L 7: Authentication

Hui Chen, Ph.D.
Dept. of Engineering & Computer Science

Virginia State University
Petersburg, VA 23806

10/7/2016 CSCI 451 - Fall 2016 1

Acknowledgement

O Revised based on slides are from the author of the
Textbook (Matt Bishop, Introduction to Computer
Security, Addison-Wesley Professional, October,
2004, ISBN-13: 978-0-321-24774-5.)

10/7/2016 CSCI 451 - Fall 2016

Overview

O Basics
O Passwords

Storage
Selection
Breaking them

O Other methods
O Multiple methods

10/7/2016 CSCI 451 - Fall 2016

Authentication

O Binding of identity to subject

An identity is an identifier of computer entity (e.g., your
username)

A subject is a unique entity
o Examples:
= People, computers, services
" Processes, threats, and any data structure instances
An identity is the identifier of a principal. In other words,
an identity specifies a principal
o Examples:

= Username, hostname, service name
" Process identifier, threat identifier, component identifier

10/7/2016 CSCI 451 - Fall 2016

Establishing Identity

O One or more of the following
What entity knows (e.g., password)
What entity has (e.g., badge, smart card)
What entity is (e.qg., fingerprints, retinal characteristics)
Where entity is (e.g., in front of a particular terminal)

10/7/2016 CSCI 451 - Fall 2016

Authentication System

O Consisting of 5 components (A, C, F, L, S)

10/7/2016

A: authentication information that proves identity

C: complementary information stored on computer and
used to validate authentication information

F: complementation function
of:A>C
L: authentication functions that prove identity

o l: A x C— {true, false}

S: selection functions enabling entity to create or alter
informationinAor C

CSCl 451 - Fall 2016

Example: Cleartext password

O Password system, with passwords stored on line in
cleartext

A: the set of strings making up passwords
C=A

F: the singleton set of identity function {/}
L: the single equality test function { eq }

S: the function to set/change password

10/7/2016 CSCI 451 - Fall 2016

Example: Encrypted password

O Password system, with passwords stored on line in
an encrypted form

10/7/2016

A: the set of strings making up passwords
C: the set of strings making up encrypted passwords

F: the set of encryption or hash functions that computes
the encrypted form of a password

L: the set of test functions that takes a password, finds its
encrypted form, and check if it is equal to a stored one

S: the function to set/change password

CSCl 451 - Fall 2016

Passwords

O Sequence of characters
Examples: 10 digits, a string of letters, etc.
Generating passwords

1. randomly
2. by user
3. by computer with user input

O Sequence of words

Examples: pass-phrases

10/7/2016 CSCI 451 - Fall 2016

Storage

O Store as cleartext

If password file compromised, all passwords revealed

O Store in encipher file

Need to have decipherment, encipherment keys in
memory

Reduces to previous problem

O Store one-way hash of password

If file read, attacker must still guess passwords or invert
the hash

10/7/2016 CSCI 451 - Fall 2016

10

Example: Linux/UNIX

O Linux/UNIX system standard hash function

Hashes password into a character string using a hash
function

O As authentication system:
A = { strings of 8 chars or less }
C={2char hashid || 11 char hash }
F = {4096 versions of modified DES }
L ={login, su, ... }
S ={ passwd, nispasswd, passwd+, ... }

O Latest Linux/UNIX have improvements and variations

10/7/2016 CSCl 451 - Fall 2016 11

Example: Linux/UNIX

O Read manual pages
man 1 passwd
man 5 passwd
man 3 crypt

10/7/2016 CSCI 451 - Fall 2016

12

Anatomy of Attacking

O Goal

find a € A such that:

O ForsomefeF fla)=ceC
O cis associated with entity

O Two ways to determine whether a meets these
requirements:

Dictionary attack type 1: direct approach, as above,
compute f(a)

Dictionary attack type 2: Indirect approach, as /(a)
succeeds iff f(a) = ¢ € C for some c associated with an

entity, compute /(a)

10/7/2016 CSCl 451 - Fall 2016 13

Exercise L7-1: Linux Shadow
Passwords

O In Linux, read manual page
man 5 shadow

O Examine two files
/etc/passwd
/etc/shadow

Answer the questions in the context of the description in
slide 13.

o Who can read from and write to /etc/passwd?
o Who can read from and write to /etc/shadow?

10/7/2016 CSCl 451 - Fall 2016 14

Exercise L7-2: Linux Login Failure

O In Linux, log out

O When log back in, enter a wrong password
intentionally

O Describe what you observe in the context of the
description in slide 13.

10/7/2016 CSCI 451 - Fall 2016

15

Dictionary Attacks

O Trial-and-error from a list of potential passwords

Off-line: know f and c’s, and repeatedly try different
guesses g € A until the list is done or passwords guessed
o Examples: crack, john-the-ripper

On-line: have access to functions in L and try guesses g
until some /(g) succeeds

o Examples: trying to log in by guessing a password

10/7/2016 CSCl 451 - Fall 2016 16

Preventing Attacks

O Hideoneofa, f, orc
Prevents obvious attack from above
Example: Linux/UNIX shadow password files
o Hides ¢’s
O Block access to all | € L or result of /(a)
Prevents attacker from knowing if guess succeeded

Example: preventing any logins to an account from a
network

O Prevents knowing results of / (or accessing /)

10/7/2016 CSCI 451 - Fall 2016

17

Preventing Attacks: Using Time

O Anderson’s formula:
P: probability of guessing a password in specified period of
time
G: number of guesses tested in 1 time unit
T: number of time units
N: number of possible passwords (|A])
Then P> TG/N

O How to make attacks infeasible?
Goal: slow dictionary attacks
Number of factors to consider in the design

10/7/2016 CSCl 451 - Fall 2016 18

Example: Determine Password
Length

O Goal
Passwords drawn from a 96-char alphabet

Can test 10* guesses per second
Probability of a success to be 0.5 over a 365 day period

What is minimum password length?

O Solution
N > TG/P = (365x24x60x60)x10%/0.5 = 6.31x101!

Choose s such that }.7_,96/ = N = 6.31 x 10™
So s 2 6, meaning passwords must be at least 6 chars long

10/7/2016 CSCI 451 - Fall 2016

19

Assumptions in Anderson’s Formula

O Time required to test a password is a constant
This is reasonable

O All passwords are equally likely to be selected

However, this can be remotely different from reality

10/7/2016 CSCl 451 - Fall 2016 20

Password Selection

O Random selection

Any password from A equally likely to be selected
O Pronounceable passwords
O User selection of passwords

10/7/2016 CSCI 451 - Fall 2016

21

Pronounceable Passwords

O Generate phonemes randomly
Phoneme is unit of sound, eg. cv, vc, cvc, vev
Examples: helgoret, juttelon are; przbgxdfl, zxrptglfn are not

O Problem: too few

O Solution: key crunching
Run long key through hash function and convert to printable sequence
Use this sequence as password

10/7/2016 CSCl 451 - Fall 2016 22

User’s Selection

O Problem: people pick easy to guess passwords

10/7/2016

Based on account names, user names, computer names, place Names

Dictionary words (also reversed, odd capitalizations, control
characters, “elite-speak”, conjugations or declensions, swear words,
Torah/Bible/Koran/... words)

Too short, digits only, letters only
License plates, acronyms, social security numbers

Personal characteristics or foibles (pet names, nicknames, job
characteristics, etc.

CSCl 451 - Fall 2016

23

Picking Good Passwords

O “LIMm*22Ap”
Names of members of 2 families

O “OoHeO/FSK”

Second letter of each word of length 4 or more in third line of third
verse of Star-Spangled Banner, followed by “/”, followed by author’s
initials

O What's good here may be bad there

“DMC/MHmMh” bad at Dartmouth (“Dartmouth Medical Center/Mary
Hitchcock memorial hospital”), ok here

O Why are these now bad passwords? ®

10/7/2016 CSCI 451 - Fall 2016

24

Proactive Password Checking

O Analyze proposed password for “goodness”

10/7/2016

Always invoked

Can detect, reject bad passwords for an appropriate
definition of “bad”

Discriminate on per-user, per-site basis
Needs to do pattern matching on words

Needs to execute subprograms and use results
o Spell checker, for example

Easy to set up and integrate into password selection
system

CSCI 451 - Fall 2016

25

Example: OPUS

O Goal: check passwords against large dictionaries quickly
Run each word of dictionary through k different hash functions h,, ...,
h, producing values less than n
Set bits hy, ..., h, in OPUS dictionary
To check new proposed word, generate bit vector and see if all

corresponding bits set
o If so, word is in one of the dictionaries to some degree of probability

o If not, it is not in the dictionaries

10/7/2016 CSCl 451 - Fall 2016 26

Example: passwd+

O Provides little language to describe proactive checking

test length(“Sp”) < 6

o If password under 6 characters, reject it
test infile(“/usr/dict/words”, “Sp”)

o If password in file /usr/dict/words, reject it
test linprog(“spell”, “Sp”, “Sp”)

o If password not in the output from program spell, given the password as
input, reject it (because it’s a properly spelled word)

10/7/2016 CSCI 451 - Fall 2016

27

Salting

O Goal: slow dictionary attacks
O Method: perturb hash function so that:

Parameter controls which hash function is used
Parameter differs for each password

So given n password hashes, and therefore n salts, need to
hash guess n

10/7/2016 CSCl 451 - Fall 2016 28

Example: Salted Passwords

O Vanilla UNIX method

Use DES to encipher 0 message with password as key;
iterate 25 times

Perturb E table in DES in one of 4096 ways
o 12 bit salt flips entries 1-11 with entries 25-36

O Alternate methods

Use salt as first part of input to hash function

Slide #12-29

10/7/2016 CSCl 451 - Fall 2016

Exercise L/-3: Examine Linux
Password Salt

O Read manual page
man 5 crypt
O Examine /etc/passwd
What is the salt used in the passwords?

10/7/2016 CSCI 451 - Fall 2016

30

GL

essin

Fu

nctio

o Through Authentication

N L

O Cannot prevent these
Otherwise, legitimate users cannot log in

O Make them slow

10/7/2016

Backoff

Disconnection

Disabling

o Be very careful with administrative accounts!

Jailing

o Allow in, but restrict activities

CSCl 451 - Fall 2016

Password Aging

O Force users to change passwords after some time
has expired
How do you force users not to re-use passwords?

o Record previous passwords
o Block changes for a period of time

Give users time to think of good passwords
o Don’t force them to change before they can log in
o Warn them of expiration days in advance

10/7/2016 CSCI 451 - Fall 2016

32

Challenge-Response

O How can we not to reuse passwords?

O User, system share a secret function f (in practice, f
is a known function with unknown parameters, such

as a cryptographic key)

request to authenticate . system

user

random message r system
(the challenge)

user -

user f(r) > system
(the response)

10/7/2016 CSCI 451 - Fall 2016

33

Pass Algorithms

O Challenge-response with the function f itself a secret
Usually used in conjunction with fixed, reusable password

Example:

o After the user supplies a reusable password, a second prompt is
given (challenge)

o Challenge is a random string of characters such as “abcdefg”,
“ageksido”

O Response is some function of that string such as “bdf”, “gkip”
Can alter algorithm based on ancillary information

o Network connection is as above, dial-up might require “aceg”,
o 124
aesd

10/7/2016 CSCl 451 - Fall 2016 34

One-Time Passwords

O Password that can be used exactly once
After use, it is immediately invalidated

O Challenge-response mechanism

Challenge is number of authentications; response is password for that
particular number

O Problems
Synchronization of user, system
Generation of good random passwords
Password distribution problem

10/7/2016 CSCl 451 - Fall 2016 35

Example One-Time Passwords:
S/Key

O One-time password scheme based on idea of
Lamport

O h one-way hash function (MD5 or SHA-1, for
example)

O User chooses initial seed k

O System calculates:
h(k) = k1r h(k1) = kzr ee h(kn—l) = kn
O Passwords are reverse order:
P1=Kny Py = Kyqy oes Pooa = Koy Pr = Ky

10/7/2016 CSCI 451 - Fall 2016

36

S/Key Protocol

System stores maximum number of authentications n, number
of next authentication /, last correctly supplied password p;_;.

{ name }

user » System
user « L1} system
user 1Py » system

System computes h(p;) = h(k,_;,1) = K,_; = p;-1- If match with
what is stored, system replaces p;,_; with p; and increments /.

10/7/2016 CSCI 451 - Fall 2016

Hardware Support

O Token-based

Used to compute response to challenge
o May encipher or hash challenge
o May require PIN from user

O Temporally-based

Every minute (or so) different number shown

o Computer knows what number to expect when

User enters number and fixed password

10/7/2016 CSCI 451 - Fall 2016

38

Challenge-Response and Dictionary
Attacks

O Same as for fixed passwords

Attacker knows challenge r and response f(r); if f
encryption function, can try different keys

o May only need to know form of response; attacker can tell if guess
correct by looking to see if deciphered object is of right form

o Example: Kerberos Version 4 used DES, but keys had 20 bits of
randomness; Purdue attackers guessed keys quickly because
deciphered tickets had a fixed set of bits in some locations

10/7/2016 CSCl 451 - Fall 2016 39

Encrypted Key Exchange

O Defeats off-line dictionary attacks

O Idea: random challenges enciphered, so attacker
cannot verify correct decipherment of challenge

O Assume Alice, Bob share secret password s

O In what follows, Alice needs to generate a random
public key p and a corresponding private key g

O Also, k is a randomly generated session key, and R,
and R are random challenges

10/7/2016 CSCI 451 - Fall 2016

40

EKE Protocol

Alice || E.(p)

Alice » Bob
Alice « ES(EP(k)) Bob
Now Alice, Bob share a randomly generated
secret session key k
Alice E(Ry) » Bob
Alice < Ex(RaRs) Bob

Alice Ex(Rg) » Bob

10/7/2016 CSCI 451 - Fall 2016

41

Biometrics

O Automated measurement of biological, behavioral
features that identify a person

Fingerprints: optical or electrical techniques
o Maps fingerprint into a graph, then compares with database

o Measurements imprecise, so approximate matching algorithms
used

Voices: speaker verification or recognition

o Verification: uses statistical techniques to test hypothesis that
speaker is who is claimed (speaker dependent)

O Recognition: checks content of answers (speaker independent)

10/7/2016 CSCI 451 - Fall 2016

42

Other Characteristics

O Can use several other characteristics

Eyes: patterns in irises unique

o Measure patterns, determine if differences are random; or
correlate images using statistical tests

Faces: image, or specific characteristics like distance from
nose to chin

o Lighting, view of face, other noise can hinder this
Keystroke dynamics: believed to be unique

o Keystroke intervals, pressure, duration of stroke, where key is
struck

o Statistical tests used

10/7/2016 CSCl 451 - Fall 2016 43

Cautions

O These can be fooled!

Assumes biometric device accurate in the environment it is
being used in!

Transmission of data to validator is tamperproof, correct

10/7/2016 CSCl 451 - Fall 2016 44

Location

O If you know where user is, validate identity by seeing
if person is where the user is

Requires special-purpose hardware to locate user

o GPS (global positioning system) device gives location signature of
entity

0 Host uses LSS (location signature sensor) to get signature for
entity

10/7/2016 CSCl 451 - Fall 2016 45

Multiple Methods

O Example: “where you are” also requires entity to have LSS and
GPS, so also “what you have”

O Can assign different methods to different tasks

As users perform more and more sensitive tasks, must authenticate in
more and more ways (presumably, more stringently) File describes
authentication required

o Also includes controls on access (time of day, etc.), resources, and
requests to change passwords

Pluggable Authentication Modules in Linux

10/7/2016 CSCl 451 - Fall 2016 46

PAM In Linux

O Idea: when program needs to authenticate, it checks central
repository for methods to use

O Library call: pam_authenticate

Accesses file with name of program in /etc/pam_d

O Modules do authentication checking

10/7/2016

sufficient: succeed if module succeeds

required: fail if module fails, but all required modules executed before
reporting failure

requisite: like required, but don’t check all modules
optional: invoke only if all previous modules fail

CSCl 451 - Fall 2016 47

Example PAM File

auth sufficient /usr/lib/pam ftp.so
auth required /usr/lib/pam unix auth.so use first pass

auth required /usr/lib/pam listfile.so onerr=succeed \
item=user sense=deny file=/etc/ftpusers

For ftp:

1. If user “anonymous”, return okay; if not, set
PAM_AUTHTOK to password, PAM_RUSER to name, and fail

2. Now check that password in PAM_AUTHTOK belongs to
that of user in PAM_RUSER,; if not, fail

3. Now see if user in PAM_RUSER named in /etc/ftpusers; if
so, fail; if error or not found, succeed

10/7/2016 CSCl 451 - Fall 2016 48

Exercise L/-4: Examine PAM In a
LiInux system

O Read manual page
man / pam
man 8 pam_unix
man 8 pam_tally2
O Examine /etc/pam.d/login

O Configure the system so that it locks a user account
after 4 failed logins

Create a new user to test this (otherwise, you may be
locked out)

10/7/2016 CSCl 451 - Fall 2016 49

Summary

O Authentication is not cryptography
You have to consider system components

O Passwords are here to stay
They provide a basis for most forms of authentication

O Protocols are important
They can make masquerading harder

O Authentication methods can be combined
Example: PAM

10/7/2016 CSCI 451 - Fall 2016

50

