3	4	5	6	7	8	9	10
read from file	ai	15	47	71	111	123	152	166	226	310	320
from algorithm	di	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

- Examine the above 10 Jobs without running Algorithm 1.2.1
 - Average inter-arrival time?
 - Average service time?
 - Arrival rate?
 - Service rate?
 - What conclusion can you draw from the above statistics?
 - Hint: compare arrival rate and service rate

Job-Averaged Statistics (2)

• Average delay

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

• Average wait

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i$$

• Since
$$w_i = d_i + s_i$$

 $\overline{w} = \frac{1}{n} \sum_{i=1}^n w_i = \frac{1}{n} \sum_{i=1}^n (d_i + s_i) = \frac{1}{n} \sum_{i=1}^n d_i + \frac{1}{n} \sum_{i=1}^n s_i = \overline{d} + \overline{s}$

Exercise L2-2

	i	1	2	3	4	5	6	7	8	9	10
read from file	ai	15	47	71	111	123	152	166	226	310	320
from algorithm	di	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

- Use Algorithm 1.2.1 Processing 10 Jobs
 - Average delay?
 - Average wait?
 - Consistency check (part of verification)

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i = \frac{1}{n} \sum_{i=1}^{n} (d_i + s_i) = \frac{1}{n} \sum_{i=1}^{n} d_i + \frac{1}{n} \sum_{i=1}^{n} s_i = \overline{d} + \overline{s}$$

Time-Averaged Statistics (1)

- Defined by the area under a curve (integration)
- Single-Server Queue: Start with statistics at time t
 - l(t): number of jobs in the service node at time t
 - q(t): number of jobs in the queue at time t
 - x(t): number of jobs in service at time t

Time-Averaged Statistics: Example of *l(t)*

	i	1	2	3	4	5	6	7	8	9	10
read from file	ai	15	47	71	111	123	152	166	226	310	320
from algorithm	di	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

Time-Averaged Statistics (2)

- Defined by the area under a curve (integral)
 - Over the time interval (0, τ) the time-averaged number in the node

$$\bar{l} = \frac{1}{\tau} \int_0^\tau l(t) dt$$

- Over the time interval (0, τ) the time-averaged number in the queue $\frac{-}{q} = \frac{1}{\tau} \int_{0}^{\tau} q(t) dt$
- Over the time interval (0, τ) the time-averaged number in service

$$\overline{x} = \frac{1}{\tau} \int_0^\tau x(t) dt$$

Time-Averaged Statistics (3)

• Defined by the area under a curve (integral)

• Over the time interval (0,
$$\tau$$
)
 $\bar{l} = \frac{1}{\tau} \int_0^{\tau} l(t) dt$
 $\bar{q} = \frac{1}{\tau} \int_0^{\tau} q(t) dt$
 $\bar{x} = \frac{1}{\tau} \int_0^{\tau} x(t) dt$

Job-Averaged and Time-Averaged Statistics

- Little's Equations
- If
 - (a) queue discipline is FIFO
 - (b) service node capacity is infinite, and
 - (c) service is idle both at t=0 and $t=c_n$,

• Then

$$\int_{0}^{c_n} l(t)dt = \sum_{i=1}^{n} W_i$$

$$\int_0^{c_n} q(t)dt = \sum_{i=1}^n d_i$$

$$\int_0^{c_n} x(t)dt = \sum_{i=1}^n s_i$$

Exercise L2-3

	i	1	2	3	4	5	6	7	8	9	10
read from file	ai	15	47	71	111	123	152	166	226	310	320
from algorithm	di	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

q

1

 \mathcal{X}

• Use Little's Equations to calculate

Server Utilization

- Sever utilization: time averaged number in service
 - Represents probability that the server is busy

$$\bar{x} = \frac{1}{\tau} \int_0^\tau x(t) dt$$

Traffic Intensity

• Traffic intensity: ratio of arrival rate to service rate

$$\frac{1/\overline{r}}{1/\overline{s}} = \frac{\overline{s}}{\overline{r}} = \frac{\overline{s}}{a_n/n} = \left(\frac{c_n}{a_n}\right)\overline{x}$$

Large Trace?

- Write a program!
- Instructor demonstration in either of these two programming languages to implement Algorithm 1.2.1
 - C/C++
 - Java

Case Study

- Sven and Larry's Ice Cream Shoppe
 - Owners considering adding new flavors and cone options
 - Concerned about resulting service times and queue length
- Can be modeled as a single-server queue
 - ssq1.dat represents 1000 customer interactions
 - Direct consequence of adding new flavors and cone options
 - Service time per customer increases
 - What's the consequence?

Ice Cream Shoppe

Exercise: L2-4

- Develop a simulation program to implement Algorithm 1.2.1 in your favorite programming language
 - Let's call the program ssq1
 - In the program, output all job-average statistics
 - Add consistency check to the program
- Verify the program
 - Perform consistency check
 - Create a test case using exercises L2-1, L2-2, and L2-3 and apply the test case to your program
- Use a large trace
 - Run your program using the provided "large" trace as input, observe the output

Exercise: L2-5

- Modify your program ssq1 to output the additional statistics
- As in the case study (Sven and Larry's Ice Cream Shoppe), use this program to compute a table of the above three statistics for the traffic intensities that are 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 times of original one in the input file

q l x

- Illustrate your result using Matlab/Octave, Excel, or any other graphing software of your choice
 - When illustrating the result, think about what message you want to convey in your graph

Summary

- Single-server queue
 - Concept model
 - Specification model
 - Simulation model and program
 - Numerical examples (Test cases for simulation program)
 - Job-averaged statistics
 - Time-averaged statistics
 - Applications
- Graphing consideration