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Introduction

Need for Random Number Generators

>

Single Server Queue and Simple Inventory System

v

Two trace-driven simulation programs: ssql and sis1

v

The usefulness of these programs depends on the availability of the
traces

» What if more data is needed?

» What if the input data set is small or unavailable?

» What if the model changes?

A random number generator addresses all the problems

» It produces random real values between 0.0 and 1.0
» The output can be converted to random variate via mathematical
transformations

v
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Introduction

Random Number Generators (RNG)

» Types of generators

» Table look-up generators

» Hardware generators

» Algorithmic (software) generators
» Desired criteria

» Randomness: output passes all reasonable statistical tests of
randomness
Controllability: able to reproduce output, if desired
Portability: able to produce the same output on a wide variety of
computer systems
Efficiency: fast, minimal computer resource requirements
» Documentation: theoretically analyzed and extensively tested

v

v

v

> Algorithmic generators meet the above criteria and are widely
accepted
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Introduction

Algorithmic Generators

» An ideal RNG produces output such that each value in the interval
0.0 < u < 1.0 is equally likely to occur
» A good RNG produces output that is almost statistically
indistinguishable from an ideal RNG
» We will construct a good RNG satisfying all our criteria
» Lehmer Random Number Generators
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Lehmer Random Number Generators Foundation

Lehmer Random Number Generators: Conceptual Model

» Conceptual Model
» Choose a large positive integer m. This defines the set
Xp=1{1,2,... . m—1}
> Fill a (conceptual) urn with the elements of X,
» Each time a random number u is needed, draw an integer x at
“random” from the urn and let u = x/m

» Each draw simulates a sample of an independent identically
distributed sequence of Uniform(0,1)

» The possible values are 1/m,2/m,...(m —1)/m.

» It is important that m be large so that the possible values are densely
distributed between 0.0 and 1.0

» Practical and special consideration

» 0.0 and 1.0 are impossible: for avoiding problems associated with
certain random-variate-generation algorithms

» Although we would like to draw from the urn with replacement, we will
draw without replacement for practical reasons: if m is large and the
number of draws is small relative to m, the distinctino is largely

elevdn
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Lehmer Random Number Generators Foundation

Lehmer's Algorithm for Random Number Generation

» Lehmer Generator: the integer sequence xg, x1, ... € X, is defined by
the iterative equation

xi+1 = g(x;) = ax; mod m (1)
where
» X =11,2,...,m—1}
» xp € X, is called the initial seed.

» modulus m is a fixed large prime integer
» multiplier a € X},
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Lehmer Random Number Generators Foundation

Lehmer Generators: a, xg and m

v

0<g(x)<m
» 0 must not occur since g(0) =a-0 mod m=0 mod m=10

v

Since m is prime, g(x) # 0 if x € Xy,
If xg € Xy, then x; € X}, for all i > 0.

v
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Lehmer Random Number Generators Foundation

Pseudo-random Number Generators

» If the multiplier and prime modulus are chosen properly, a Lehmer
generator is statistically indistinguishable from drawing from X, with
replacement.

» Note that there is nothing random about a Lehmer generator

» For this reason, it is called a pseudo-random number generator
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Lehmer Random Number Generators Foundation

Intuitive Explanation
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Figure : Leher generator geometry

» When ax is divided by m, the remainder is “likely” to be any value
between 0 and m—1

» Similar to buying numerous identical items at a grocery store with
only dollar bills.

> ais the price of an item, x is the number of items, and m = 100.
» The change is likely to be any value between 0 and 99 cents.
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Lehmer Random Number Generators Foundation

Parameter Consideration

» The choice of m is dictated, in part, by system considerations
> In general, we want to choose m to be the largest representable prime

integer

» On a system with 32-bit 2's complement integer arithmetic, 23! — 1 is
a natural choice since it is a prime integer and the largest possible
positive integer

» With 16-bit or 64-bit integer representation, the choice is not obvious,
since neither 21 — 1 nor 29 — 1 is a prime integer

» Given m, the choice of a must be made with great care (see Example
2.1.1)
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Lehmer Random Number Generators Foundation

Example 2.1.1

> If m =13 and a = 6 with xg = 1 then the sequence is
1,6,10,8,9,2,12,7,3,5,4,11,1,...

where the ellipses (i.e., ...) indicate the sequence is periodic

> If m=13 and a = 7 with xg = 1 then the sequence is
1,7,10,5,9,11,12,6,3,8,4,2,1, ...

Because of the 12,6,3 and 8,4, 2,1 patterns, this sequence appears
“less random”

» If m=13 and a =5 then
1,5,12,8,1,...0r 2,10,11,3,2,...0r 4,7,9,6,4, ...

This less-than-full-period behavior is obviously undesirable
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Lehmer Random Number Generators Foundation

Central Issues

» For a chosen (a, m) pair, does the function g(-) generate a full-period
sequence?
» If a full period sequence is generated, how random does the sequence
appear to be?
» Can ax mod m be evaluated efficiently and correctly?
> Integer overflow can occur when computing ax
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Lehmer Random Number Generators Foundation

Full Period Considerations

» b mod a=b— |b/ala
» There exists a non-negative integer ¢; = |ax;/m]| such that

xiy1 = g(xi) = ax; mod m = ax; — mc;
Therefore, by induction, we have

X1 = axp — mQ

Xo = ax; — mcy = a’xg — m(aco + ¢1)

X3 = axp — Mcy = a’xg — m(azco +aa + @)

X;j = axj_1 — mcj_1 = a'xg — m(a’_lco + a’_2c1 + ...+ C,'_1)
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Lehmer Random Number Generators Foundation

Full Period Consideration

» Since x; € X),;, we have x; = x; mod m. Therefore, letting
c=aleg+a2c +...+ci_1, we have

xj=a'xg—mc=(a'xp—mc) mod m=a'xy mod m

If the sequence xg, x1, X2, . .. is produced by a Lehmer generator with multiplier a
and modulus m then

xi=a'xy mod m

> It is an eminently bad idea to compute x; by first computing a;

» Theorem 2.1.1 has significant theoretical value
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Lehmer Random Number Generators Foundation

Full Period Consideration

» Since (b1by...b,) mod a= (by mod a)(ba mod a)...(b, mod a)
mod a, we have

x;=a'xy mod m=(a" mod m)xy mod m
» Fermat's little theorem states that if p is a prime which does not

divide a, then aP~1 mod p=1. Then,

m—1

Xm—1 = (a mod m)xp mod m = xg

Theorem 2.1.2

if xop € X, and the sequence xp, X1, X2, . . . is produced by a Lehmer generator with
multiplier a and prime modulus m then there is a positive integer p with
p < m — 1 such that xp, x1, X2, . . . Xp—1 are all different and

Xitp = Xi i=0,1,2,...

That is, the sequence is periodic with fundamental period p. In addition, (m — 1)
mod p = 0.

v
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Lehmer Random Number Generators Foundation

Full Period Consideration

> If we pick any initial seed xg € X, and generate the sequence
X0, X1, X2, . . . then xg will occur again

» Further xg will reappear at index p that is either m — 1 or a divisor of
m—1

> The pattern will repeat forever

» We are interested in choosing full-period multipliers where p = m — 1
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Lehmer Random Number Generators Foundation

Example 2.1.2

» Full-period multipliers generate a virtual circular list with m — 1
distinct elements.

1 1
.ot s 2 ot
1, 10 4. .10
5 e (a,m) = (6,13) +8 8 (a,m) = (7,13) 5
3- 09 3'Q 09
7 . P 6 . 11
12 12

Figure : Two full-period generators.

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015 17 / 96



Lehmer Random Number Generators

Finding Full Period Multipliers

Foundation

Algorithm 2.1.1

p=1

X = a;

while (x 1=1) {
p ++;

x = (a*x) % m;

if (p==m-1)

/* ais a full-period multiplier */
else

/* ais not a full-period multiplier */

» This algorithm is a slow-but-sure way to test for a full-period
multiplier
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Lehmer Random Number Generators Foundation

Frequency of Full-Period Multipliers

» Given a prime modulus m, how many corresponding full-period
multipliers are there?

If mis prime and p1, p2, ..., p, are the (unique) prime factors of m — 1
then the number of full-period multipliers in X}, is

(pr—1)(p2—1)...(pr— 1)

m-—1
pPip2...pr ( )

> Example 213 If m=13then m—-1=12= 22 . 3. Therefore, there
are @01 (13 _ 1) — 4 full-period multipliers (i.e., 2, 6, 7, and 11)
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Lehmer Random Number Generators Foundation

Example 2.1.4

» If m =231 — 1 = 2147483647 then since the prime decomposition of
m—1is

m—1=23_2-2.32.7.11-31-151-331

the number of full-period multipliers is

(1-2-6-10-30-150-330

2.32.7.11-31-151-331) =
2.3.7.11.31.151.331>( 3 31-151-331)

534600000

» Therefore, approximately 25% of the multipliers are full-period
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Lehmer Random Number Generators Foundation

Finding All Full-Period Multipliers

» Once one full-period multiplier has been found, then all others can be
found in O(m) time

Algorithm 2.1.2

i=1;
while (x 1= 1) {

if (gcd(i, m - 1) ==1)

/* a' mod mis a full-period multiplier */
i+
x = (a * x) % m; /* be aware a*x overflow */
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Lehmer Random Number Generators Foundation

Finding All Full-Period Multipliers

Theorem 2.1.4

If a is any full-period multiplier relative to the prime modulus m then each
of the integers

i

a mod me X, i=1,2,3,....m—1

is also a full-period multiplier relative to m if and only if i and m — 1 are
relatively prime
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Lehmer Random Number Generators Foundation

Example 2.1.5

> If m = 13 then we know from Example 2.1.3 there are 4 full period
multipliers. From Example 2.1.1 a = 6 is one. Then, since 1, 5, 7,
and 11 are relatively prime to 13

6! mod 13=16
6> mod 13 =2
6/ mod13=7

6 mod 13 = 11

» Equivalently, if we knew a = 2 is a full-period multiplier

2! mod 13 =2
25 mod 13 =6
2" mod 13 =11
21! mod 13 =7
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Lehmer Random Number Generators Foundation

Example 2.1.6

> If m =231 — 1 then from Example 2.1.4 there are 534600000 integers
relatively prime to m — 1. The first few are i = 1,5,13,17,19. a=7
is a full-period multiplier relative to m and therefore

71 mod 2147483647 = 7

7° mod 2147483647 = 16807

713 mod 2147483647 = 252246292
717 mod 2147483647 = 52958638
719 mod 2147483647 = 447489615

are full-period multipliers relative to m
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Lehmer Random Number Generators Implementation

Implementation Objective

» For 32-bit systems, 231

» We will develop an m = 23! — 1 Lehmer generator

— 1 is the largest prime

» Portable and efficient
» in ANSI C

» ANSI C Standard:

LONG _MAX > 23t —1
LONG _MIN < —(23! — 1)
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Lehmer Random Number Generators Implementation

Overflow Is Possible

v

Recall that g(x) = axmodm

v

The ax product can be as big as a(m — 1)

v

If integers > m cannot be represted, integer overflow is possible

» Not possible to evaluate g(x) in “obvious” way
laz/m|m g(x)
\ | *)‘
1 ar \
e T T T \ *
0 2 a m 2m 3m 4m om ax
Figure
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Lehmer Random Number Generators Implementation

Example 2.2.1

» Consider (a, m) = (48271,23! — 1)
» a(m — 1) ~ 1.47 x 2% = at least 47 bits
» However, ax mod m no more than 31 bits

» Consider (a, m) = (7,13) from Example 2.1.1 for a 5-bit machine
» a(m—1) =84 ~1.31 x 2% = at least 7 bits
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Lehmer Random Number Generators Implementation

Data Type Consideration

>

Why long?
» ANSI C standard guarantees 32 bits for long
» Most contemporary computers are 32-bit
Why not float or double?

» Floating-point representation is inexact
> An efficient integer-based implementation exists

v

v

Why not long long — guarantees 64 bits?
» Requires overhead on 32-bit systems

v

64-bit machines will not alleviate the problem
» m would be 264 — 59, overflow still possible
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Lehmer Random Number Generators Implementation

Algorithm Development

» Want an integer-based implementation

v

No calculation can give result > m =231 —1

» if m were not prime, then m = aq

g(x) =ax mod m=--. = a(xmodq)

Note: mod before multiply!

v

However, m is prime, so m = aq + r where
a=|—] r=m mod a
a

Want remainder smaller than quotient (r < q)
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Lehmer Random Number Generators Implementation

Example 2.2.4: (g, r) Decomposition of m

v

Consider (a, m) = (48271,231 —1)

q= ng = 44488 r=m mod a= 3399

v

Consider (a, m) = (16807,231 — 1)

q = 127773 r = 2836

v

Note that r < g in both cases

v

This (modulus cmopatibility) is important later!
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Lehmer Random Number Generators Implementation

Rewriting g(x) To Avoid Overflow

g(x) = ax mod m
= ax — m|ax/m|
= ax+ [-m|[(]x/q) + m[(]x/q)] — m|ax/m]
= [ax — (ag + r)[(Ix/q)] + [m[(Ix/q) — m[(]ax/m)]
= [a(x — ql(x/q) — rl(Jx/a)] + [m|(]x/q) — m[(]ax/m)]
= [a(x mod q) — r[x/q]] + [m[(]x/q) — m|(]ax/m)]
= 7(x) + mdé(x)

Mods are done before multiplications!
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Lehmer Random Number Generators Implementation

d(x) Is Either 0 Or 1

Theorem 2.2.1 — Part 1

If m=aq+ risprimeand r < g and x € X,

0(x)=0 or d(x)=1
where 0(x) = [x/q| — |ax/m]

Note for u,v e Rwith0 < wu—v <1, |u] —|v]isOorl
Consider

and since r < g

O

v
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Lehmer Random Number Generators Implementation

d(x) Depends Only On ~(x)

Theorem 2.2.1 — Part 2

With 5(x) = a(x mod q) — r[(]x/q)

S(x)=0 iff.  y(x) € Xn
=1

d(x) iff. —y(x) € Xn

4

> If 6(x) =0, then g(x) = v(x) + md(x) = vy(x) € Xn
If v(x) € X, then y(x) # 1 otherwise g(x) ¢ X,

> If §(x) =1, then —v(x) € X, otherwise, g(x) = y(x) + m ¢ X,
If —v(x) € X, then delta(x) # 0 otherwise g(x) ¢ X,

O ~—

—_~ —

O

4
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Lehmer Random Number Generators Implementation

Computing g(x)

» Evaluates g(x) = ax mod m with no values > m—1

Algorithm 2.2.1

t=a*x%q)-r*(x/q) /*t=~(x)*/

if (t > 0)

return (t); /¥ d(x)=0*/
else

return (t + m); /¥ o(x)=1%*/

» Returns g(x) = v(x) + md(x)
» The ax proudct is “trapped” in d(x)
» No overflow
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Lehmer Random Number Generators Implementation

Modulus Compatibility

>

We must have r < g in m = aq + r (see proof of Theorem 2.2.1)

v

Multiplier a is modulus-compatible with m iff. r < g

v

Here, choose a modulus-compatible with m = 231 1

v

Then algorithm 2.2.1 can port to any 32-bit machine

v

Example: a = 48271 is modulus-compatible with m =231 —1

r = 3399 q = 44488
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Lehmer Random Number Generators Implementation

Modulus-Compatible and Full-Period

» No modulus-compatible multipliers > (m —1)/2
» More densely distributed on low end
» Consider (tiny) modulus m = 401: (Row 1: MP, Row 2: FP, Row 3:

MP & FP)
] |
e T e
A
I T T T T T T T 1
0 50 100 150 200 250 300 350 400

Figure : Modulus-compatible full-period multipliers for m = 401
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Lehmer Random Number Generators Implementation

Modulus-Compatibility and Smallness

v

Multiplier a is “small” iff. a> < m

v

If ais small, then a is modulus-compatible

> All multipliers from 1 to |/m| = 46340 are modulus-compatible
If a is modulus-compatible, a is not necessarily small

» a = 48271 is modulus-compatible with 23' — 1 but is not small

v

v

Start with a small (therefore modulus-compatible) multiplier
Search until the first full-period multiplier is found (Alg. 2.1.1)
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Lehmer Random Number Generators Implementation

Algorithm 2.2.2: Generating All Full-Period

Modulus-Compatible Multipliers

» Find one full-period modulus-compatible (FPMC) multiplier

» The following (an extension of Alg. 2.1.2) generates all others

Algorithm 2.2.1

i=1;
X = a;
while (x 1=1) {

if ((m%x < m/x) and (ged(i, m - 1) == 1))

/* x is full-period & modulus-compatible */
i++;
x = g(x); /* use Alg. 2.2.1 to evaluate g(x) */
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Lehmer Random Number Generators Implementation

Example 2.2.6: FPMC Multipliers For m = 23! — 1

» For m=23 —1 and FPMC a = 7, there are 23093 FPMC multipliers

71
75
7113039
7188509

7536035

» a = 16807 is a “minimal”’

mod 2147483647 =7

mod 2147483647 = 16807
mod 2147483647 = 41214
mod 2147483647 = 25697
mod 2147483647 = 63295

standard

» a = 48271 provides (slightly) more random sequences
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Lehmer Random Number Generators Implementation

Randomness

v

Choose the FPMC multiplier that gives “most random” sequence

» No universal definition of randomness

v

In 2-space, (xo, x1), (x1, x2), (x2, X3), ... form a lattice structure

v

For any integer k > 2, the points

(XO)X].) .. 7Xk—1)7 (Xl)XQ) .. )Xk)a (X27X37 o 7Xk+1)) o

form a lattice structure in k-space

v

Numerically analyze uniformity of the lattice
» Example: Knuth's spectral test
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Lehmer Random Number Generators Implementation

Random Numbers Falling In The Planes

4009 e s 00,
330 Tl s
300_::5:::::::::::::::5:::_‘ 3004
250—5.';.'j:fff;fj:f:.‘j-'j:f-'f 250
20(%'-f:::;::::::;f:::fj:::: 200 ..
150{;.‘;fj:I:I_::j:f::;:j:f: 150 -
100—:::::f:::::::::5::::::; 1004
50_':::::::::::f:::::::;:: 50

0

T T T T T T T T T T T
0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
(a,m) = (23,401) (a,m) = (66,401)
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Lehmer Random Number Generators Implementation

ANSI C Implementation

A Lehmer RNG in ANSI C with (a, m) = (48271,23! — 1)

Random(void) {
static long state = 1;
const long A = 48271; /* multiplier®/
const long M = 2147483647; /* modulus */
const long Q = M / A; /* quotient */
const longR =M % A; /* remainder */
long t = A * (state % Q) - R * (state / Q);
if (t > 0)
state = t;
else
state =t + M;
reutrn ((double) state / M);
}
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Lehmer Random Number Generators Implementation

A Not-As-Good RNG Library

» ANSI C library <stdlib.h> provides the function rand()
» Simulates drawing from 0,1,2,...,m —1 with m=2% —1
» Value returned is not normalized; typical to use

u = (double)rand()/RAND_MAX;

v

ANSI C standard does not specify algorithm details

v

For scientific work, avoid using rand() (Summit, 1995)
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Lehmer Random Number Generators Implementation

A Good RNG Library

» Defined in the source files rng.h and rng.c
» Based on the implementation considered in this lecture
» double Random(void)
» void PutSeed(long seed)
» void GetSeed(long *seed)
» void TestRandom(void)
> Initial seed can be set directly, via prompt, or by system clock
» PutSeed() and GetSeed() often used together
> a = 48271 is the default multiplier
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Lehmer Random Number Generators Implementation

Example 2.2.10: Using the RNG

Generating 2-Space Points

seed = 123456789;

PutSeed(seed);

xo = Random();

for (i = 0; i j 400; i++) {
Xi+1 = Random();
PlOt(X,', X,'+1);

}

Generate one sequence with each initial seed.
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Lehmer Random Number Generators Implementation

Scatter Plot Of 400 Pairs

100 |, 1009 .
075+ "
050" %7 050
0.25 0.25 N
0.00 .. [ - - - '4“ 0.00 : : e D ,
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Initial seed zo = 123456789 Initial seed 2o = 987654321
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Lehmer Random Number Generators Implementation

Observations on Randomness

v

In previous figure, no lattice structure is evident
» Appearance of randomness is an illusion

If all m — 1 = 231 — 2 points were generated, lattice would be evident

v

v

Herein lies distinction between ideal and good RNGs
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Lehmer Random Number Generators Implementation

Example 2.2.11

> Plotting all pairs (xj, x;11) for m = 231 — 1 would give a black square
» Any tiny square should appear (approximately) the same
» “Zoom in" to square with corners (0,0) and (0.001,0.001)

Generating 2-Space Points and “Zoom in”

seed = 123456789;
PutSeed(seed);
xo = Random();
for (i = 0; i | 2147483646; i++) {
xi+1 = Random();
if ((x < 0.001) and (xi11 < 0.001)) Plot(x;, xi11);

> Results for multipliers a = 16807 and a = 48271 on the next slide
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Lehmer Random Number Generators Implementation

Scatter Plots for m =231 — 1

0.001 0.001 4

0.0

1 0.0 1
0.0 0.001 0.0 0.001

Multiplier a = 16807 Multiplier a = 48271

» Further justification for using a = 48271 over a = 16807
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Lehmer Random Number Generators Implementation

Other Multipliers and Considerations

» for m =231 — 1 there are 534600000 multipliers a that are full period
» 23903 of these are modulus compatible

» Section 10.1 discusses statistical tests for these numbers, but a lot of
research has already been done

» Nonrepresentative Subsequences: What if only 20 random numbers
were needed and you chose seed xg = 1098697247

> Resulting 20 random numbers:
0.64 072 077 093 082 0.88 0.67 076 0.84 0.84
0.74 076 080 0.75 063 094 086 0.63 0.78 0.67

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015 50 / 96



Lehmer Random Number Generators Implementation

Fast CPUs and Cycling

» How long does it take to generate a full period for m = 231 — 17
» 1980's : days
» 1990's : hours
» Today : minutes
» Soon : seconds

> Recall:

Ideal generator draws from an urn “with replacement”.

Our generator draws from an urn “without replacement”.
Distinction is irrelevant if number of draws is small compared to m
Cycling: generating more than m — 1 random values

Cycling must be avoided within a single simulation

v

vV vy vYyy
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Monte Carlo Simulation Fundamentals

Monte Carlo Simulation

» With Empirical Probability, we perform an experiment many times n
and count the number of occurrences n, of an event A
» The relative frequency of occurrence of event A is n,/n
» The frequency theory of probability asserts that the relative frequency
converges as n — oo ;
a

Pr(A) = lim =

n—oo n

» Axiomatic Probability is a formal, set-theoretic approach

» Mathematically construct the sample space and calculate the number
of events A
» The two are complementary!
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Monte Carlo Simulation Fundamentals

Example 2.3.1

» Roll two dice and observe the up faces

(1,1) (1,2) (13) (1,4 (L5 (1,6)
(2.1) (2,2) (23) (2.4) (25) (26)
3.1) (3.2 (33) (34 (35 (3.6
(41) (42 (43) (44 (45 (46)
(5.1) (5.2) (53) (5.4) (55) (56)
(6.1) (6,2) (6:3) (6,4) (6.5 (6 06)

> If the two up faces are summed, an integer-valued random variable,

say X, is defined with possible values 2 through 12 inclusive

sum, x: 2 3 4 5 6 7 8 9 10 11 12
_ .. 1 2 3 4 5 6 5 4 3 2 1
PriX=x): 35 3% 3 3 3 36 3 3 36 36 3
» Pr(X =7) could be estimated by replicating the experiment many
times and calculating the relative frequency of occurrence of 7's
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Monte Carlo Simulation Fundamentals

Random Variates

» A Random Variate is an algorithmically generated realization of a
random variable

» u = Random() generates a Uniform(0,1) random variate
» How can we generate a Uniform(a, b) variate?

Generating a Uniform Random Variate

double Uniform(double a, double b) [¥usea<b*/{
return (a + (b - a) * Random());

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015 54 / 96



Monte Carlo Simulation Fundamentals

Equilikely Random Variates

» Uniform(0, 1) random variates can also be used to generate an
Equilikely(a, b) random variate

O<u<l <= 0<(b—a+1lu<b—a+l
<— 0<|(b—a+1l)u|<b-a
<= a<a+|b—a+1lul <b
<— a<x<b

» Specifically, x =a+ [(b—a+ 1)u|

Generating an Equilikely Random Variate

long Equilikely(long a, long b) [¥usea<b*/{
return (a + (long)((b - a + 1) * Random()));
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Monte Carlo Simulation Fundamentals

Examples

» Example 2.3.3 To generate a random variate x that simulates rolling
two fair dice and summing the resulting up faces, use

x = Equilikely(1,6) + Equilikely(1,6);
Note that this is note equivalent to
x = Equilikely(2,12);

» Example 2.3.4 To select an element x at random from the array
al0], a[1], ..., a[n-1] use

i = Equilikely(0,n — 1); x = a[i];
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Monte Carlo Simulation Example Applications

Galileo’'s Dice

> If three fair dice are rolled, which sum is more likely, a 9 or a 107
» There are 63 = 216 possible outcomes

Pr(X = 9) = 22_156 ~0.116 and  Pr(X = 10) = 22—176 —0.125
» Program galileo calculates the probability of each possible sum
between 3 and 18
» The drawback of Monte Carlo simulation is that it only produces an
estimate
» Larger n does not guarantee a more accurate estimate
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Monte Carlo Simulation Example Applications

In-Class Exercise L4-2: Varitions of Galileo’s Dice

» Run the Galileo's Dice program (in Blackboard) following the
following guideline: seeds.

» Choose three different seeds

» Use the number of replications as 20, 40, 100, 200, 400, 1000, 10000,
and 100000

» Show the result in a graph similar to next slide

» Submit a screen shot showing that you successfully run the program
and the Excel workbook or the result from other graphing tools under
“In-Class Exercise L4-2"
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Monte Carlo Simulation

Example Applications

Example 2.3.6

» Frequency probability estimates converge slowly and somewhat

erratically

Pr(X =10)
estimates

0‘165__ o Initial seed
b o 12345
0-155 - o® O 000 o — 54321
0.145 o + — 2121212
4 o © .
01354 . ge LHx
E * *« 800 o0, &® ©9000
0.125 4 o ° #x, 00K % 94°9q" °¥i0 0 o
- - S S BFe ¥ ¥ i3
- o o *olkx 00 %04 * JOSAEINN
0.115 N ° o 6 06000000
g @ o0 o o %o
0.105 ¢ 80, 0% 00g00
R
0.095 — 0o %
0,085~ T
0 100 200 300 400 500 600 700 800 900 1000

Number of replications, n

» You should always run a Monte Carlo simulation with multiple initial

seeds

H. Chen (VSU)
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Monte Carlo Simulation Example Applications

Geometric Applications: Rectangle

» Generate a point at random inside a rectangle with opposite corners

at (a1, 1) and (a2, B2)

B2

Yt -b-- e @)

B :
I I I
(&3] x a9

x = Uniform(az, az); y = Uniform(B1, 52);
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Monte Carlo Simulation Example Applications

Geometric Applications: Circle

» Generate a point (x, y) at random on the circumference of a circle
with radius p and center («, )

0 = Uniform(—m,7); x=a+ pxcos(f); y =L+ pxsin(6)
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Monte Carlo Simulation Example Applications

Example 2.3.8

» Generate a point (x, y) at random interior to the circle of radius p
centered at («, 3)

0 = Uniform(—m,m); r = Uniform(0, p);
x=a+pxcos(f);, y=p+r=sin(6),

Correct?
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Monte Carlo Simulation Example Applications

Example 2.3.8

» Generate a point (x, y) at random interior to the circle of radius p
centered at («, 3)
0 = Uniform(—m,m); r = Uniform(0, p);
x=a+pxcos(f);, y=p+r=sin(6),
Correct? INCORRECT!

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015

62 / 96



Monte Carlo Simulation Example Applications

Acceptance/Rejection

» Generate a point at random within a circumscribed square and then
either accept or reject the point

Generate a Random Point Interior to a Circle
do {
x = Uniform(—p, p);
y = Uniform(—p, p); } while (x xx + y *xy >= px* p);
xX=a+x; y=p+y;
return (x, y);
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Monte Carlo Simulation Example Applications

In-Class Exercise L4-3: Geometric Application

» Objective: visually examine correctness of a simulation

» Write a program that randomly generate 1000 points within a
rectangle using the method in slide 60 and graph the result

» Write a program that reproduces the incorrect (slide 61) and correct
(slide 63 generation of points interior to a circle as shown previous
slides.

» Submit the programs and the graphing results (e.g., Excel
Workbooks) in Blackboard under “In-Class Exercise L4-3"
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Monte Carlo Simulation Example Applications

Buffon's Needle Problem

» Suppose that an infinite family of infinitely long vertical lines are
spaced one unit apart in the (x,y) plane. If a needle of length r > 0
is dropped at random onto the plane, what is the probability that it
will land crossing at least one line?

» u is the x-coordinate of the left-hand endpoint
> v is the x-coordinate of the right-hand endpoint,

v = u + rcost

» The needle crosses at least one line if and only if v > 1

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015 65 / 96



Monte Carlo Simulation Example Applications

Program buffon

» Program buffon is a Monte Carlo simulation
» The random number library can be used to automatically generate an
initial seed

Random Seeding

PutSeed(-1); /* any negative integer will do */
GetSeed(&seed); /* trap the value of the initial seed */

printf(with an initial seed of %ld; seed);

> Inspection of the program buffon illustrates how to solve the problem
axiomatically
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Monte Carlo Simulation Example Applications

Axiomatic Approach to Buffon's Needle

» “Dropped at random” is interpreted (modeled) to mean that u and 6
are independent Uniform(0,1) and Uniform(—=/2,7/2) random
variables

1—r+

I
I
I
I
I
T
—7/2 0 0 /2
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Monte Carlo Simulation Example Applications

Axiomatic Approach to Buffon's Needle

» The shaded region has a curved boundary defined by the equation
u=1— rcosf

» if 0 < r <1, the area of the shaded region is

/2 w/2
T — / (1 — rcost)df = r/ cosfdf = ... =2r
—7/2 —7/2

» Therefore, because the area of the rectangle is 7 the probability that
the needle will cross at least one line is 2r/m
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Monte Carlo Simulation Example Applications

In-Class Exercise L4-4: Buffon's Needle

» Objective: Compare simulation and axiomatic results (does your
simulation program need a test case?)

» Calculate the probability that it will land crossing at least one line for
the Buffon's needle problem using the axiomatic result 68.

> Revise the program buffon to output the estimated probability with at
least 6 digits after the decimal point.

» Run the revised program buffon for 100, 1000, 10000, 100000,
1000000 replications with 3 different seeds for each number of
replications

» Choose appropriate graphs to graph the following,
> The results from the simulations

» The axiomatic result
» The different between the simulations and the axiomatic result (i.e.,
error)
» Submit the work in Blackboard (a screen shot show the simulation
program is running correctly, the revised program, and the graphing

result) in Blackboard under “In-Class L4-4"
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Monte Carlo Simulation Examples

Axiomatic and Experimental Approaches

>

Axiomatic and experimental approaches are complementary

v

Slight changes in assumptions can sink an axiomatic solution

An axiomatic solution is intractable in some other cases

v

v

Monte Carlo simulation can be used as an alterative in either case

v

Four more examples of Monte Carlo simulation
Metrics and determinants

Craps

Hatchek girl

Stochastic activity network

v

vvVvYyy
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Monte Carlo Simulation Examples Matrics and Determinants

Example 1: Matrix and Determinants

» Matrix: set of real or complex numbers in a rectangular array

» for matrix A, ajj is the element in row /, column j

all ai? e din

ani ano ... d2p
A=

dml dm2 --- Admn

where A is m X n, i.e., m rows and n columns

> Interesting quantities: eigenvalue, trace, rank, and determinant
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Monte Carlo Simulation Examples Matrics and Determinants

Determinants

» The determinant of a 2 x 2 matrix A is

a1 a
|A|l = 311 21— a)1a00 — an1a1n

21 a22

» The determinant of a 3 x 3 matrix A is

di1 412 413
|Al = |a21 a2 ax3|=au
d31 432 4as3

az  dax
as2

ani
asi

a1 a2
a3l 432

—a12

a3
+ ai3
433
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Monte Carlo Simulation Examples Matrics and Determinants

Random Matrices

Random matrix: matrix whose elements are random variables

v

Consider a 3 x 3 matrix whose elements are random with positive
diagonal, negative off-diagonal elements

Question: What is the probability the determinant is positive?

v

v

+u1n —up —ui3
—Uy1 +uxp —upx3| >0
—u31 —u3 +uss

Axiomatic solution is not easily calculated

v
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Monte Carlo Simulation Examples Matrics and Determinants

Specification Model

>

Let event A be that the determinant is positive

Generate N 3 x 3 matrices with random elements

v

v

Compute the determinant for each matrix
» Let n, = number of matrices with determinant > 0
Probability of interest: Pr(A) = N,/N

v
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Monte Carlo Simulation Examples Matrics and Determinants

Computational Model: Program det

det

for (i = 0; i <N; i++) {
for (j =1; j <= 3; j++) {
for (k = 1; k <= 3; k++) {
a[j][k] = Random();
if (j I= k)
aljllk] =—a[jllk];

}
}
templ = a[2][2] x a[3][3] — a[3][2] * a[2][3];
temp2 = a[2][1] = a[3][3] — a[3][1] = a[2][3];
temp3 = a[2][1] x a[3][2] — a[3][1] * a[2][2];
x = a[l][1]+templ — a[l][2]«temp2 + a[l][3]*temp3;
if (x> 0)

count++;

printf(”"%11.9f", (double)count/N);
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Monte Carlo Simulation Examples Matrics and Determinants

Output From det

>

Want N sufficiently large for a good point estimate

v

Avoid recycling random number sequences
Nine calls to Random() per 3 x 3 matrix — Nm/9 = 239000000
For initial seed 987654321 and N = 200000000,

v

v

Pr(A) 2 0.05017347
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Monte Carlo Simulation Examples Matrics and Determinants

Point Estimate Considerations

» How many significant digits should be reported?

v

Solution: run the simulation multiple times

v

One option: use different initial seeds for each run

» Caveat: Will the same squences of random numbers appear?
Another option: use different a for each run

» Caveat: Use a that gives a good random sequence

For two runs with a = 16807 and 41214

v

v

Pr(A) 2 0.0502
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Monte Carlo Simulation Examples Craps

Example 2: Craps

>

Toss a pair of fair dice and sum the up faces

v

If 7 or 11, win immediately

v

If 2, 3, or 12, lose immediately

v

Otherwise, sum becomes “point”
» Roll until point is matched (win) or 7 (loss)

v

What is Pr(.A), the probability of winning at craps?
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Monte Carlo Simulation Examples Craps

Standard Craps Table

B8 BB 1vg ssvq ) uoq

ANIT SSVd \

©3¢409¢10¢11°
@ FIELD @
| Don’t Pass Bar B®B
PASS LINE

Figure retrieved from http://en.wikipedia.org/wiki/File:Craps_table_layout.svg
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Monte Carlo Simulation Examples Craps

Craps: Axiomatic Solution

>

Requires conditional probability
Axiomatic solution: 244 /495 = 0.493

Underlying mathematics must be changed if assumptions change
» Example: unfair dice

v

v

Axiomatic solution provides a nice consistency check for (easier)
Monte Carlo simulation

v
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Monte Carlo Simulation Examples Craps

Craps: Specification Model

» Model one die roll with Equilikely(1, 6)
Algorithm 2.4.1

wins = O0;
for (i = 1; i <=N; i++) {
6

roll = Equilikely (1,

) + Equilikely (1, 6);

if (roll =7 or roll 11)
wins—++;
else if (roll != 2 and roll != 3 and roll I= 12) {
point = roll;
do {
roll = Equilikely (1, 6) + Equilikely (1, 6);
if (roll = point) wins++;
} while (roll != point and roll != 7)

} return (wins/N);

4
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Monte Carlo Simulation Examples Craps

Craps: Computational Model

>

Program craps: uses switch statement to determine rolls
For N = 10000 and three different initial seeds (see text)

v

Pr(A) = 0.497,0.485, and 0.502

These results are consistent with 0.493 axiomatic solution

v

v

This (relatively) high probability is attractive to gamblers, yet ensures
the house will win in the long run
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Monte Carlo Simulation Examples Hatcheck Girl

Example 3: Hatcheck Girl

>

Let A be that all checked hats are returned to wrong owners

v

Without loss of generality, let the checked hats be numbered
1,2,...,n

The girl selects (equally likely) one of the remaining hats to return
— n! permutations, each with probability 1/n!

v

v

Example: When n = 3 hats, possible return orders are

1,23 1,32 21,3 231 312 321

v

Only 2,3,1 and 3,1, 2 correspond to all hats returned incorrectly

Pr(A) =1/3
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Specification Model

» Generate a random permutation of the first n integers

» The permutation corresponds to the order of hats returned

Clever Shuffling Algorithm (see Section 6.5)

for (i =0; i <n—1; i++) {
j = Equilikely (i, n — 1);

hold = a[j];
alj] = ali]; /x swap a[i] and a[j] */
al[i] = hold;

}

Generates a random permutation of an array a
» Check the permuted array to see if any element matches its index
January 29, 2015 84 / 96
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Computational Model

>

Program hat: Monte Carlo simulation of hatcheck problem

v

Uses shuffling algorithm to generate random permutation of hats
For n = 10 hats, 10000 replications, and three different seeds

v

Pr(A) = 0.369,0.369, and 0.368

v

What happens to the probability as n — oco?

v

If using simulation, how big should n be?
Instead, consider axiomatic solution
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Monte Carlo Simulation Examples Hatcheck Girl

Hatcheck: Axiomatic Solution

>

The probability Pr(.A) of no hat returned correctly is

v

for n =10, Pr(A) = 0.36787946

Important consistency check for validating craps

v

» As n — oo, the probability of no hat returned is

1/e = 0.36787944

H. Chen (VSU) RNG and Monte Carlo Simulation January 29, 2015 86 / 96



Monte Carlo Simulation Examples Hatcheck Girl

In-Class Exercise L4-5

» Design an approach to show that the shuffle algorithm in slide 84 is
correct.

» Implement the approach and graph the results.
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Monte Carlo Simulation Examples Stochastic Activity Network

Example 4: Stochastic Activity Network

>

Activity durations are positive random variables

v

n nodes, m arcs (activities) in the network
Single source node (labeled 1), single terminal node (labeled n)

Yjj : positive random activity duration for arc aj;

v

v

v

T; : completion time of all activities entering node j

v

A path is critical with a certain probability

p(mk) = Pr(mk =me) k=1,2,...,r
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

> Represent the network as an n X m node-arc incidence matrix N

1 arc jleaves node i
N[i,j] =< —1 arc jenters node i

0 otherwise

» Use Monte Carlo simulation to estimate:

» mean time to complete the network
» probability that each path is critical
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

» Each activity duration is a uniform random variate

Example: Yi2 has a Uniform(0, 3) distribution
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Monte Carlo Simulation Examples Stochastic Activity Network

Specification Model

» Completion time T; relates to incoming arcs
Ti= max{T;+ Yj [ =2,3,...,n
Jj ieB(j){ i it
where B(j) is the set of nodes immediately before node j
» Example: in the previous six-node example
Te = max{ T3 + Y36, Ta + Yag, Ts + Y56}

» We can write a recursive function to compute the T;
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Monte Carlo Simulation Examples Stochastic Activity Network

Conceptual Model

» The previous 6-node, 9-arc network is represented as follows:

1 1 1 0 0 0 0 0 O
-1 0 0 1 1 0 0 0 O
N_|0 -1 0 -1 0 1 1 0 0
0o 0 -1 0 0 -1 0 1 0
o 0 0 0 -1 0 0 0 1
0 0 0 0 0 0 -1 -1 -1

» In each row:

» 1's represent arcs exiting that node
» -1's represent arcs entering that node

» Exactly one 1 and one —1 in each column
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Monte Carlo Simulation Examples Stochastic Activity Network

Algorithm 2.4.2

» Returns a random time to complete all activities prior to node j for a
single SAN with node-arc incidence matrix N

Algorithm 2.4.2

k =1;
| = 0;
tmax = 0.0;
whlle (I < |$\mathcal{B}$(j)|) {
( [J][k] = -1 {
while (N[ 1[k] = 1)
|++
t=Ti + Yi ;
if (t>= $t_{max}$) $t_{max}$ =
I+
}
k++;
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Monte Carlo Simulation Examples Stochastic Activity Network

Computational Model

» Program san: MC simulation of a stochastic activity network

» Uses recursive function to compute completion times T; (see text)
» Activity durations Yj; are generated at random a priori

» Estimates T,, the time to complete the entire network

» Computes critical path probabilities p(7x) for k =1,2,...,r

» Axiomatic approach does not provide an analytic solution
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Monte Carlo Simulation Examples Stochastic Activity Network

Computational Model

» For 10000 realizations of the network and three initial seeds
Te = 14.64,14.59,and 14.57
» Point estimates for critical path probabilities are

Tk pr(mk) pa(ck) PBs(ak)  Palin)
{a13,a36} 0.0168 0.0181 0.0193 0.0181
{312, an3, 336} 0.0962 0.0970 0.0904 0.0945
{a12, azs, as6 } 0.0013 0.0020 0.0013 0.0015
{a14, as6} 0.1952 0.1974 0.1907 0.1944
{a13, 34, as6} 0.1161 0.1223 0.1182 0.1189
{312, dn3, di4, 346} 0.5744 0.5632 0.5801 0.5726

SOl WN R X

» Path g is most likely to be critical — 57.26% of the time
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Monte Carlo Simulation Examples Stochastic Activity Network

Summary

» Random number generators

» Monte Carlo simulation and examples
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