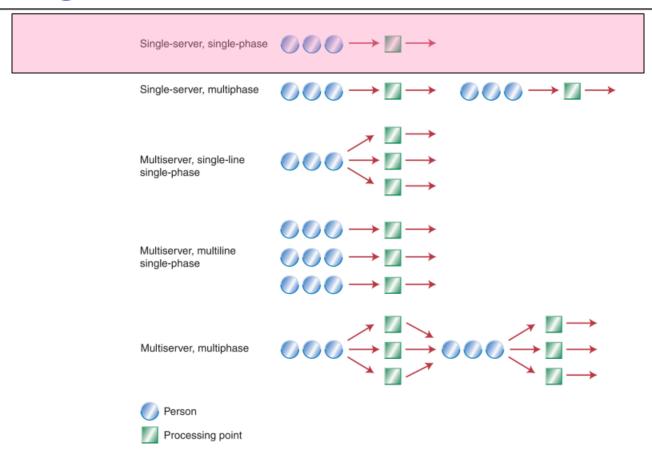
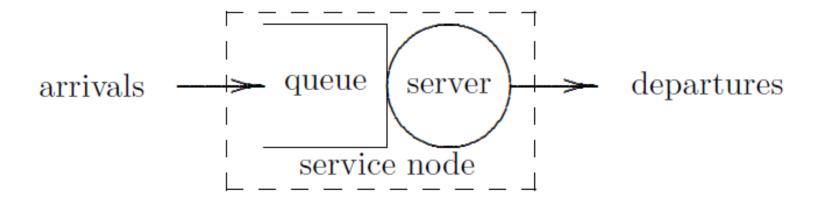
Single-Server Queue


Hui Chen, Ph.D.
Computer Science
Dept. of Math & Computer Science
Virginia State University
Petersburg, VA 23806

Single-Server Queue

- □ A single-server service node consists of a server plus its queue
- **□** Example Applications
 - Switches & routers
 - Telephony switching
 - Frame/packet forwarding (switching & routing)
 - Blanket paging in PCS
 - Single-CPU server
 - Single elevator building
 - Drive-by restaurant with a single waiter



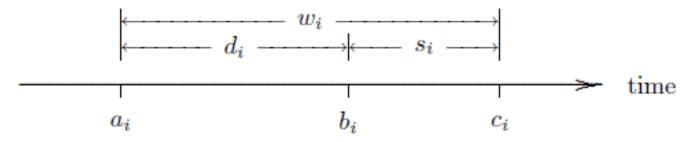
Single-Server Queue

□ From "<u>Dear Mona, Which Is The Fastest Check-Out Lane At The Grocery Store?</u>" by Mona Chalabi, originally appears in Operations Management, 5th Edition by "R. Dan Reid, Nada R. Sanders", 2013

System Diagram

Queue and Service Model

Queue


- Queuing discipline: how to select a job from the queue
 - □ FIFO/FCFS: first in, first out/first come, first serve
 - □ LIFO: last in, first out
 - □ SIRO: serve in random order
 - □ Priority: e.g., shortest job first (SJF)
- Capacity
- Unless otherwise noted, assume FIFO with infinite queue capacity

□ Service model

- Non-preemptive
 - □ Once initiated, service of job will continue until completed
- Conservative
 - Server will never remain idle if there is any job in the service node

Specification

- \square Arrival time: a_i
- \square Delay in queue (queuing delay): d_i
- \blacksquare Time that service begins: $b_i = a_i + d_i$
- \square Service time: s_i
- Wait in the node (total delay): $w_i = d_i + s_i$
- \square Departure time: $c_i = a_i + w_i$

Understand Specification

- □ Switches & routers
 - Telephony switching
 - Frame/packet forwarding (switching & routing)
- □ Blanket paging in PCS
- □ Single-CPU server
- □ Single elevator building
- □ Drive-by restaurant with a single waiter

Arrivals

 \square Inter-arrival time between jobs i-l and i

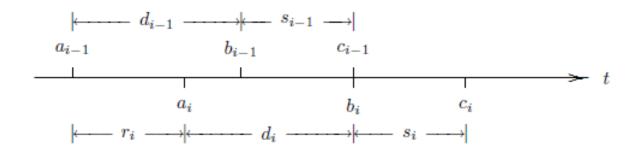
$$r_i = a_i - a_{i-1}$$

where $a_i = 0$

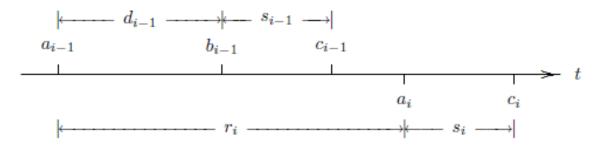
□ Note

$$a_i = a_{i-1} + r_i = r_1 + r_2 + \dots + r_i$$

Algorithmic Question


□ Given the arrival times and service times, can the delay times be computed?

Algorithm 1.2.1 Delay of Each Job (Single-Server FIFO Service Node with Infinite Capacity)


```
c_0 = 0.0;
                             /* assumes that a_0 = 0.0 */
i = 0;
while ( more jobs to process ) {
     i++:
     a_i = GetArrival();
     if (a_i < c_{i-1})
          d_i = c_{i-1} - a_i;
     else
          d_i = 0.0;
     s_i = GetService();
     c_i = a_i + d_i + s_i:
n=i;
return d_1, d_2, \ldots, d_n;
```

Does a Job Experience a Delay?

 \blacksquare If $a_i < c_{i-1}$, job i arrives before job i-l completes

□ If $a_i \ge c_{i-1}$, job i arrives after job i-1 completes

Trace-driven Simulation

- □ Simulation driven by external data (i.e., a trace)
- ☐ Trace can be a running record of a real system

Algorithm 1.2.1 Processing 10 Jobs

	i	1	2	3	4	5	6	7	8	9	10
read from file	aį	15	47	71	111	123	152	166	226	310	320
from algorithm	d_i	0	11	23	17	35	44	70	41	0	26
read from file											

□ Running algorithm manually

$$a_1 = 15, s_1 = 43, d_1 = ?$$

$$a_2 = 47, d_2 = ?$$

Output Statistics

- □ Gain insight from various statistics!
- **□** Examples
 - Job/Customer perspective: waiting time
 - Managing perspective: utilization
- □ Job-averaged statistics
- □ Time-average statistics

Job-Averaged Statistics (1)

□ Average inter-arrival time

$$\overline{r} = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{a_n}{n}$$

- Arrival rate: inverse of average inter-arrival time
- Average service time

$$\overline{s} = \frac{1}{n} \sum_{i=1}^{n} s_i$$

Service rate: inverse of average service time

Algorithm 1.2.1 Processing 10 Jobs: In-Class Exercise L1-1

						5					
read from file	aį	15	47	71	111	123	152	166	226	310	320
from algorithm	d_i	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

- □ Average inter-arrival time?
- □ Average service time?
- □ Arrival rate?
- □ Service rate?
- What conclusion can you draw from the above statistics?
 - Hint: compare arrival rate and service rate

Job-Averaged Statistics (2)

□ Average delay

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

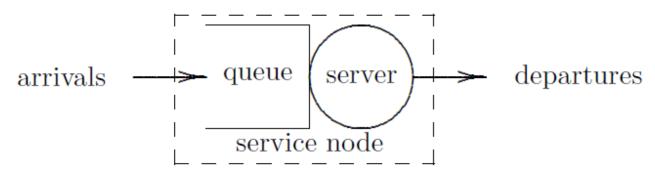
□ Average wait

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i$$

 \square Since $w_i = d_i + s_i$

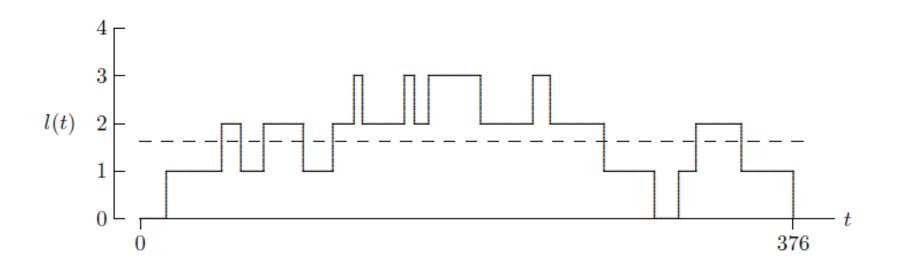
$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i = \frac{1}{n} \sum_{i=1}^{n} (d_i + s_i) = \frac{1}{n} \sum_{i=1}^{n} d_i + \frac{1}{n} \sum_{i=1}^{n} s_i = \overline{d} + \overline{s}$$

Algorithm 1.2.1 Processing 10 Jobs: In-Class Exercise L1-2


						5					
read from file	aį	15	47	71	111	123	152	166	226	310	320
from algorithm	d_i	0	11	23	17	35	44	70	41	0	26
read from file	si	43	36	34	30	38	40	31	29	36	30

- □ Average delay?
- □ Average wait?
- □ Consistency check (part of verification)

$$\overline{w} = \frac{1}{n} \sum_{i=1}^{n} w_i = \frac{1}{n} \sum_{i=1}^{n} (d_i + s_i) = \frac{1}{n} \sum_{i=1}^{n} d_i + \frac{1}{n} \sum_{i=1}^{n} s_i = \overline{d} + \overline{s}$$


Time-Averaged Statistics (1)

- □ Defined by the area under a curve (integral)
- □ Single-Server Queue: Start with *statistics at time t*
 - \blacksquare l(t): number of jobs in the service node at time t
 - = q(t): number of jobs in the queue at time t
 - $\mathbf{x}(t)$: number of jobs in service at time t
- \square By definition: l(t) = q(t) + x(t)

Time-Averaged Statistics: Example of *l(t)*

	i	1	2	3	4	5	6	7	8	9	10
read from file											
from algorithm	d_i	0	11	23	17	35	44	70	41	0	26
read from file											

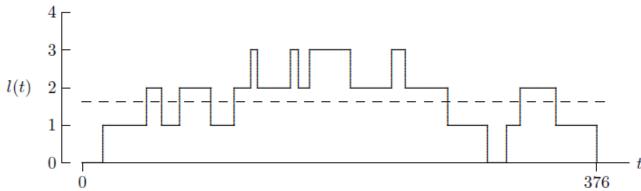
Time-Averaged Statistics (2)

- □ Defined by the area under a curve (integral)
 - Over the time interval $(0, \tau)$ the time-averaged number in the node $\frac{1}{2} \frac{1}{2} \frac{1}{2}$

$$\bar{l} = \frac{1}{\tau} \int_0^{\tau} l(t) dt$$

- Over the time interval $(0, \tau)$ the time-averaged number in the queue $\frac{1}{q} = \frac{1}{\tau} \int_0^{\tau} q(t) dt$
- Over the time interval $(0, \tau)$ the time-averaged number in service

$$\overline{x} = \frac{1}{\tau} \int_0^{\tau} x(t) dt$$


Time-Averaged Statistics (3)

- □ Defined by the area under a curve (integral)
 - Over the time interval $(0, \tau)$

$$\bar{l} = \frac{1}{\tau} \int_0^{\tau} l(t)dt \qquad \bar{q} = \frac{1}{\tau} \int_0^{\tau} q(t)dt \qquad \bar{x} = \frac{1}{\tau} \int_0^{\tau} x(t)dt$$

Since l(t) = q(t) + x(t) for all t > 0,

$$\bar{l} = \bar{x} + \bar{q}$$

1/15/2015

Job-Averaged and Time-Averaged Statistics

- □ Little's Equations
- □ If
 - (a) queue discipline is FIFO
 - (b) service node capacity is infinite, and
 - \blacksquare (c) service is idle both at t=0 and $t=c_n$,
- □ Then

$$\int_0^{c_n} l(t)dt = \sum_{i=1}^n w_i$$

$$\int_0^{c_n} q(t)dt = \sum_{i=1}^n d_i$$

$$\int_0^{c_n} x(t)dt = \sum_{i=1}^n s_i$$

In-Class Exercise L1-3

						5					
read from file											
from algorithm	d_i	0	11	23	17	35	44	70	41	0	26
read from file											

□ Using Little's Equations to calculate

q

 \bar{l}

 \mathcal{X}

Server Utilization

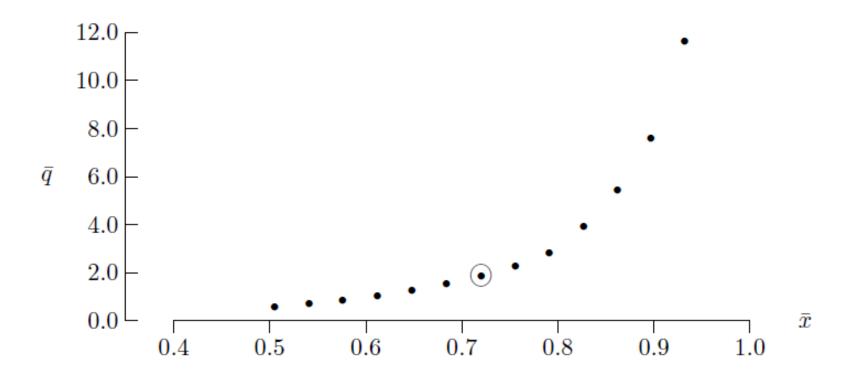
- □ Sever utilization: time averaged number in service
 - Represents probability that the server is busy

$$\bar{x} = \frac{1}{\tau} \int_0^\tau x(t) dt$$

Traffic Intensity

□ Traffic intensity: ratio of arrival rate to service rate

$$\frac{1/\overline{r}}{1/\overline{s}} = \frac{\overline{s}}{\overline{r}} = \frac{\overline{s}}{a_n/n} = \left(\frac{c_n}{a_n}\right)\overline{x}$$


Large Trace?

- □ Write a program!
- **□** Sample programs
 - C/C++ version
 - Java version

Case Study

- □ Sven and Larry's Ice Cream Shoppe
 - Owners considering adding new flavors and cone options
 - Concerned about resulting service times and queue length
- □ Can be modeled as a single-server queue
 - ssq1.dat represents 1000 customer interactions
 - Direct consequence of adding new flavors and cone options
 Service time per customer increases
 - What's the consequence?

Ice Cream Shoppe

In-Class Exercise: L1-4

■ Run either C/C++ or Java program against the trace, submit the result.

In-Class Exercise: L1-5

- Modify program ssq1 to output the additional statistics
 - q l \bar{x}
- As in the case study (Sven and Larry's Ice Cream Shoppe), use this program to compute a table of the above three statistics for the traffic intensities that are 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 times of original one in the input file
- □ Illustrate your result using either Matlab/Octave or Excel.

Summary

- □ Single-server queue
 - Concept model
 - Specification model
 - Simulation model and program
 - Numerical examples (Test cases for simulation program)
- □ Job-averaged statistics
- □ Time-averaged statistics
- □ Applications