L13: Identify and Anonymity on the Web

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgement

Many slides are from or are revised from the slides of the author of the textbook

 Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's Safari</u> <u>Book Online subscription</u>

http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

□ Identity on the Web

- hosts and domains
- state and cookies
- □ Anonymity on the Web

Host Identity

□ Host not connected to any networks

Pick any names; names are local

Host connected to networking

- Bound up to networking
- One or more names depending on interfaces, network structure, and context

Example Context of Naming & Addressing

ISO/OSI 7 model

A context for the issue of naming & addressing

7-layer model

- Principals exist at each layer, and communicate with peers
- A principal can have different names (or addresses) at a host
 - MAC layer
 - Ethernet address: 00:05:02:6B:A8:21
 - Network layer
 - IP address: 150.174.33.15
 - Transport layer
 - Host name: www.vsu.edu

Name and Address

- □ *Name* identifies principal
- **D** Address identifies location of principal
 - May be virtual location (network segment) as opposed to physical location (room 222)
- In the context networking, a location often identifies a principal

Danger of Spoofing

Attacker spoofs identity of another host

- Protocols at and above the layer where the identity being spoofed will fail
- Those protocols rely on spoofed, and hence faulty, information
- Example: spoof IP address, mapping between host names and IP addresses

Static and Dynamic Host Identifiers

D Static identifiers

- Do not change over time
- **D**ynamic identifiers
 - Changes as a result of an event or the passing of time
- Databases contains mappings between different names

Example Name Mapping: Domain Name Server

- Maps transport identifiers (host names) to network identifiers (host addresses)
 - Forward records: host names \rightarrow IP addresses
 - Reverse records: IP addresses \rightarrow host names
- Weak authentication
 - Not cryptographically based
 - Various techniques used, such as reverse domain name lookup

Example Name Mapping: Reverse Domain Name Lookup

I Validate identity of peer (host) name

- Get IP address of peer
- Get associated host name via DNS
- Get IP addresses associated with host name from DNS
- If first IP address in this set, accept name as correct; otherwise, reject as spoofed
- □ If DNS corrupted, this will not work

Domain Names: Example

\$ dig www.google.co	m				\$ dig -x 74.125.228.244		
; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> www.google.com					; <<>> DiG 9.9.5-3ubuntu0.5-Ubuntu <<>> -x 74.125.228.244		
;; global options: +cmd					,, global options. +chiu		
., SOL AISWEL.					,, Got answer.		
;; flags: qr rd ra; QUERY: 1, ANSWER: 5, AUTHORITY: 0, ADDITIONAL: 1					;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 0, ADDITIONAL: 1		
;; OPT PSEUDOSECTIO	DN:				;; OPT PSEUDOSECTION:		
; EDNS: version: 0, flags:; MBZ: 0005 , udp: 4000					; EDNS: version: 0, flags:; MBZ: 0005 , udp: 4000		
;; QUESTION SECTION:					;; QUESTION SECTION:		
;www.google.com.			IN	Α	;244.228.125.74.in-addr.arpa. IN PTR		
;; ANSWER SECTION:					;; ANSWER SECTION:		
www.google.com.	5	IN	А	74.125.228.244	244.228.125.74.in-addr.arpa. 5 IN PTR iad23s24-in-f20.1e100.net.		
www.google.com.	5	IN	А	74.125.228.240			
www.google.com.	5	IN	А	74.125.228.243	;; Query time: 49 msec		
www.google.com.	5	IN	А	74.125.228.241	;; SERVER: 192.168.101.2#53(192.168.101.2)		
www.google.com.	5	IN	А	74.125.228.242	;; WHEN: Mon Nov 16 09:23:16 EST 2015		
					;; MSG SIZE rcvd: 95		

;; Query time: 5 msec

;; MSG SIZE rcvd: 123

;; SERVER: 192.168.101.2#53(192.168.101.2) ;; WHEN: Mon Nov 16 09:22:12 EST 2015

Dynamic Identifiers

D Assigned to principals for a limited time

- Server maintains pool of identifiers
- Client contacts server using *local identifier* Only client, server need to know this identifier
- Server sends client global identifier
 - Client uses global identifier in other contexts, for example to talk to other hosts
 - Server notifies intermediate hosts of new client, global identifier association

Example Dynamic Identifiers: DHCP

- **DHCP:** Dynamic Host Configuration Protocol
- **DHCP** server has pool of IP addresses
- Laptop sends DHCP server its MAC address, requests IP address
 - MAC address is local identifier
 - IP address is global identifier
- **DHCP** server sends unused IP address
 - Also notifies infrastructure systems of the association between laptop and IP address
- Laptop accepts IP address, uses that to communicate with hosts other than server

Example Dynamic Identifiers: Network Gateways

Laptop wants to access host on another network

- Laptop's address is 10.1.3.241
- Gateway assigns legitimate address to internal address
 - Say IP address is 101.43.21.241
 - Gateway rewrites all outgoing, incoming packets appropriately
 - Invisible to both laptop, remote peer
- Internet protocol NAT works this way

Weak Authentication

- □ Static: host/name binding fixed over time
- **D** Dynamic: host/name binding varies over time
 - Must update reverse records in DNS
 - Otherwise, the reverse lookup technique fails
 - Cannot rely on binding remaining fixed unless you know the period of time over which the binding persists

DNS Security Issues

- □ Trust is that name/IP address binding is correct
- Goal of attacker: associate incorrectly an IP address with a host name
 - Assume attacker controls name server, or can intercept queries and send responses

Attacks on Domain Name Services

- □ Change records on server
- Add extra record to response, giving incorrect name/IP address association
 - Called "cache poisoning"
- Attacker sends victim request that must be resolved by asking attacker
 - Attacker responds with answer plus two records for address spoofing (1 forward, 1 reverse)
 - Called "ask me"

State and Cookies on the Web

- Client or server often needs to main state to simplify transaction process
- Cookie
 - Token containing information about state of transaction on network
- Usual use of Cookie
 - refers to state of interaction between web browser, client
 - Idea is to minimize storage requirements of servers, and put information on clients
 - Cookie consist of several values

Some Fields in Cookies

- □ *name*, *value*: name has given value
- □ *expires*: how long cookie valid
 - Expired cookies discarded, not sent to server
 - If omitted, cookie deleted at end of session
- □ *domain*: domain for which cookie intended
 - Consists of last n fields of domain name of server
 - Must have at least one "." in it
- secure: send only over secured (SSL, HTTPS) connection

Cookie: Example

- Caroline puts 2 books in shopping cartcart at books.com
 - Cookie: name bought, value BK=234&BK=8753, domain .books.com
- Caroline looks at other books, but decides to buy only those
 - She goes to the purchase page to order them
- □ Server requests cookie, gets above
 - From cookie, determines books in shopping cart

Who Can Get the Cookies?

□ Web browser can send *any* cookie to a web server

- Even if the cookie's domain does not match that of the web server
- Usually controlled by browser settings

D Web server can *only* request cookies for its domain

Cookies need not have been sent by that browser

Where Did the Visitor Go?

□ Server books.com sends Caroline 2 cookies

- First described earlier
- Second has name "id", value "books.com", domain "adv.com"

Advertisements at books.com include some from site adv.com

- When drawing page, Caroline's browser requests content for ads from server "adv.com"
- Server requests cookies from Caroline's browser
- By looking at value, server can tell Caroline visited "books.com"

Anonymity on the Web

□ Recipients can determine origin of incoming packet

- Sometimes not desirable
- □ Anonymizer: a site that hides origins of connections
 - Usually a proxy server
 - User connects to anonymizer, tells it destination
 - Anonymizer makes connection, sends traffic in both directions
 - Destination host sees only anonymizer

Example: *anon.penet.fi*

□ Offered anonymous email service

- Operated by Johan Helsingius in Finland 1993 1996
 - □ See https://w2.eff.org/Privacy/Anonymity/960830 penet closure.announce and http://waste.informatik.hu-berlin.de/Grassmuck/Texts/remailer.html
- Sender sends letter to it, naming another destination
- Anonymizer strips headers, forwards message
 - Assigns an ID (say, 1234) to sender, records real sender and ID in database
 - Letter delivered as if from anon1234@anon.penet.fi
- Recipient replies to that address
 - Anonymizer strips headers, forwards message as indicated by database entry

Problem

- Anonymizer knows who sender and recipient really are
- Called pseudo-anonymous remailer or pseudonymous remailer
 - Keeps mappings of anonymous identities and associated identities
- If you can get the mappings, you can figure out who sent what

More anon.penet.fi

- □ Material claimed to be copyrighted sent through site
- Finnish court directed owner to reveal mapping so plaintiffs could determine sender
- □ Owner appealed, subsequently shut down site

Cypherpunk Remailer

- □ See <u>http://www.cypherpunks.to/remailers/</u>
- Remailer that deletes header of incoming message, forwards body to destination
- □ Also called *Type I Remailer*
- No record kept of association between sender address, remailer's user name
 - Prevents tracing, as happened with anon.penet.fi
- □ Usually used in a chain, to obfuscate trail
 - For privacy, body of message may be enciphered

Cypherpunk Remailer Message

- □ Encipher message
- Add destination header
- □ Add header for remailer *n*
- Add header for remailer 2

send to remailer 2	
send to Alice	
<i>Hi, Alice, It's SQUEAMISH OSSIFRIGE Bob</i>	

send to remailer 1

...

Weaknesses

□ Attacker monitoring entire network

- Observes in & out flows of remailers
- Goal is to associate incoming & outgoing messages
- □ If messages are clear text, trivial
 - So assume all messages enciphered
- □ So use traffic analysis!
 - Used to determine information based simply on movement of messages (traffic) around the network

Attacks

- □ If remailer forwards message before next message arrives, attacker can match them up
 - Hold messages for some period of time, greater than the message interarrival time
 - Randomize order of sending messages, waiting until at least n messages are ready to be forwarded

■ Note: attacker can force this by sending *n*−1 messages into queue

Attacks

As messages forwarded, headers stripped so message size decreases

Pad message with garbage at each step, instructing next remailer to discard it

D Replay message, watch for spikes in outgoing traffic

Remailer can't forward same message more than once

Mixmaster Remailer

- □ See <u>http://mixmaster.sourceforge.net/</u>
- Cypherpunk remailer that handles only enciphered mail and pads (or fragments) messages to fixed size before sending them
- Designed to hinder attacks on Cypherpunk remailers
 - Messages uniquely numbered
 - Fragments reassembled only at last remailer for sending to recipient
- □ Also called Type II Remailer

Cypherpunk Remailer Message

enciphered with RSA for remailer #1							
remailer #2 address							
Triple DES kev: 1							
enciphered with Triple DES key #1							
enciphered with RSA for remailer #2							
final hop address							
packet ID: 168							
message ID: 7839							
Triple DES key: 2							
random garbage							
enciphered with Triple DES key #2							
recipent's address							
any mail headers to add							
message							
padding if needed							

HTTP over TLS

- **□** Encrypt the traffic
- □ Hide the portion of the website you are visiting
- **D** HTTP Everywhere project
 - The Electronics Frontier Foundation
 - https://www.eff.org/https-everywhere

Tor

- **□** Hide identity in a *crowd*
- Connecting through a series of virtual tunnels via
 Onion routers
- https://www.torproject.org

Anonymity

□ Some purposes for anonymity

- Removes personalities from debate
- With appropriate choice of pseudonym, shapes course of debate by implication
- Prevents retaliation
- □ Are these benefits or drawbacks?
 - Depends on society, and who is involved

Privacy

- Anonymity protects privacy by obstructing amalgamation of individual records
- □ Important, because amalgamation poses 3 risks:
 - Incorrect conclusions from misinterpreted data
 - Harm from erroneous information
 - Not being let alone
- Also hinders monitoring to deter or prevent crime
- □ Conclusion: anonymity can be used for good or ill
 - Right to remain anonymous entails responsibility to use that right wisely

Summary

Identity specifies a principal (unique entity)

- Same principal may have many different identities
 - **•** Function (role)
 - Associated principals (group)
 - Individual (user/host)
- These may vary with view of principal
 - Different names at each network layer, for example
- Anonymity possible; may or may not be desirable
 - Power to remain anonymous includes responsibility to use that power wisely