Overview

Hui Chen, Ph.D.
Computer Science
Dept. of Math & Computer Science
Virginia State University
Petersburg, VA 23806

Outline

- □ Syllabus
- □ Reading
 - Reading
 - Q & A
- □ Model and Simulation
- □ Discrete Event Simulation

Syllabus

- □ Instructor's contact and office hours
- □ Content to cover
 - Discrete event simulation (based on the textbook by Leemis and Park)
 - Discrete event simulation with NS-3 (http://www.nsnam.org/)
- □ Grading

Reading

■ Which Is The Fastest Check-Out Lane At The Grocery Store?

Discussion

- How to answer the question asked in the article?
- □ How is it relevant to computer science?

Model and Simulation

- □ Model
 - Construct a conceptual framework that describes a system
- **□** Simulate
 - Experiment using computer implementation of a model
- □ Analyze
 - Draw conclusion and aid decision making

How to study a system?

Why Simulate?

- □ Study a system
 - Prediction
 - Predict behavior before building
 - □ Predict for future expectations
 - Testing
 - System characterization
- □ Virtualization
- □ Your application example

Characterization of Models

- Deterministic or stochastic?
 - Does the model contain stochastic (random) component?
- Static or dynamic?
 - Is time a significant variable?
- □ Contiguous or discrete?
 - Does system state evolve continuously or only at discrete point in time?
 - Continuous systems
 - Classical mechanics
 - Discrete systems
 - Queuing, inventory, machine shop model

Discrete-Event and Monte Carlo Simulations

- □ Discrete-Event Simulation
 - Stochastic
 - Discrete
 - Dynamic
- Monte Carlo Simulation
 - Stochastic
 - static

Characterization of Models

Building DES Model

- □ Algorithm 1.1: How to develop a model?
 - Determine goals and objectives
 - Build a conceptual model
 - Convert into a specification model
 - Convert into a computational model
 - Verify: do we build the model right (do we meet the specification)?
 - Validate: do we build the right model (do we analyze the system to be analyzed)?
- An interactive process

Building DES Model: Three Levels

Conceptual

- How comprehensive should the model be?
- What are the state variables, which are dynamic, which are stochastic, which are important?
- System diagrams

Specification

- On paper
- May involve equations, pseudo-code, algorithms, etc
- How will the model receive input, what the output are

Computational

- A computer program
- General purpose or simulation programming language?

Building DES Model: Verification vs. Validation

- □ Verification
 - Did we build the model right?
 - Computational model should be consistent with speciation
- □ Validation
 - Did we building the right model?
 - Computational model should be consistent with the system analyzed
 - Can an expert distinguish simulation output from system output?

Summary

- Model and simulation: an overview
- □ Reading assignment:
 - the machine shop model (section 1.1.1 1.1.3 in the textbook)