
Lexical and Syntax Analysis

Hui Chen

Computer Science

Virginia State University

Petersburg, Virginia

January 20, 2016

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 1 / 67

Introduction

Acknowledgement

◮ Slides are prepared based on the textbook [Sebesta, 2012].

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 2 / 67

Introduction

Language Implementation

Source
program

Lexical
analyzer

Syntax
analyzer

Intermediate
code generator
and semantic

analyzer

Optimization
(optional)

Symbol
table

Code
generator

Computer

Results

Input data
Machine
language

Intermediate
code

Parse trees

Lexical units

(a) Compilation

Source
program

Interpreter

Results

Input data

(b) Pure
Interpretation

Source
program

Interpreter

Results

Input data

Lexical
analyzer

Syntax
analyzer

Intermediate
code generator

Parse trees

Lexical units

Intermediate
code

(c) Hybrid Im-
plementation

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 3 / 67

Introduction

Syntax Analysis

◮ Consisting of two parts
◮ Lexical analyzer (a finite automaton/finite state machine based on a

regular grammar)
◮ Syntax analyzer (a pushdown automaton based on a context-free

grammar)

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 4 / 67

Lexcial Analyzer

Lexical Analyzer

◮ Front-end for the parser
◮ Identifies lexemes and the tokens to which they belong
◮ Example: consider Java statement

i ndex = 2 ∗ count + 17 ;

Lexeme Token

index identifier
= equal sign
2 int literal
* mult op

count identifier
+ plus op
17 int literal
; semicolon

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 5 / 67

Lexcial Analyzer

Building Lexical Analyzer

◮ Directly implementing the state diagram of a finite automaton from
scratch

◮ Design a state diagram that describes the tokens
◮ write a program that implements the state diagram

◮ Implementing the state diagram of a finite automaton using a
table-driven approach

◮ Design a state diagram that describes the tokens
◮ Hand-construct a table-driven implementation of the state diagram

◮ Implementing a finite automaton using a table-driven approach with a
software tool

◮ Write a formal description of the tokens
◮ Use a software tool that constructs a table-driven lexical analyzer from

formal description of tokens

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 6 / 67

Lexcial Analyzer

An Example of Lexical Analyzer

◮ State Diagram

Letter/Digit

Letter
Start

addChar; getChar

return lookup (lexeme)

Digit
return Int_Lit

id
addChar; getChar

addChar; getChar

Digit

addChar; getChar

int

return t

t←lookup (nextChar)
unknown

getChar
Done

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 7 / 67

Lexcial Analyzer

An Example of Lexical Analyzer

◮ Implementation: In Github

Obtaining Program from Github and Run Example on Linux System

$ git clone https :// github.com/huichen -cs/sebesta.git

$ cd sebesta /lexer

$ make lexer

$ make test

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 8 / 67

https://github.com/huichen-cs/sebesta/blob/master/lexer/lexer.c

Lexcial Analyzer

The Example of Lexical Analyzer in Lex

◮ Implementing a finite automaton using a table-driven approach with a
software tool

◮ Write a formal description of the tokens
◮ Use a software tool that constructs a table-driven lexical analyzer from

formal description of tokens
◮ Example software tool: Lex (C, Java, Python ...)

Run Example on Linux System

$ cd sebesta /lexer/lex

$ make test

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 9 / 67

Parsing Problem

Syntax Analysis

◮ Syntax analysis is also called parsing.

◮ Top-down parsing

◮ Tottom-up parsing

◮ Complexity of parsing

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 10 / 67

Parsing Problem

Notation

◮ Terminal symbols: lowercase letters at the beginning of the alphabet
(a, b, . . .)

◮ Nonterminal symbols: uppercase letters at the beginning of the
alphabet (A,B, . . .)

◮ Terminals or nonterminals: uppercase letters at the end of the
alphabet (W,X, Y,Z)

◮ Strings of terminals: lowercase letters at the end of the alphabet
(w, x, y, z)

◮ Mixed strings (terminals and/or nonterminals): lowercase Greek
letters (α, β, . . .)

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 11 / 67

Parsing Problem

Goal of Parsing

◮ Determine whether an input program is syntactically correct, produce
a diagnostic message and recover.

◮ Produce a complete parse tree, or at least trace the structure of the
complete parse tree, for syntactically correct input for translation.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 12 / 67

Parsing Problem

Categories of Parser

◮ Top down
◮ Produce the parse tree, beginning at the root
◮ Order is that of a leftmost derivation
◮ Traces or builds the parse tree in preorder

◮ Bottom up
◮ Produce the parse tree, beginning at the leaves
◮ Order is that of the reverse of a rightmost derivation
◮ Useful parsers look only one token ahead in the input

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 13 / 67

Parsing Problem

Top-Down Parser

◮ Given a sentential form, xAα, the parser must choose the correct
A-rule to get the next sentential form in the leftmost derivation, using
only the first token produced by A, where x is a string of terminal
symbols, α is a mixed string of terminals and nonterminals, and A is
a nonterminal.

◮ The most common top-down parsing algorithms:
◮ Recursive descent: a coded implementation
◮ LL parsers: a table driven implementation

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 14 / 67

Parsing Problem

Top-Down Parser: Example

◮ Given xAα and A-rules,

A → bB

A → cBb

A → a

which one of the three rules to choose to get the next sentential form,
which could be xbB, xcBb, or xa.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 15 / 67

Parsing Problem

Bottom-Up Parser

◮ Given a right sentential form, α, a mixed string of terminals and
nonterminals, determine what substring of α is the right-hand side of
the rule in the grammar that must be reduced to produce the previous
sentential form in the right derivation

◮ The most common bottom-up parsing algorithms are in the LR family

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 16 / 67

Parsing Problem

Bottom-Up Parser: Example

◮ Consider the following grammar,

S → aAc

A → aA|b

and derivation:

S ⇒ aAc ⇒ aaAc ⇒ aabc

where S is a start nonterminal symbol; A is a nonterminal; a, b, and c
are nonterminals.

◮ A bottom-up parser of this sentence, aabc, starts with the sentence
and must find the handle (i.e., the correct RHS to reduce) in it.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 17 / 67

Parsing Problem

Complexity of Parsing

◮ The time complexity of parsers that work for any unambiguous
grammar are of O(n3) where n is the length of the input.

◮ Compilers use parsers that only work for a subset of all unambiguous
grammars and do it in linear time, i.e., O(n)

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 18 / 67

Parsing Problem

Implementation of Parsers

◮ Top-down: Recursivee descent parsers

◮ Top-down: LL parsers

◮ Bottom-up: LR parsers

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 19 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers

◮ A subprogram for each nonterminal in the grammar, which can parse
sentences that can be generated by that nonterminal

◮ EBNF is ideally suited for being the basis for a recursive-descent
parser, because the extensions in EBNF minimizes the number of
nonterminals

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 20 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ Consider the following EBNF description of simple arithmetic
expressions:

<expr> → <term> {(+|−)<term> }

<term> → <factor> {(∗|/)<factor> }

<factor> → id | int constant |(<expr>)

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 21 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ Assume we have a lexical analyzer named lex that puts the next
token code in nextToken

◮ When a nonterminal has only one RHS, the coding process:
◮ For each terminal symbol in the RHS, compare it with the next input

token; if they match, continue, else there is an error
◮ For each nonterminal symbol in the RHS, call its associated parsing

subprogram

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 22 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ For the first rule,

<expr> → <term> {(+|−)<term> }

/* expr

* Parses strings in the language generated by the rule:

* <expr > -> <term > {(+ | -) <term >}

*/

void expr() {

printf ("Enter <expr >");

/* Parse the first term */

term ();

/* As long as the next token is + or -, get

the next token and parse the next term */

while (nextToken == ADD_OP || nextToken == SUB_OP) {

lex ();

term ();

}

printf ("Exit <expr >");

} /* End of function expr */

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 23 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ For the second rule,

<term> → <factor> {(∗|/)<factor> }

/* term

* Parses strings in the language generated by the rule:

* <term > -> <factor > {(* | /) <factor >)

*/

void term() {

printf ("Enter <term >");

/* Parse the first factor */

factor ();

/* As long as the next token is * or /, get the

next token and parse the next factor */

while (nextToken == MULT_OP || nextToken == DIV_OP) {

lex ();

factor ();

}

printf ("Exit <term >");

} /* End of function term */

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 24 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ A nonterminal that has more than one RHS, it requires an initial
process to determine which RHS it is to parse

◮ The correct RHS is chosen on the basis of the next token of input (the
lookahead)

◮ The next token is compared with the first token that can be generated
by each RHS until a match is found

◮ If no match is found, it is a syntax error

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 25 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ For the third rule,

<factor> → id | int constant |(<expr>)

void factor () {

printf ("Enter <factor >\n");

/* Determine which RHS */

if (nextToken == IDENT || nextToken == INT_LIT) {

lex (); /* Get the next token */

} else {

/* If the RHS is (<expr >), call lex to pass over the

left parenthesis , call expr , and check for the right

parenthesis */

if (nextToken == LEFT_PAREN) {

lex (); expr ();

if (nextToken == RIGHT_PAREN) lex (); else error ();

} /* End of if (nextToken == ... */

/* It was not an id, an integer literal , or a left parenth

else { error (); }

} /* End of else */

printf ("Exit <factor >\n");;

} /* End of function factor */

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 26 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

Run the Example Parser on Linux System

$ cd sebesta /parser

$ make test

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 27 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ The parsing result

Next token is: 25, Next lexeme is (

Enter <expr >

Enter <term >

Enter <factor >

Next token is: 11, Next lexeme is sum

Enter <expr >

Enter <term >

Enter <factor >

Next token is: 21, Next lexeme is +

Exit <factor >

Exit <term >

Next token is: 10, Next lexeme is 47

Enter <term >

Enter <factor >

Next token is: 26, Next lexeme is)

Exit <factor >

Exit <term >

Exit <expr >

Next token is: 24, Next lexeme is /

Exit <factor >

Next token is: 11, Next lexeme is total

Enter <factor >

Next token is: -1, Next lexeme is EOF

Exit <factor >

Exit <term >

Exit <expr >

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 28 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ The resulting parse tree

sum total() /47

<factor>

<term>

<expr>

<factor>

<term>

<expr>

+

<term>

<factor>

<factor>

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 29 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

◮ Grammatical description of the Java if statement

<ifstmt> → if (<boolexpr>)<statement> [else <statement>]

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 30 / 67

Parsing Problem Recursive Descent Parsing

Recursive Descent Parsers: Example

/* Function ifstmt

Parses strings in the language generated by the rule:

<ifstmt > -> if (<boolexpr >) <statement > [else <statement >]

*/

void ifstmt () { /* Be sure the first token is ’if’ */

if (nextToken != IF_CODE) { error (); }

else { lex (); /* Call lex to get to the next token */

/* Check for the left parenthesis */

if (nextToken != LEFT_PAREN) { error (); }

else {

boolexpr (); /* Call it to parse the Boolean expression */

/* Check for the right parenthesis */

if (nextToken != RIGHT_PAREN) { error (); }

else { statement (); /* Call it to parse the then clause */

/* If an else is next , parse the else clause */

if (nextToken == ELSE_CODE) {

lex (); /* Call lex to get over the else */

statement ();

} /* end of if (nextToken == ELSE_CODE ... */

} /* end of else of if (nextToken != RIGHT ... */

} /* end of else of if (nextToken != LEFT ... */

} /* end of else of if (nextToken != IF_CODE ... */

} /* end of ifstmt */

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 31 / 67

Parsing Problem Recursive Descent Parsing

The Left Recursion Problem

◮ If a grammar has left recursion, either direct or indirect, it cannot be
the basis for a top-down parser

◮ Example: consider the following grammar and its recursive descent
parser,

A → A+B

void A() {

A();

lex ();

if (nexToken != ADD_OP) {

error ();

} else {

lex ();

B();

}

}

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 32 / 67

Parsing Problem Recursive Descent Parsing

Removing Direct Left Recursion: Example

◮ Consider the following grammar,

E → E + T |T

T → T ∗ F |F

F → (E)|id

◮ Which rules are direct left recursions?

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 33 / 67

Parsing Problem Recursive Descent Parsing

Removing Direct Left Recursion: Example

◮ For the E-rule,
E → E + T |T

Let α1 = +T and β1 = T , then, replace the E-rules with,

E → β1E
′

E′ → α1E
′|ǫ

i.e.,

E → TE′

E′ → +TE′|ǫ

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 34 / 67

Parsing Problem Recursive Descent Parsing

Removing Direct Left Recursion

◮ A grammar can be modified to remove direct left recursion

Removing Direct Left Recursion

For each nonterminal, A,

1. Group the A-rules as A → Aα1, | . . . |Aαm|β1|β2| . . . |βn where none
of the β’s begins with A

2. Replace the original A-rules with

A → β1A
′|β2A

′| . . . |βnA
′

A → α1A
′|α2A

′| . . . |αmA′|ǫ

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 35 / 67

Parsing Problem Recursive Descent Parsing

Removing Direct Left Recursion: Example

◮ For the T -rule,
T → T ∗ F |F

Let α1 = ∗F and β1 = F , then, replace the T -rules with,

T → β1T
′

T ′ → α1T
′|ǫ

i.e.,

T → FT ′

T ′ → ∗FT ′|ǫ

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 36 / 67

Parsing Problem Recursive Descent Parsing

Removing Direct Left Recursion: Example

◮ The complete replacement grammar without direct left recursion
becomes,

E → TE′

E′ → +TE′|ǫ

T → FT ′

T ′ → ∗FT ′|ǫ

F → (E)|id

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 37 / 67

Parsing Problem Recursive Descent Parsing

Indirect Left Recursion

◮ Indirect left recursion poses the same problem as direct left recursion
◮ Example:

A → BaA

B → Ab

void A() {

B();

lex ();

if (nextToken != TOKEN_CLASS_a) { error (); }

else { lex (); A(); }

}

void B() {

A();

lex ();

if (nextToken != TOKEN_CLASS_b) { error (); }

}

◮ An algorithm to modify a given grammar to remove indirect left
recursion is in [Aho et al., 2006].

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 38 / 67

Parsing Problem Recursive Descent Parsing

Direct and Indirect Left Recursion

◮ The problem of left recursion is not confined to the recursive-descent
approach to building topdown parsers.

◮ It is a problem for all top-down parsing algorithms

◮ When writing a grammar for a programming language, one can
usually avoid including left recursion, both direct and indirect.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 39 / 67

Parsing Problem Recursive Descent Parsing

Pairwise Disjointness

◮ Top-down parsers can not always choose the correct RHS on the basis
of the next token of input, using only the first token generated by the
leftmost nonterminal in the current sentential form

◮ Pairwise disjointness test: whether the correct RHS on the basis of
one token of lookahead can be determined, given a non–left recursive
grammar

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 40 / 67

Parsing Problem Recursive Descent Parsing

Pairwise Disjointness

FIRST Set

FIRST(α) = {a|α ⇒∗ αβ} (If α ⇒∗ ǫ, ǫ is in FIRST(α))

where ⇒∗ means 0 or more derivation steps.

The Pairwise Disjointness Test

For each nonterminal, A, in the grammar that has n RHS and n > 1, i.e.,
the grammar has n rules, A → αk, 1 ≤ k ≤ n. It must be true that
FIRST(αi) ∩ FIRST(αj) = φ, for any i and j where i 6= j, 1 ≤ i ≤ n,
1 ≤ j ≤ n.

◮ An algorithm to compute FIRST for any mixed string can be found
in [Aho et al., 2006]

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 41 / 67

Parsing Problem Recursive Descent Parsing

Pairwise Disjointness

◮ Informally, if a nonterminal A has more than one RHS, the first
terminal symbol that can be generated in a derivation for each of
them must be unique to that RHS.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 42 / 67

Parsing Problem Recursive Descent Parsing

Pairwise Disjointness

◮ Consider the following grammar rules:

A → aB|bAb|Bb

B → cB|d

◮ The FIRST sets for the RHSs of the A-rules are {a}, {b}, and {c, d},
which are clearly disjoint. Therefore, these rules pass the pairwise
disjointness test

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 43 / 67

Parsing Problem Recursive Descent Parsing

Pairwise Disjointness

◮ Consider the following grammar rules:

A → aB|BAb

B → aB|b

◮ The FIRST sets for the RHSs in the A-rules are {a} and {a, b}, which
are clearly not disjoint. So, these rules fail the pairwise disjointness
test.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 44 / 67

Parsing Problem Recursive Descent Parsing

Left Factoring

◮ In many cases, a grammar that fails the pairwise disjointness test can
be modified so that it will pass the test.

◮ Example: the following rules clearly do not pass the pairwise
disjointness test,

<variable> → identifier | identifier [<expression>]

Replace them with the equvalent rules,

<variable> → identifier <new>

<new> → ǫ|[<expression>]

or

<variable> → identifier [[<expression>]]

which would pass the pairwise disjointness test.
◮ A formal algorithm for left factoring is in [Aho et al., 2006].

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 45 / 67

Parsing Problem Bottom-up Parsing

Bottom-up Parsing

◮ To find the handle of any given right sentential form that can be
generated by its associated grammar.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 46 / 67

Parsing Problem Bottom-up Parsing

Examples of Grammar and Deriviation

◮ Consider the following grammar for arithmetic expressions,

E → E + T |T

T → T ∗ F |F

F → (E)|id

and the following rightmost derivation,

E ⇒ E + T

⇒ E + T ∗ F

⇒ E + T ∗ id

⇒ E + F ∗ id

⇒ E + id ∗ id

⇒ T + id ∗ id

⇒ F + id ∗ id

⇒ id+ id ∗ id
H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 47 / 67

Parsing Problem Bottom-up Parsing

Examples of Grammar and Deriviation

◮ Consider the following grammar for arithmetic expressions,

E → E + T |T

T → T ∗ F |F

F → (E)|id

the right sentential form,

E + T ∗ id

what is the handle (or the correct RHS to reduce)?

◮ There are 3 RHS, E + T , T , and id

◮ Which one is the correct RHS to reduce?

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 48 / 67

Parsing Problem Bottom-up Parsing

Handle

◮ Definition: β is the handle of the right sentential form γ = αβw if
and only if S ⇒∗

rm αAw ⇒∗

rm αβw.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 49 / 67

Parsing Problem Bottom-up Parsing

Phrase and Simple Phrase

◮ Definition: β is a phrase of the right sentential form γ if and only if
S ⇒∗ α1Aα2 ⇒

+ α1βα2

◮ Definition: β is a simple phrase of the right sentential form γ if and
only if S ⇒∗ γ = α1Aα2 ⇒ α1βα2

◮ What a phrase is and what a simple phrase is relative to a parse tree?

◮ For example, consider the a parse tree for E + T ∗ id

E

E + T

T * F

id

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 50 / 67

Parsing Problem Bottom-up Parsing

Phrase and Simple Phrase

◮ Consider the a parse tree for E + T ∗ id

◮ 3 internal nodes, 3 subtrees, and 3 phrases
◮ Leaves E + T ∗ id rooted at E
◮ Leaves T ∗ id rooted at T
◮ Leaves id rooted F

◮ Simple phrases are a subset of the phrases, in this example,
◮ Leaves id rooted F

E

E + T

T * F

id

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 51 / 67

Parsing Problem Bottom-up Parsing

Intuition about Handles

◮ The handle of any rightmost sentential form is its leftmost simple
phrase.

◮ With this intuition, consider again the a parse tree for E + T ∗ id,
what is the handle (or the correct RHS to reduce)?

◮ There are 3 RHS, E + T , T , and id, which one is the correct RHS to
reduce?

◮ Since we know phrase id rooted F in the parse tree is a simple phrase,
id is the handle.

◮ E + T ∗ id should be reduced to E + T ∗ F

E

E + T

T * F

id

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 52 / 67

Parsing Problem Bottom-up Parsing

Intuition about Handles

◮ The handle of a right sentential form is its leftmost simple phrase

◮ Given a parse tree, it is now easy to find the handle

◮ Parsing can be thought of as handle pruning

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 53 / 67

Parsing Problem Bottom-up Parsing

Shift-Reduce Algorithms

◮ Bottom-up parsers are often called shift-reduce algorithms

◮ Reduce is the action of replacing the handle on the top of the parse
stack with its corresponding LHS

◮ Shift is the action of moving the next token to the top of the parse
stack

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 54 / 67

Parsing Problem Bottom-up Parsing

LR Parsers

◮ Many bottom-up parsing algorithms are variations of a process called
LR

◮ Advantage
◮ They will work for nearly all grammars that describe programming

languages.
◮ They work on a larger class of grammars than other bottom-up

algorithms, but are as efficient as any other bottom-up parser.
◮ They can detect syntax errors as soon as it is possible.
◮ The LR class of grammars is a superset of the class parsable by LL

parsers.

◮ Disadvantage
◮ It is difficult to produce by hand the parsing table for a given grammar

for a complete programming language.

◮ LR parsers are generally constructed with a tool.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 55 / 67

Parsing Problem Bottom-up Parsing

Knuth’s Insight

◮ The original LR algorithm was designed by Donald Knuth
[Knuth, 1965]

◮ Knuth’s insight

◮ A bottom-up parser could use the entire history of the parse, up to the
current point, to make parsing decisions

◮ There are only a finite and relatively small number of different parse
situations that could have occurred, so the history could be stored in a
parser state, on the parse stack

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 56 / 67

Parsing Problem Bottom-up Parsing

The Structure of an LR Parser

Parse Stack
Top

Parser
Code

Input

Parsing
Table

S0 X1 S1 Xm Sm ai $ai+1 an

◮ The LR parser configuration is a pair of strings (stack, input),

(S0X1S1X2S2 . . . XmSm, aiai+1 . . . an$)

where the Ss are state symbols and the Xs are grammar symbols

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 57 / 67

Parsing Problem Bottom-up Parsing

LR Parsing Table

LR parsers are table driven, where the table has two components, an
ACTION table and a GOTO table

◮ The ACTION table specifies the action of the parser, given the parser
state and the next token
Rows are state names; columns are terminals

◮ The GOTO table specifies which state to put on top of the parse
stack after a reduction action is done
Rows are state names; columns are nonterminals

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 58 / 67

Parsing Problem Bottom-up Parsing

Parser Initialization and Actions

◮ Initial configuration: (S0, a1 . . . an$)

◮ Parser actions (determined by the ACTION table using the input as
column index and the state on the stack as row index)

◮ For a Shift, push the next symbol of input onto the stack, along with
the state symbol that is part of the Shift specification in the Action
table

◮ For a Reduce, remove the handle from the stack, along with its state
symbols. Push the LHS of the rule. Push the state symbol from the
GOTO table, using the state symbol just below the new LHS in the
stack and the LHS of the new rule as the row and column into the
GOTO table

◮ Because for every grammar symbol on the stack there is a state

symbol, the number of symbols removed from the stack is twice the

number of symbols in the handle

◮ For an Accept, the parse is complete and no errors were found.
◮ For an Error, the parser calls an error-handling routine.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 59 / 67

Parsing Problem Bottom-up Parsing

LR Parsing Table: Example

Consider the following grammar for arithmetic expressions,

E → E + T (1)

E → T (2)

T → T ∗ F (3)

T → F (4)

F → (E) (5)

F → id (6)

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 60 / 67

Parsing Problem Bottom-up Parsing

LR Parsing Table: Example

R for reduce and S for shift. R4 means reduce using rule 4; S6 means shift
the next symbol of input onto the stack and push state S6 onto the stack.

Action Goto

id + *

S5

S5

S5

S5

S4

S4

S4

S4

0

1

2

3

4

5

6

7

8

9

10

11

S6

S7R2

R4 R4

State () $ E T F

R6 R6

S6

R1

R3

R5

R2

R4

R6

S11

R1

R3

R5

R4

R6

R1

R3

R5

R3

R5

accept

R2

S7

1 2 3

2 3

3

8

9

10

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 61 / 67

Parsing Problem Bottom-up Parsing

LR Parsing: Example

Parsing string the string id+ id ∗ id
Stack Input Action

0 id+ id ∗ id$ Shift 5
0id5 +id ∗ id$ Reduce 6 (use GOTO[0, F])
0F3 +id ∗ id$ Reduce 4 (use GOTO[0, T])
0T2 +id ∗ id$ Reduce 2 (use GOTO[0, E])
0E1 +id ∗ id$ Shift 6
0E1 + 6 id ∗ id$ Shift 5
0E1 + 6id5 ∗id$ Reduce 6 (use GOTO[6, F])
0E1 + 6F3 ∗id$ Reduce 4 (use GOTO[6, T])
0E1 + 6T9 ∗id$ Shift 7
0E1 + 6T9 ∗ 7 id$ Shift 5
0E1 + 6T9 ∗ 7id5 $ Reduce 6 (use GOTO[7, F])
0E1 + 6T9 ∗ 7F10 $ Reduce 3 (use GOTO[6, T])
0E1 + 6T9 $ Reduce 1 (use GOTO[0, E])
0E1 $ Accept

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 62 / 67

Parsing Problem Bottom-up Parsing

Tool for Generating Parsing Table

A parser table can be generated from a given grammar with a tool, e.g.,
yacc or bison

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 63 / 67

Parsing Problem Bottom-up Parsing

Bottom-Up Parser Example using Lex and Yacc

Reimplemented previous example using a bttom-up parser with Lex and
Yacc

Lex and Yacc Example

$

$ cd sebester /yyparser

$ make

$./ yyparser < front.in

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 64 / 67

Parsing Problem Bottom-up Parsing

Bottom-Up Parser Example using Lex and Yacc

Result of Lex and Yacc Example

Graph 0:

[/]

|

|------|

| |

[+] total

|

|--|

| |

sum 47

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 65 / 67

Summary

Summary

◮ Syntax analysis is a common part of language implementation

◮ A lexical analyzer is a pattern matcher that isolates small-scale parts
of a program

◮ A recursive-descent parser is an LL parser

◮ Parsing problem for bottom-up parsers: find the substring of current
sentential form

◮ The LR family of shift-reduce parsers is the most common bottom-up
parsing approach

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 66 / 67

References

References I

Aho, A., Lam, M., Sethi, R., and Ullman, J. (2006).
Compilers: Principles, techniques, and tools.
Addison-Wesley, 2nd edition.

Knuth, D. E. (1965).
On the translation of languages from left to right.
Information and Control, 8(6):607 – 639.

Sebesta, R. W. (2012).
Concepts of Programming Languages.
Pearson, 10th edition.

H. Chen (VSU) Lexical and Syntax Analysis January 20, 2016 67 / 67

	Introduction
	Lexcial Analyzer
	Parsing Problem
	Recursive Descent Parsing
	Bottom-up Parsing

	Summary
	References

