Overview

Hui Chen, Ph.D.
Computer Science
Dept. of Math \& Computer Science Virginia State University
Petersburg, VA 23806

Outline

- Syllabus
- Reading
- Reading
- Q \& A
- Model and Simulation
- Discrete Event Simulation

Syllabus

- Instructor's contact and office hours
- Content to cover
- Discrete event simulation (based on the textbook by Leemis and Park)
- Discrete event simulation with NS-3
(http://www.nsnam.org/)
- Grading

Reading

- Which Is The Fastest Check-Out Lane At The Grocery Store?

Discussion

- How to answer the question asked in the article?
- How is it relevant to computer science?

Model and Simulation

- Model
- Construct a conceptual framework that describes a system
- Simulate
- Experiment using computer implementation of a model
- Analyze
- Draw conclusion and aid decision making

How to study a system?

Why Simulate?

- Study a system
- Prediction
- Predict behavior before building
- Predict for future expectations
- Testing
- System characterization
- Virtualization
- Your application example

Characterization of Models

ㅁ Deterministic or stochastic?

- Does the model contain stochastic (random) component?
- Static or dynamic?
- Is time a significant variable?
- Contiguous or discrete?
- Does system state evolve continuously or only at discrete point in time?
- Continuous systems
- Classical mechanics
- Discrete systems
- Queuing, inventory, machine shop model

Discrete-Event and Monte Carlo Simulations

- Discrete-Event Simulation
- Stochastic
- Discrete
- Dynamic
- Monte Carlo Simulation
- Stochastic
- static

Characterization of Models

Building DES Model

- Algorithm 1.1: How to develop a model?
- Determine goals and objectives
- Build a conceptual model
- Convert into a specification model
- Convert into a computational model
- Verify: do we build the model right (do we meet the specification)?
- Validate: do we build the right model (do we analyze the system to be analyzed)?
- An interactive process

Building DES Model: Three Levels

- Conceptual

- How comprehensive should the model be?
- What are the state variables, which are dynamic, which are stochastic, which are important?
- System diagrams
- Specification
- On paper
- May involve equations, pseudo-code, algorithms, etc
- How will the model receive input, what the output are
- Computational
- A computer program
- General purpose or simulation programming language?

Building DES Model: Verification vs. Validation

- Verification
- Did we build the model right?
\square Computational model should be consistent with speciation
- Validation
\square Did we building the right model?
\square Computational model should be consistent with the system analyzed
\square Can an expert distinguish simulation output from system output?

Summary

- Model and simulation: an overview
- Reading assignment:
- the machine shop model (section 1.1.1-1.1.3 in the textbook)

