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Introduction

Outline

◮ Backus-Naur Form
◮ derivations, parse trees, ambiguity, descriptions of operator precedence

and associativity, and extended Backus-Naur Form.

◮ Attribute grammars

◮ Operational axiomatic and denotational semantics
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Introduction

Chomsky Hierarchy

◮ Also called Chomsky-Schützenberger Hierarchy (Noam Chomsky,
1956)

Class Grammar Language Automaton

Type-0 Unrestricted Recursively enumer-
able

Turing machine
(TM)

Type-1 Context-sensitive Context-sensitive Linear-bounded au-
tomaton (LBA)

Type-2 Context-free Context-free Pushdown automa-
ton (PDA)

Type-3 Regular Regular Deterministic finite
automaton (DFA)

◮ A strictly nested sets of classes of formal grammars, i.e.,

Type-0 ⊃ Type-1 ⊃ Type-2 ⊃ Type-3

◮ Context-free and regular grammars are of our primary concern
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Context-Free Grammar

Context-Free Grammar (CFG)

◮ A CFG is a quadruple, G = (V, T, P, S) where
◮ V : the set of variables or non-terminals
◮ T : the set of terminals
◮ P : the set of productions of the form A→ γ where A is a single

variable, i.e., A ∈ V and γ is string of terminals and variables, i.e.,
γ ∈ (V ∪ T )∗

◮ S: the start symbol and S ∈ V

◮ To describe the grammar of a programming language,
◮ Terminals are lexemes or tokens
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Context-Free Grammar

Example: A Simple Programming Language1

◮ Operators: + and ∗ represent addition and multiplication, respectively

◮ Arguments are identifiers consisting only of letters a, b, and digits 0, 1

◮ An example statement in the language,

(a+ b) ∗ (a+ b+ 1)

1This is an example given in [Hopcroft et al., 2006]
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Context-Free Grammar

CFG of the Simple Language

◮ The language can be specified using a CFG as,

G = ({E, I}, T, P,E)

where
◮ E and I are the two variables, and E is the start symbol
◮ T , the terminals are the set of symbols {+, ∗, (, ), a, b, 0, 1}
◮ P is the productions, i.e.,

1 E → I
2 E → E + E
3 E → E ∗ E
4 E → (E)

5 I → a
6 I → a
7 I → Ia
8 I → Ib
9 I → I0

10 I → I1
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Backus-Naur Form

Backus-Naur Form (BNF)

◮ John Backus (1959) and Peter Naur (1960) developed to describe
syntax of ALGOL 58 and 60

◮ BNF is equivalent to context-free grammars

◮ Widely used today for describing syntax of programming languages
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Backus-Naur Form

Production Rules in BNF

◮ Nonterminals (or variables in CFG, called abstractions) are often
enclosed in angle brackets

◮ A start symbol is a special element of the nonterminals of a grammar

◮ Grammar: a finite non-empty set of rules

◮ Examples of BNF rules:

<ident list >→ identifier

<ident list >→ identifier, <ident list >

<if stmt >→ if <logic expr> then <stmt >
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Backus-Naur Form

More than one RHS

◮ An abstraction (or a nonterminal symbol) can have more than one
right-hand sides

◮ Example: applying this rule, we can rewrite,

<ident list >→ identifier

<ident list >→ identifier, <ident list >

as

<ident list >→ identifier | identifier, <ident list >

◮ Another example:

<stmt >→ <single stmt > | begin <stmt list > end
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Backus-Naur Form

Lists

◮ Syntactic lists are described using recursion

<ident list>→ ident | ident, <ident list>
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Backus-Naur Form

Derivation

◮ A repeated application of rules, starting with the start symbol and
ending with a sentence (all terminal symbols)

◮ Every string of symbols in a derivation is a sentential form
◮ A sentence is a sentential form that has only terminal symbols
◮ A leftmost derivation is one in which the leftmost nonterminal in each

sentential form is the one that is expanded
◮ A derivation may be neither leftmost nor rightmost
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Backus-Naur Form

An Example of Derivation

◮ Given a grammar,

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

◮ we can have the following derivation,

<program> ⇒ <stmts> ⇒ <stmt> ⇒ <var> = <expr>

⇒ a = <expr> ⇒ a = <term> +<term>

⇒ a = <var> +<term>

⇒ a = b+<term>

⇒ a = b+ const
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Parse Tree

Parse Tree

◮ A parse tree is a hierarchical representation of a derivation
◮ Example:

<program>

<stmts>

<stmt>

<var>

a

= <expr>

<term>

<var>

b

+ <term>

const
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Ambiguity in Grammars

Ambiguity in Grammars

◮ A grammar is ambiguous if and only if it generates a sentential form
that has two or more distinct parse trees
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Ambiguity in Grammars

Example of Ambiguous Grammar and Parse Trees

<expr> → <expr> <op> <expr> | const

<op> → / | −

<expr>

<expr>

<expr>

const

<op>

-

<expr>

const

<op>

/

<expr>

const

<expr>

<expr>

const

<op>

-

<expr>

<expr>

const

<op>

/

<expr>

const
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Ambiguity in Grammars

Unambiguous Grammar

◮ If we use the parse tree to indicate precedence levels of the operators,
we cannot have ambiguity

◮ Example:

<expr> → <expr> −<term> |<term>

<term> → <term> / const | const

<expr>

<expr>

<term>

const

- <term>

<term>

const

/ const
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Ambiguity in Grammars

Associativity of Operators

◮ Operator associativity can also be indicated by a grammar

◮ Example: compare the following two grammars

1. Ambiguous grammar

<expr> → <expr> +<expr> | const

2. Unambiguous grammar

<expr> → <expr> + const | const
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Extended BNF

Extended BNF (EBNF)

◮ The extensions do not enhance the descriptive power of BNF; they
only increase its readability and writability

◮ Optional parts are placed in brackets [ ], e.g.,

<proc call> → ident [(<expr list> )]

◮ Alternative parts of RHSs are placed inside ( ) and separated via |,
e.g.,

<term> → <term> (+|−) const

◮ Repetitions (0 or more times) are placed inside {},

<ident> → letter { letter | digit }

◮ Can you rewrite the above examples without using extensions?
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Extended BNF

Recent Variations in EBNF

◮ Alternative RHSs are put on separate lines

◮ Use of a : instead of →

◮ Use of opt for optional parts

◮ Use of oneof for choices
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Attribute Grammars

Static Semantics

◮ Context-free grammars (CFGs) has limitations to describe the syntax
of programming languages

◮ Some are context-free, but cumbersome to be described in CFGs, e.g.,
type constraints

◮ Some are non context-free, e.g., variables must be declared before they
are used

◮ Static semantics rules: checking and analysis of the rules can be done
at compile time
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Attribute Grammars

Attribute Grammar

◮ Formal approach both to describing and checking the correctness of
the static semantics rules of a program

◮ Additions to CFGs to carry some semantic info on parse tree nodes
◮ Static semantics specification
◮ Static semantics checking
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Attribute Grammars

Definition of Attribute Grammar

◮ An attribute grammar is a context-free grammar G = (S,N, T, P )
with the following additions:

◮ For each grammar symbol x there is a set A(x) of attribute values
◮ Each rule has a set of functions that define certain attributes of the

nonterminals in the rule
◮ Each rule has a (possibly empty) set of predicates to check for

attribute consistency
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Attribute Grammars

Rules in Attribute Grammar

◮ Let X0 → X1 . . . Xn be a rule

◮ Functions of the form S(X0) = f(A(X1), . . . , A(Xn)) define
synthesized attributes

◮ Functions of the form I(Xj) = f(A(X0), . . . , A(Xn)), for i ≤ j ≤ n,
define inherited attributes

◮ Initially, there are intrinsic attributes on the leaves
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Attribute Grammars

An Example of Attribute Grammars

◮ Syntax

<assign> → <var> = <expr>

<expr> → <var> +<var> |<var>

<var> → A|B|C

◮ actual type: synthesized for <var> and <expr>

◮ expected type: inherited for <expr>
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Attribute Grammars

An Example of Attribute Grammars

◮ Syntax rule:
<expr> → <var> [1] +<var> [2]

◮ Semantic rules:

<expr> .actual type→ <var> [1].actual type

◮ Predicate:

<var> [1].actual type == <var> [2].actual type

<expr> .expected type == <expr> .actual type

◮ Syntax rule:
<var> → id

◮ Semantic rule:

<var> .actual type← lookup(<var> .string)
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Attribute Grammars

Compute Attribute Values

◮ If all attributes were inherited, the tree could be decorated in
top-down order.

◮ If all attributes were synthesized, the tree could be decorated in
bottom-up order.

◮ In many cases, both kinds of attributes are used, and it is some
combination of top-down and bottom-up that must be used.
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Attribute Grammars

An Example of Computing Attribute Values

<expr> .expected type← inherited from parent

<var> [1].actual type← lookup(A)

<var> [2].actual type← lookup(B)

<var> [1].actual type == <var> [2].actual type

<expr> .actual type← <var> [1].actual type

<expr> .actual type == <expr> .expected type
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Semantics

Dynamic Semantics

◮ meaning, of the expressions, statements, and program units of a
programming language

◮ need for a methodology and notation for describing semantics.

◮ Programmers need to know what statements mean
◮ Compiler writers must know exactly what language constructs do
◮ Correctness proofs would be possible
◮ Compiler generators would be possible
◮ Designers could detect ambiguities and inconsistencies
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Semantics

Describing Semantics

◮ no universally accepted notation or approach has been devised for
dynamic semantics

◮ briefly describe several of the methods that have been developed
◮ Operational Semantics
◮ Denotational Semantics
◮ Axiomatic Semantics
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Semantics

Operational Semantics

◮ To describe the meaning of a statement or program by specifying the
effects of running it on a machine.

◮ The effects on the machine are viewed as the sequence of changes in
its state (memory, registers, etc.)

◮ To use operational semantics for a high-level language, a virtual
machine or an idealized computers is used

H. Chen (VSU) Syntax and Semantics January 20, 2016 30 / 53



Semantics

Applications of Operational Semantics

◮ A complete computer simulation

◮ The process:
◮ Build a translator (translates source code to the machine code of an

idealized computer)
◮ Build a simulator for the idealized computer

◮ Evaluation of operational semantics:
◮ Good if used informally (language manuals, etc.)
◮ Extremely complex if used formally (e.g., VDL), it was used for

describing semantics of PL/I.
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Semantics

Evaluation

◮ good if used informally (e.g., in programming language manuals)

◮ extremely complex if used formally (e.g.,VDL)
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Semantics

Denotational Semantics

◮ Originally developed
in [Strachey and Scott, 1970, Scott and Strachey, 1971]

◮ The most rigorous and most widely known formal method for
describing the meaning of programs

◮ Based on recursive function theory
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Semantics

Constructing Denotational Semantics Specification

◮ define syntactic domain: mathematical objects for language entities

◮ define semantic domain: function that maps language entities onto
mathematical objects

◮ syntactic domain (domain D): collection of values that are legitimate
parameters to the function

◮ semantic domain (range R): collection of objects to which the
parameters are mapped

f : D 7→ R
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Semantics

An Example: Binary Numbers

◮ Grammar for binary numbers

<bin num> →′0′

|′1′

|<bin num> ′0′

|<bin num> ′1′

◮ Parse Tree for 110
<bin num>

<bin num>

<bin num>

’1’

’1’

’0’

H. Chen (VSU) Syntax and Semantics January 20, 2016 35 / 53



Semantics

An Example: Binary Numbers

◮ Now need to define the meaning of binary numbers

◮ syntactic domain (domain):

D = {′0′,′ 1′, <bin num> ′0′, <bin num> ′1′}

◮ semantic domain (range):

R = {0, 1, 2 ·Mbin(<bin num> ), 2 ·Mbin(<bin num> ) + 1}

◮ mapping from domain onto range Mbin : D 7→ R

Mbin(
′0′) = 0

Mbin(
′1′) = 1

Mbin(<bin num> ′0′) = 2 ·Mbin(<bin num> )

Mbin(<bin num> ′1′) = 2 ·Mbin(<bin num> ) + 1
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Semantics

An Example: Binary Numbers

◮ Decorated Parse Tree for 110

6<bin num>

3<bin num>

1<bin num>

’1’

’1’

’0’
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Semantics

An Example: Decimal Numbers

◮ Grammar for decimal numbers (in EBNF)

<dec num> →′0′|′1′|′2′|′3′|′4′|′5′|′6′|′7′|′8′|′9′

|<dec num> (′0′|′1′|′2′|′3′|′4′|′5′|′6′|′7′|′8′|′9′)

◮ What are the mapping function and its syntactic and semantic
domains?

◮ Can you provide an example of decorated parse tree for 3231?
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Semantics

The State of a Program

◮ Let the state s of a program be represented as a set of ordered pairs

s = {< i1, v1 >,< i2, v2 >, ..., < in, vn >}

where
ij is the name of j − th variable and vj is the current value of variable
ij , 1 ≤ j ≤ n. The value of vj can be the special value undef, which
indicates that its associated variable is currently undefined.

◮ Let V ARMAP be a function of two parameters: a variable name
and the program state. The value of V ARMAP (ij , s) is vj (the
value paired with ij in state s).

◮ See the binary numbers and decimal numbers examples
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Semantics

Three Language Constructs

◮ Expressions

◮ Assignment Statements

◮ Logical Pretest Loops
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Semantics

Expressions

◮ Map expressions onto Z ∪ {error}

◮ Assume
◮ Expressions have no side effects
◮ Operators are + and ∗
◮ Expression can have at most one operator
◮ Only operands are scalar integer variables and integer literals
◮ There are no parentheses
◮ The value of an expression is an integer.
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Semantics

Grammar of Expressions

◮ Grammar

<expr> → <dec num> |<var> |<binary expr>

<binary expr> → <left expr> <operator> <right expr>

<left expr> → <dec num> |<var>

<right expr> → <dec num> |<var>

<operator> → +|∗
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Semantics

Mapping Function for the Expressions

◮ use ∆ = to define mathematical functions

Me(<expr>, s) ∆= case <expr> of
                                  <dec_num>=>Mdec(<dec_num>, s)
                                 <var> =>if VARMAP(<var>, s) == undef

                                                      then error

                                                      else VARMAP(<var>, s)
                                 <binary_expr> => 
                                   if(Me(<binary_expr>.<left_expr>,s) == undef  OR
                                       Me(<binary_expr>.<right_expr>, s) == undef)

                                    then error

                                    else if (<binary_expr>.<operator> == '+') 
                                                then Me(<binary_expr>.<left_expr>, s) +
                                                          Me(<binary_expr>.<right_expr>, s)
                                                else Me(<binary_expr>.<left_expr>, s) * 
                                                         Me(<binary_expr>.<right_expr>, s)
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Semantics

Assignment Statement

◮ Maps state sets to state sets s ∪ {error}

Ma(x = E, s) ∆= if Me(E, s) == error

                               then error

                               else s� = {<i1, v1�>, <i2, v2�>, . . . , <in, vn�>}, where 
                                          for j = 1, 2, . . . , n
                                            if ij == x  
                                               then vj� =  Me(E, s)

                                               else vj� = VARMAP(ij, s)
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Semantics

Logical Pretest Loops

◮ Maps state sets to state sets s ∪ {error}

Ml(while B do L, s) ∆= if Mb(B, s) == undef

                                           then error

                                           else if Mb(B, s) == false
                                                     then s
                                                     else if Msl(L, s) == error

                                                            then error

                                                            else Ml(while B do L, Msl(L, s))
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Semantics

Meaning of Loops

◮ The value of the program variables after the statements in the loop
have been executed the prescribed number of times, assuming there
have been no errors.

◮ The loop has been converted from iteration to recursion, where the
recursion control is mathematically defined by other recursive state
mapping functions

◮ Recursion is easier to describe with mathematical rigor than iteration.

◮ Observation: according to the defintion, like actual program loops,
may compute nothing because of nontermination
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Semantics

Evaluation

◮ Can be used to prove the correctness of programs

◮ Provides a rigorous way to think about programs

◮ Can be an aid to language design

◮ Has been used in compiler generation systems

◮ Because of its complexity, it are of little use to language users
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Semantics

Axiomatic Semantics

◮ Based on formal logic (predicate calculus)

◮ Original purpose: formal program verification

◮ Axioms or inference rules are defined for each statement type in the
language (to allow transformations of logic expressions into more
formal logic expressions)

◮ The logic expressions are called assertions
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Semantics

Assertions in Axiomatic Semantics

◮ An assertion before a statement (a precondition) states the
relationships and constraints among variables that are true at that
point in execution

◮ An assertion following a statement is a postcondition

◮ A weakest precondition is the least restrictive precondition that will
guarantee the postcondition
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Semantics

Evaluation

◮ Developing axioms or inference rules for all of the statements in a
language is difficult

◮ It is a good tool for correctness proofs, and an excellent framework
for reasoning about programs, but it is not as useful for language
users and compiler writers

◮ Its usefulness in describing the meaning of a programming language is
limited for language users or compiler writers
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Semantics

Denotation and Operational Semantics

◮ In operational semantics, the state changes are defined by coded
algorithms

◮ In denotational semantics, the state changes are defined by rigorous
mathematical functions
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Summary

Summary

◮ BNF and context-free grammars are equivalent meta-languages
◮ Well-suited for describing the syntax of programming languages

◮ An attribute grammar is a descriptive formalism that can describe
both the syntax and the semantics of a language

◮ Three primary methods of semantics description
◮ Operation, axiomatic, denotational
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Summary
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