
Syntax and Semantics

Hui Chen

Computer Science

Virginia State University

Petersburg, Virginia

January 20, 2016

H. Chen (VSU) Syntax and Semantics January 20, 2016 1 / 53

Introduction

Outline

◮ Backus-Naur Form
◮ derivations, parse trees, ambiguity, descriptions of operator precedence

and associativity, and extended Backus-Naur Form.

◮ Attribute grammars

◮ Operational axiomatic and denotational semantics

H. Chen (VSU) Syntax and Semantics January 20, 2016 2 / 53

Introduction

Chomsky Hierarchy

◮ Also called Chomsky-Schützenberger Hierarchy (Noam Chomsky,
1956)

Class Grammar Language Automaton

Type-0 Unrestricted Recursively enumer-
able

Turing machine
(TM)

Type-1 Context-sensitive Context-sensitive Linear-bounded au-
tomaton (LBA)

Type-2 Context-free Context-free Pushdown automa-
ton (PDA)

Type-3 Regular Regular Deterministic finite
automaton (DFA)

◮ A strictly nested sets of classes of formal grammars, i.e.,

Type-0 ⊃ Type-1 ⊃ Type-2 ⊃ Type-3

◮ Context-free and regular grammars are of our primary concern

H. Chen (VSU) Syntax and Semantics January 20, 2016 3 / 53

Context-Free Grammar

Context-Free Grammar (CFG)

◮ A CFG is a quadruple, G = (V, T, P, S) where
◮ V : the set of variables or non-terminals
◮ T : the set of terminals
◮ P : the set of productions of the form A→ γ where A is a single

variable, i.e., A ∈ V and γ is string of terminals and variables, i.e.,
γ ∈ (V ∪ T)∗

◮ S: the start symbol and S ∈ V

◮ To describe the grammar of a programming language,
◮ Terminals are lexemes or tokens

H. Chen (VSU) Syntax and Semantics January 20, 2016 4 / 53

Context-Free Grammar

Example: A Simple Programming Language1

◮ Operators: + and ∗ represent addition and multiplication, respectively

◮ Arguments are identifiers consisting only of letters a, b, and digits 0, 1

◮ An example statement in the language,

(a+ b) ∗ (a+ b+ 1)

1This is an example given in [Hopcroft et al., 2006]
H. Chen (VSU) Syntax and Semantics January 20, 2016 5 / 53

Context-Free Grammar

CFG of the Simple Language

◮ The language can be specified using a CFG as,

G = ({E, I}, T, P,E)

where
◮ E and I are the two variables, and E is the start symbol
◮ T , the terminals are the set of symbols {+, ∗, (,), a, b, 0, 1}
◮ P is the productions, i.e.,

1 E → I
2 E → E + E
3 E → E ∗ E
4 E → (E)

5 I → a
6 I → a
7 I → Ia
8 I → Ib
9 I → I0

10 I → I1

H. Chen (VSU) Syntax and Semantics January 20, 2016 6 / 53

Backus-Naur Form

Backus-Naur Form (BNF)

◮ John Backus (1959) and Peter Naur (1960) developed to describe
syntax of ALGOL 58 and 60

◮ BNF is equivalent to context-free grammars

◮ Widely used today for describing syntax of programming languages

H. Chen (VSU) Syntax and Semantics January 20, 2016 7 / 53

Backus-Naur Form

Production Rules in BNF

◮ Nonterminals (or variables in CFG, called abstractions) are often
enclosed in angle brackets

◮ A start symbol is a special element of the nonterminals of a grammar

◮ Grammar: a finite non-empty set of rules

◮ Examples of BNF rules:

<ident list >→ identifier

<ident list >→ identifier, <ident list >

<if stmt >→ if <logic expr> then <stmt >

H. Chen (VSU) Syntax and Semantics January 20, 2016 8 / 53

Backus-Naur Form

More than one RHS

◮ An abstraction (or a nonterminal symbol) can have more than one
right-hand sides

◮ Example: applying this rule, we can rewrite,

<ident list >→ identifier

<ident list >→ identifier, <ident list >

as

<ident list >→ identifier | identifier, <ident list >

◮ Another example:

<stmt >→ <single stmt > | begin <stmt list > end

H. Chen (VSU) Syntax and Semantics January 20, 2016 9 / 53

Backus-Naur Form

Lists

◮ Syntactic lists are described using recursion

<ident list>→ ident | ident, <ident list>

H. Chen (VSU) Syntax and Semantics January 20, 2016 10 / 53

Backus-Naur Form

Derivation

◮ A repeated application of rules, starting with the start symbol and
ending with a sentence (all terminal symbols)

◮ Every string of symbols in a derivation is a sentential form
◮ A sentence is a sentential form that has only terminal symbols
◮ A leftmost derivation is one in which the leftmost nonterminal in each

sentential form is the one that is expanded
◮ A derivation may be neither leftmost nor rightmost

H. Chen (VSU) Syntax and Semantics January 20, 2016 11 / 53

Backus-Naur Form

An Example of Derivation

◮ Given a grammar,

<program> → <stmts>

<stmts> → <stmt> | <stmt> ; <stmts>

<stmt> → <var> = <expr>

<var> → a | b | c | d

<expr> → <term> + <term> | <term> - <term>

<term> → <var> | const

◮ we can have the following derivation,

<program> ⇒ <stmts> ⇒ <stmt> ⇒ <var> = <expr>

⇒ a = <expr> ⇒ a = <term> +<term>

⇒ a = <var> +<term>

⇒ a = b+<term>

⇒ a = b+ const
H. Chen (VSU) Syntax and Semantics January 20, 2016 12 / 53

Parse Tree

Parse Tree

◮ A parse tree is a hierarchical representation of a derivation
◮ Example:

<program>

<stmts>

<stmt>

<var>

a

= <expr>

<term>

<var>

b

+ <term>

const

H. Chen (VSU) Syntax and Semantics January 20, 2016 13 / 53

Ambiguity in Grammars

Ambiguity in Grammars

◮ A grammar is ambiguous if and only if it generates a sentential form
that has two or more distinct parse trees

H. Chen (VSU) Syntax and Semantics January 20, 2016 14 / 53

Ambiguity in Grammars

Example of Ambiguous Grammar and Parse Trees

<expr> → <expr> <op> <expr> | const

<op> → / | −

<expr>

<expr>

<expr>

const

<op>

-

<expr>

const

<op>

/

<expr>

const

<expr>

<expr>

const

<op>

-

<expr>

<expr>

const

<op>

/

<expr>

const

H. Chen (VSU) Syntax and Semantics January 20, 2016 15 / 53

Ambiguity in Grammars

Unambiguous Grammar

◮ If we use the parse tree to indicate precedence levels of the operators,
we cannot have ambiguity

◮ Example:

<expr> → <expr> −<term> |<term>

<term> → <term> / const | const

<expr>

<expr>

<term>

const

- <term>

<term>

const

/ const

H. Chen (VSU) Syntax and Semantics January 20, 2016 16 / 53

Ambiguity in Grammars

Associativity of Operators

◮ Operator associativity can also be indicated by a grammar

◮ Example: compare the following two grammars

1. Ambiguous grammar

<expr> → <expr> +<expr> | const

2. Unambiguous grammar

<expr> → <expr> + const | const

H. Chen (VSU) Syntax and Semantics January 20, 2016 17 / 53

Extended BNF

Extended BNF (EBNF)

◮ The extensions do not enhance the descriptive power of BNF; they
only increase its readability and writability

◮ Optional parts are placed in brackets [], e.g.,

<proc call> → ident [(<expr list>)]

◮ Alternative parts of RHSs are placed inside () and separated via |,
e.g.,

<term> → <term> (+|−) const

◮ Repetitions (0 or more times) are placed inside {},

<ident> → letter { letter | digit }

◮ Can you rewrite the above examples without using extensions?

H. Chen (VSU) Syntax and Semantics January 20, 2016 18 / 53

Extended BNF

Recent Variations in EBNF

◮ Alternative RHSs are put on separate lines

◮ Use of a : instead of →

◮ Use of opt for optional parts

◮ Use of oneof for choices

H. Chen (VSU) Syntax and Semantics January 20, 2016 19 / 53

Attribute Grammars

Static Semantics

◮ Context-free grammars (CFGs) has limitations to describe the syntax
of programming languages

◮ Some are context-free, but cumbersome to be described in CFGs, e.g.,
type constraints

◮ Some are non context-free, e.g., variables must be declared before they
are used

◮ Static semantics rules: checking and analysis of the rules can be done
at compile time

H. Chen (VSU) Syntax and Semantics January 20, 2016 20 / 53

Attribute Grammars

Attribute Grammar

◮ Formal approach both to describing and checking the correctness of
the static semantics rules of a program

◮ Additions to CFGs to carry some semantic info on parse tree nodes
◮ Static semantics specification
◮ Static semantics checking

H. Chen (VSU) Syntax and Semantics January 20, 2016 21 / 53

Attribute Grammars

Definition of Attribute Grammar

◮ An attribute grammar is a context-free grammar G = (S,N, T, P)
with the following additions:

◮ For each grammar symbol x there is a set A(x) of attribute values
◮ Each rule has a set of functions that define certain attributes of the

nonterminals in the rule
◮ Each rule has a (possibly empty) set of predicates to check for

attribute consistency

H. Chen (VSU) Syntax and Semantics January 20, 2016 22 / 53

Attribute Grammars

Rules in Attribute Grammar

◮ Let X0 → X1 . . . Xn be a rule

◮ Functions of the form S(X0) = f(A(X1), . . . , A(Xn)) define
synthesized attributes

◮ Functions of the form I(Xj) = f(A(X0), . . . , A(Xn)), for i ≤ j ≤ n,
define inherited attributes

◮ Initially, there are intrinsic attributes on the leaves

H. Chen (VSU) Syntax and Semantics January 20, 2016 23 / 53

Attribute Grammars

An Example of Attribute Grammars

◮ Syntax

<assign> → <var> = <expr>

<expr> → <var> +<var> |<var>

<var> → A|B|C

◮ actual type: synthesized for <var> and <expr>

◮ expected type: inherited for <expr>

H. Chen (VSU) Syntax and Semantics January 20, 2016 24 / 53

Attribute Grammars

An Example of Attribute Grammars

◮ Syntax rule:
<expr> → <var> [1] +<var> [2]

◮ Semantic rules:

<expr> .actual type→ <var> [1].actual type

◮ Predicate:

<var> [1].actual type == <var> [2].actual type

<expr> .expected type == <expr> .actual type

◮ Syntax rule:
<var> → id

◮ Semantic rule:

<var> .actual type← lookup(<var> .string)

H. Chen (VSU) Syntax and Semantics January 20, 2016 25 / 53

Attribute Grammars

Compute Attribute Values

◮ If all attributes were inherited, the tree could be decorated in
top-down order.

◮ If all attributes were synthesized, the tree could be decorated in
bottom-up order.

◮ In many cases, both kinds of attributes are used, and it is some
combination of top-down and bottom-up that must be used.

H. Chen (VSU) Syntax and Semantics January 20, 2016 26 / 53

Attribute Grammars

An Example of Computing Attribute Values

<expr> .expected type← inherited from parent

<var> [1].actual type← lookup(A)

<var> [2].actual type← lookup(B)

<var> [1].actual type == <var> [2].actual type

<expr> .actual type← <var> [1].actual type

<expr> .actual type == <expr> .expected type

H. Chen (VSU) Syntax and Semantics January 20, 2016 27 / 53

Semantics

Dynamic Semantics

◮ meaning, of the expressions, statements, and program units of a
programming language

◮ need for a methodology and notation for describing semantics.

◮ Programmers need to know what statements mean
◮ Compiler writers must know exactly what language constructs do
◮ Correctness proofs would be possible
◮ Compiler generators would be possible
◮ Designers could detect ambiguities and inconsistencies

H. Chen (VSU) Syntax and Semantics January 20, 2016 28 / 53

Semantics

Describing Semantics

◮ no universally accepted notation or approach has been devised for
dynamic semantics

◮ briefly describe several of the methods that have been developed
◮ Operational Semantics
◮ Denotational Semantics
◮ Axiomatic Semantics

H. Chen (VSU) Syntax and Semantics January 20, 2016 29 / 53

Semantics

Operational Semantics

◮ To describe the meaning of a statement or program by specifying the
effects of running it on a machine.

◮ The effects on the machine are viewed as the sequence of changes in
its state (memory, registers, etc.)

◮ To use operational semantics for a high-level language, a virtual
machine or an idealized computers is used

H. Chen (VSU) Syntax and Semantics January 20, 2016 30 / 53

Semantics

Applications of Operational Semantics

◮ A complete computer simulation

◮ The process:
◮ Build a translator (translates source code to the machine code of an

idealized computer)
◮ Build a simulator for the idealized computer

◮ Evaluation of operational semantics:
◮ Good if used informally (language manuals, etc.)
◮ Extremely complex if used formally (e.g., VDL), it was used for

describing semantics of PL/I.

H. Chen (VSU) Syntax and Semantics January 20, 2016 31 / 53

Semantics

Evaluation

◮ good if used informally (e.g., in programming language manuals)

◮ extremely complex if used formally (e.g.,VDL)

H. Chen (VSU) Syntax and Semantics January 20, 2016 32 / 53

Semantics

Denotational Semantics

◮ Originally developed
in [Strachey and Scott, 1970, Scott and Strachey, 1971]

◮ The most rigorous and most widely known formal method for
describing the meaning of programs

◮ Based on recursive function theory

H. Chen (VSU) Syntax and Semantics January 20, 2016 33 / 53

Semantics

Constructing Denotational Semantics Specification

◮ define syntactic domain: mathematical objects for language entities

◮ define semantic domain: function that maps language entities onto
mathematical objects

◮ syntactic domain (domain D): collection of values that are legitimate
parameters to the function

◮ semantic domain (range R): collection of objects to which the
parameters are mapped

f : D 7→ R

H. Chen (VSU) Syntax and Semantics January 20, 2016 34 / 53

Semantics

An Example: Binary Numbers

◮ Grammar for binary numbers

<bin num> →′0′

|′1′

|<bin num> ′0′

|<bin num> ′1′

◮ Parse Tree for 110
<bin num>

<bin num>

<bin num>

’1’

’1’

’0’

H. Chen (VSU) Syntax and Semantics January 20, 2016 35 / 53

Semantics

An Example: Binary Numbers

◮ Now need to define the meaning of binary numbers

◮ syntactic domain (domain):

D = {′0′,′ 1′, <bin num> ′0′, <bin num> ′1′}

◮ semantic domain (range):

R = {0, 1, 2 ·Mbin(<bin num>), 2 ·Mbin(<bin num>) + 1}

◮ mapping from domain onto range Mbin : D 7→ R

Mbin(
′0′) = 0

Mbin(
′1′) = 1

Mbin(<bin num> ′0′) = 2 ·Mbin(<bin num>)

Mbin(<bin num> ′1′) = 2 ·Mbin(<bin num>) + 1

H. Chen (VSU) Syntax and Semantics January 20, 2016 36 / 53

Semantics

An Example: Binary Numbers

◮ Decorated Parse Tree for 110

6<bin num>

3<bin num>

1<bin num>

’1’

’1’

’0’

H. Chen (VSU) Syntax and Semantics January 20, 2016 37 / 53

Semantics

An Example: Decimal Numbers

◮ Grammar for decimal numbers (in EBNF)

<dec num> →′0′|′1′|′2′|′3′|′4′|′5′|′6′|′7′|′8′|′9′

|<dec num> (′0′|′1′|′2′|′3′|′4′|′5′|′6′|′7′|′8′|′9′)

◮ What are the mapping function and its syntactic and semantic
domains?

◮ Can you provide an example of decorated parse tree for 3231?

H. Chen (VSU) Syntax and Semantics January 20, 2016 38 / 53

Semantics

The State of a Program

◮ Let the state s of a program be represented as a set of ordered pairs

s = {< i1, v1 >,< i2, v2 >, ..., < in, vn >}

where
ij is the name of j − th variable and vj is the current value of variable
ij , 1 ≤ j ≤ n. The value of vj can be the special value undef, which
indicates that its associated variable is currently undefined.

◮ Let V ARMAP be a function of two parameters: a variable name
and the program state. The value of V ARMAP (ij , s) is vj (the
value paired with ij in state s).

◮ See the binary numbers and decimal numbers examples

H. Chen (VSU) Syntax and Semantics January 20, 2016 39 / 53

Semantics

Three Language Constructs

◮ Expressions

◮ Assignment Statements

◮ Logical Pretest Loops

H. Chen (VSU) Syntax and Semantics January 20, 2016 40 / 53

Semantics

Expressions

◮ Map expressions onto Z ∪ {error}

◮ Assume
◮ Expressions have no side effects
◮ Operators are + and ∗
◮ Expression can have at most one operator
◮ Only operands are scalar integer variables and integer literals
◮ There are no parentheses
◮ The value of an expression is an integer.

H. Chen (VSU) Syntax and Semantics January 20, 2016 41 / 53

Semantics

Grammar of Expressions

◮ Grammar

<expr> → <dec num> |<var> |<binary expr>

<binary expr> → <left expr> <operator> <right expr>

<left expr> → <dec num> |<var>

<right expr> → <dec num> |<var>

<operator> → +|∗

H. Chen (VSU) Syntax and Semantics January 20, 2016 42 / 53

Semantics

Mapping Function for the Expressions

◮ use ∆ = to define mathematical functions

Me(<expr>, s) ∆= case <expr> of
 <dec_num>=>Mdec(<dec_num>, s)
 <var> =>if VARMAP(<var>, s) == undef

 then error

 else VARMAP(<var>, s)
 <binary_expr> =>
 if(Me(<binary_expr>.<left_expr>,s) == undef OR
 Me(<binary_expr>.<right_expr>, s) == undef)

 then error

 else if (<binary_expr>.<operator> == '+')
 then Me(<binary_expr>.<left_expr>, s) +
 Me(<binary_expr>.<right_expr>, s)
 else Me(<binary_expr>.<left_expr>, s) *
 Me(<binary_expr>.<right_expr>, s)

H. Chen (VSU) Syntax and Semantics January 20, 2016 43 / 53

Semantics

Assignment Statement

◮ Maps state sets to state sets s ∪ {error}

Ma(x = E, s) ∆= if Me(E, s) == error

 then error

 else s� = {<i1, v1�>, <i2, v2�>, . . . , <in, vn�>}, where
 for j = 1, 2, . . . , n
 if ij == x
 then vj� = Me(E, s)

 else vj� = VARMAP(ij, s)

H. Chen (VSU) Syntax and Semantics January 20, 2016 44 / 53

Semantics

Logical Pretest Loops

◮ Maps state sets to state sets s ∪ {error}

Ml(while B do L, s) ∆= if Mb(B, s) == undef

 then error

 else if Mb(B, s) == false
 then s
 else if Msl(L, s) == error

 then error

 else Ml(while B do L, Msl(L, s))

H. Chen (VSU) Syntax and Semantics January 20, 2016 45 / 53

Semantics

Meaning of Loops

◮ The value of the program variables after the statements in the loop
have been executed the prescribed number of times, assuming there
have been no errors.

◮ The loop has been converted from iteration to recursion, where the
recursion control is mathematically defined by other recursive state
mapping functions

◮ Recursion is easier to describe with mathematical rigor than iteration.

◮ Observation: according to the defintion, like actual program loops,
may compute nothing because of nontermination

H. Chen (VSU) Syntax and Semantics January 20, 2016 46 / 53

Semantics

Evaluation

◮ Can be used to prove the correctness of programs

◮ Provides a rigorous way to think about programs

◮ Can be an aid to language design

◮ Has been used in compiler generation systems

◮ Because of its complexity, it are of little use to language users

H. Chen (VSU) Syntax and Semantics January 20, 2016 47 / 53

Semantics

Axiomatic Semantics

◮ Based on formal logic (predicate calculus)

◮ Original purpose: formal program verification

◮ Axioms or inference rules are defined for each statement type in the
language (to allow transformations of logic expressions into more
formal logic expressions)

◮ The logic expressions are called assertions

H. Chen (VSU) Syntax and Semantics January 20, 2016 48 / 53

Semantics

Assertions in Axiomatic Semantics

◮ An assertion before a statement (a precondition) states the
relationships and constraints among variables that are true at that
point in execution

◮ An assertion following a statement is a postcondition

◮ A weakest precondition is the least restrictive precondition that will
guarantee the postcondition

H. Chen (VSU) Syntax and Semantics January 20, 2016 49 / 53

Semantics

Evaluation

◮ Developing axioms or inference rules for all of the statements in a
language is difficult

◮ It is a good tool for correctness proofs, and an excellent framework
for reasoning about programs, but it is not as useful for language
users and compiler writers

◮ Its usefulness in describing the meaning of a programming language is
limited for language users or compiler writers

H. Chen (VSU) Syntax and Semantics January 20, 2016 50 / 53

Semantics

Denotation and Operational Semantics

◮ In operational semantics, the state changes are defined by coded
algorithms

◮ In denotational semantics, the state changes are defined by rigorous
mathematical functions

H. Chen (VSU) Syntax and Semantics January 20, 2016 51 / 53

Summary

Summary

◮ BNF and context-free grammars are equivalent meta-languages
◮ Well-suited for describing the syntax of programming languages

◮ An attribute grammar is a descriptive formalism that can describe
both the syntax and the semantics of a language

◮ Three primary methods of semantics description
◮ Operation, axiomatic, denotational

H. Chen (VSU) Syntax and Semantics January 20, 2016 52 / 53

Summary

References I

Hopcroft, J. E., Motwani, R., and Ullman, J. D. (2006).
Introduction to Automata Theory, Languages, and Computation (3rd
Edition).
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Scott, D. S. and Strachey, C. (1971).
Toward a mathematical semantics for computer languages, volume 1.
Oxford University Computing Laboratory, Programming Research
Group.

Strachey, C. and Scott, D. (1970).
Mathematical semantics for two simple languages.
Princeton Univ.

H. Chen (VSU) Syntax and Semantics January 20, 2016 53 / 53

	Introduction
	Context-Free Grammar
	Backus-Naur Form
	Parse Tree
	Ambiguity in Grammars
	Extended BNF
	Attribute Grammars
	Semantics
	Summary

