L8: Cipher Techniques: Problems

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgement

Many slides are from or are revised from the slides of the author of the textbook

Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. Introduction to Computer Security @ VSU's Safari Book Online subscription

http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

- **D** Precomputing possible messages
- D Misordered blocks
- Statistical regularities

Use Ciphers: A Challenge

- Cryptographic systems are sensitive to the environment they are being used
- Using cryptographic systems over a network introduces problems
- Using a good cipher is not enough, how to use the cipher matters greatly

□ What can go wrong if we naively use ciphers?

Threats in Network Environment

- Knowledge of the environment and threats in the environment
 - Is the set of possible messages small?
 - Do the messages exhibit regularizes that remain after encipherment
 - Can an active wiretapper rearrange or change parts of the message?
- **D** Three common problems
 - Precomputation, misordered blocks, and statistical regularities

Attack 1. Precomputation

Precomputing possible messages or *forward* searches

- □ Set of possible messages *M* small
- **D** Public key cipher *f* used
- □ Idea: precompute set of possible ciphertexts f(M)and build table (m, f(m)) where $m \in M$
- □ When ciphertext *f(m)* appears, use table to find *m*

Forward Search Attack: Example

Eve knows Alice will send Bob one of two messages using a Public Key Cryptosystem

- Enciphered BUY or enciphered SELL
- □ Using public key e_{Bob}, Eve precomputes a table

•
$$c_1 = f(m_1) = \{BUY\}_{e_{Bob}}$$

•
$$c_2 = f(m_2) = {SELL}_{e_{Bob}}$$

- Looking up intercepted enciphered message, Cathy sees Alice send Bob m₂.
- Eve knows Alice send SELL

Obscure Threats

D Example: digitized sound (Simmons, 1982)

- Initial calculations suggest 2³² such plaintexts
- Seems like far too many possible plaintexts
- Analysis of redundancy in human speech reduced this to about 100,000 (≈ 2¹⁷)
- This is small enough to worry about precomputation attacks

Notes on Precomputation

- Chosen plaintext attack against symmetric crytosystems
 - Derive key
 - e.g., Hellman, 1980
- Precomputation attack against public key crytosystems
 - Drive plaintext messages
 - Does not reveal private key

Misordered Blocks

Parts of a ciphertext message can be deleted, replayed or reordered (Denning, 1982)

Misordered Blocks: Example

□ Alice sends Bob message

- $n_{Bob} = 77, e_{Bob} = 17, d_{Bob} = 53$
- Message is LIVE (11 08 21 04)
- Enciphered message is 44 57 21 16
- **D** Eve intercepts it, rearranges blocks
 - Now enciphered message is 16 21 57 44
- **D** Bob gets enciphered message, deciphers it

He sees EVIL

Notes on Misordered Blocks

□ Digitally signing each block will not stop this attack

- The parts are not bound to one another
- **D** Two approaches to counter the attack
 - 1. Generate a cryptographic checksum of the *entire* message and sign it
 - 2. Place sequence numbers in each block of message, so recipient can tell intended order. Then you sign each block

Statistical Regularities

□ If plaintext repeats, ciphertext may too

Statistical Regularities: Example

D Example using DES:

- input (in hex):
 - 3231 3433 3635 3837 3231 3433 3635 3837
- corresponding output (in hex):

ef7c 4bb2 b4ce 6f3b ef7c 4bb2 b4ce 6f3b

Notes on Statistical Regularities

□ Code book mode (CBM)

- Each part is enciphered separately, so the same plaintext always produces the same ciphertext
- Each part is effectively looked up in a list of plaintextciphertext pairs
- It is the cause of the statistical regularity
- □ Approach to counter the attack
 - Cascade blocks together (chaining, more details later)

What These Mean

Use of strong cryptosystems, well-chosen (or random) keys not enough to be secure

D Other factors:

- Protocols directing use of cryptosystems
- Ancillary information added by protocols
- Implementation (not discussed here)
- Maintenance and operation (not discussed here)

Summary

Discussed three attacks

- Precomputation (forward search)
- Misordered blocks
- Statistical regularities

□ Strong cryptosystems and random keys not enough

D Careful engineering matters