
L7: Authentication

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

10/7/2016 1CSCI 451 - Fall 2016

Acknowledgement

� Revised based on slides are from the author of the

Textbook (Matt Bishop, Introduction to Computer

Security, Addison-Wesley Professional, October,

2004, ISBN-13: 978-0-321-24774-5.)

10/7/2016 CSCI 451 - Fall 2016

2

Overview

� Basics

� Passwords

� Storage

� Selection

� Breaking them

� Other methods

� Multiple methods

10/7/2016 CSCI 451 - Fall 2016 3

Authentication

� Binding of identity to subject

� An identity is an identifier of computer entity (e.g., your

username)

� A subject is a unique entity

� Examples:

� People, computers, services

� Processes, threats, and any data structure instances

� An identity is the identifier of a principal. In other words,

an identity specifies a principal

� Examples:

� Username, hostname, service name

� Process identifier, threat identifier, component identifier

10/7/2016 CSCI 451 - Fall 2016 4

Establishing Identity

� One or more of the following

� What entity knows (e.g., password)

� What entity has (e.g., badge, smart card)

� What entity is (e.g., fingerprints, retinal characteristics)

� Where entity is (e.g., in front of a particular terminal)

10/7/2016 CSCI 451 - Fall 2016 5

Authentication System

� Consisting of 5 components (A, C, F, L, S)

� A: authentication information that proves identity

� C: complementary information stored on computer and

used to validate authentication information

� F: complementation function

� f : A → C

� L: authentication functions that prove identity

� l: A × C → {true, false}

� S: selection functions enabling entity to create or alter

information in A or C

10/7/2016 CSCI 451 - Fall 2016 6

Example: Cleartext password

� Password system, with passwords stored on line in

cleartext

� A: the set of strings making up passwords

� C = A

� F: the singleton set of identity function { I }

� L: the single equality test function { eq }

� S: the function to set/change password

10/7/2016 CSCI 451 - Fall 2016 7

Example: Encrypted password

� Password system, with passwords stored on line in

an encrypted form

� A: the set of strings making up passwords

� C: the set of strings making up encrypted passwords

� F: the set of encryption or hash functions that computes

the encrypted form of a password

� L: the set of test functions that takes a password, finds its

encrypted form, and check if it is equal to a stored one

� S: the function to set/change password

10/7/2016 CSCI 451 - Fall 2016 8

Passwords

� Sequence of characters

� Examples: 10 digits, a string of letters, etc.

� Generating passwords

1. randomly

2. by user

3. by computer with user input

� Sequence of words

� Examples: pass-phrases

10/7/2016 CSCI 451 - Fall 2016 9

Storage

� Store as cleartext

� If password file compromised, all passwords revealed

� Store in encipher file

� Need to have decipherment, encipherment keys in

memory

� Reduces to previous problem

� Store one-way hash of password

� If file read, attacker must still guess passwords or invert

the hash

10/7/2016 CSCI 451 - Fall 2016 10

Example: Linux/UNIX

� Linux/UNIX system standard hash function

� Hashes password into a character string using a hash

function

� As authentication system:

� A = { strings of 8 chars or less }

� C = { 2 char hash id || 11 char hash }

� F = { 4096 versions of modified DES }

� L = { login, su, … }

� S = { passwd, nispasswd, passwd+, … }

� Latest Linux/UNIX have improvements and variations

10/7/2016 CSCI 451 - Fall 2016 11

Example: Linux/UNIX

� Read manual pages

man 1 passwd

man 5 passwd

man 3 crypt

10/7/2016 CSCI 451 - Fall 2016 12

Anatomy of Attacking

� Goal

� find a ∈ A such that:

� For some f ∈ F, f(a) = c ∈ C

� c is associated with entity

� Two ways to determine whether a meets these

requirements:

� Dictionary attack type 1: direct approach, as above,

compute f(a)

� Dictionary attack type 2: Indirect approach, as l(a)

succeeds iff f(a) = c ∈ C for some c associated with an

entity, compute l(a)

10/7/2016 CSCI 451 - Fall 2016 13

Exercise L7-1: Linux Shadow

Passwords

� In Linux, read manual page

man 5 shadow

� Examine two files

� /etc/passwd

� /etc/shadow

� Answer the questions in the context of the description in

slide 13.

� Who can read from and write to /etc/passwd?

� Who can read from and write to /etc/shadow?

10/7/2016 CSCI 451 - Fall 2016 14

Exercise L7-2: Linux Login Failure

� In Linux, log out

� When log back in, enter a wrong password

intentionally

� Describe what you observe in the context of the

description in slide 13.

10/7/2016 CSCI 451 - Fall 2016 15

Dictionary Attacks

� Trial-and-error from a list of potential passwords

� Off-line: know f and c’s, and repeatedly try different
guesses g ∈ A until the list is done or passwords guessed

� Examples: crack, john-the-ripper

� On-line: have access to functions in L and try guesses g
until some l(g) succeeds

� Examples: trying to log in by guessing a password

10/7/2016 CSCI 451 - Fall 2016 16

Preventing Attacks

� Hide one of a, f, or c

� Prevents obvious attack from above

� Example: Linux/UNIX shadow password files
� Hides c’s

� Block access to all l ∈ L or result of l(a)

� Prevents attacker from knowing if guess succeeded

� Example: preventing any logins to an account from a
network

� Prevents knowing results of l (or accessing l)

10/7/2016 CSCI 451 - Fall 2016 17

Preventing Attacks: Using Time

� Anderson’s formula:

� P: probability of guessing a password in specified period of

time

� G: number of guesses tested in 1 time unit

� T: number of time units

� N: number of possible passwords (|A|)

� Then P ≥ TG/N

� How to make attacks infeasible?

� Goal: slow dictionary attacks

� Number of factors to consider in the design

10/7/2016 CSCI 451 - Fall 2016 18

Example: Determine Password

Length

� Goal

� Passwords drawn from a 96-char alphabet

� Can test 104 guesses per second

� Probability of a success to be 0.5 over a 365 day period

� What is minimum password length?

� Solution

� N ≥ TG/P = (365×24×60×60)×104/0.5 = 6.31×1011

� Choose s such that ∑ 96� ≥ � ≥ 6.31 × 10��

���

� So s ≥ 6, meaning passwords must be at least 6 chars long

10/7/2016 CSCI 451 - Fall 2016 19

Assumptions in Anderson’s Formula

� Time required to test a password is a constant

� This is reasonable

� All passwords are equally likely to be selected

� However, this can be remotely different from reality

10/7/2016 CSCI 451 - Fall 2016 20

Password Selection

� Random selection

� Any password from A equally likely to be selected

� Pronounceable passwords

� User selection of passwords

10/7/2016 CSCI 451 - Fall 2016 21

Pronounceable Passwords

� Generate phonemes randomly

� Phoneme is unit of sound, eg. cv, vc, cvc, vcv

� Examples: helgoret, juttelon are; przbqxdfl, zxrptglfn are not

� Problem: too few

� Solution: key crunching

� Run long key through hash function and convert to printable sequence

� Use this sequence as password

10/7/2016 CSCI 451 - Fall 2016 22

User’s Selection

� Problem: people pick easy to guess passwords
� Based on account names, user names, computer names, place names

� Dictionary words (also reversed, odd capitalizations, control
characters, “elite-speak”, conjugations or declensions, swear words,
Torah/Bible/Koran/… words)

� Too short, digits only, letters only

� License plates, acronyms, social security numbers

� Personal characteristics or foibles (pet names, nicknames, job
characteristics, etc.

10/7/2016 CSCI 451 - Fall 2016 23

Picking Good Passwords

� “LlMm*2^Ap”
� Names of members of 2 families

� “OoHeO/FSK”
� Second letter of each word of length 4 or more in third line of third

verse of Star-Spangled Banner, followed by “/”, followed by author’s
initials

� What’s good here may be bad there
� “DMC/MHmh” bad at Dartmouth (“Dartmouth Medical Center/Mary

Hitchcock memorial hospital”), ok here

� Why are these now bad passwords? �

10/7/2016 CSCI 451 - Fall 2016 24

Proactive Password Checking

� Analyze proposed password for “goodness”

� Always invoked

� Can detect, reject bad passwords for an appropriate
definition of “bad”

� Discriminate on per-user, per-site basis

� Needs to do pattern matching on words

� Needs to execute subprograms and use results
� Spell checker, for example

� Easy to set up and integrate into password selection
system

10/7/2016 CSCI 451 - Fall 2016 25

Example: OPUS

� Goal: check passwords against large dictionaries quickly

� Run each word of dictionary through k different hash functions h1, …,

hk producing values less than n

� Set bits h1, …, hk in OPUS dictionary

� To check new proposed word, generate bit vector and see if all

corresponding bits set

� If so, word is in one of the dictionaries to some degree of probability

� If not, it is not in the dictionaries

10/7/2016 CSCI 451 - Fall 2016 26

Example: passwd+

� Provides little language to describe proactive checking

� test length(“$p”) < 6

� If password under 6 characters, reject it

� test infile(“/usr/dict/words”, “$p”)

� If password in file /usr/dict/words, reject it

� test !inprog(“spell”, “$p”, “$p”)

� If password not in the output from program spell, given the password as

input, reject it (because it’s a properly spelled word)

10/7/2016 CSCI 451 - Fall 2016 27

Salting

� Goal: slow dictionary attacks

� Method: perturb hash function so that:

� Parameter controls which hash function is used

� Parameter differs for each password

� So given n password hashes, and therefore n salts, need to

hash guess n

10/7/2016 CSCI 451 - Fall 2016 28

10/7/2016 CSCI 451 - Fall 2016

Slide #12-29

Example: Salted Passwords

� Vanilla UNIX method

� Use DES to encipher 0 message with password as key;

iterate 25 times

� Perturb E table in DES in one of 4096 ways

� 12 bit salt flips entries 1–11 with entries 25–36

� Alternate methods

� Use salt as first part of input to hash function

Exercise L7-3: Examine Linux

Password Salt

� Read manual page

man 5 crypt

� Examine /etc/passwd

What is the salt used in the passwords?

10/7/2016 CSCI 451 - Fall 2016 30

Guessing Through Authentication

Function L

� Cannot prevent these

� Otherwise, legitimate users cannot log in

� Make them slow

� Backoff

� Disconnection

� Disabling

� Be very careful with administrative accounts!

� Jailing

� Allow in, but restrict activities

10/7/2016 CSCI 451 - Fall 2016 31

Password Aging

� Force users to change passwords after some time
has expired

� How do you force users not to re-use passwords?
� Record previous passwords

� Block changes for a period of time

� Give users time to think of good passwords
� Don’t force them to change before they can log in

� Warn them of expiration days in advance

10/7/2016 CSCI 451 - Fall 2016 32

Challenge-Response

� How can we not to reuse passwords?

� User, system share a secret function f (in practice, f

is a known function with unknown parameters, such

as a cryptographic key)

10/7/2016 CSCI 451 - Fall 2016 33

user systemrequest to authenticate

user systemrandom message r
(the challenge)

user systemf(r)
(the response)

Pass Algorithms

� Challenge-response with the function f itself a secret

� Usually used in conjunction with fixed, reusable password

� Example:
� After the user supplies a reusable password, a second prompt is

given (challenge)

� Challenge is a random string of characters such as “abcdefg”,
“ageksido”

� Response is some function of that string such as “bdf”, “gkip”

� Can alter algorithm based on ancillary information
� Network connection is as above, dial-up might require “aceg”,

“aesd”

10/7/2016 CSCI 451 - Fall 2016 34

One-Time Passwords

� Password that can be used exactly once

� After use, it is immediately invalidated

� Challenge-response mechanism

� Challenge is number of authentications; response is password for that

particular number

� Problems

� Synchronization of user, system

� Generation of good random passwords

� Password distribution problem

10/7/2016 CSCI 451 - Fall 2016 35

Example One-Time Passwords:

S/Key

� One-time password scheme based on idea of
Lamport

� h one-way hash function (MD5 or SHA-1, for
example)

� User chooses initial seed k

� System calculates:

h(k) = k1, h(k1) = k2, …, h(kn–1) = kn

� Passwords are reverse order:

p1 = kn, p2 = kn–1, …, pn–1 = k2, pn = k1

10/7/2016 CSCI 451 - Fall 2016 36

S/Key Protocol

10/7/2016 CSCI 451 - Fall 2016 37

user system{ name }

user system{ i }

user system
{ pi }

System stores maximum number of authentications n, number
of next authentication i, last correctly supplied password pi–1.

System computes h(pi) = h(kn–i+1) = kn–i = pi–1. If match with
what is stored, system replaces pi–1 with pi and increments i.

Hardware Support

� Token-based

� Used to compute response to challenge

� May encipher or hash challenge

� May require PIN from user

� Temporally-based

� Every minute (or so) different number shown

� Computer knows what number to expect when

� User enters number and fixed password

10/7/2016 CSCI 451 - Fall 2016 38

Challenge-Response and Dictionary

Attacks

� Same as for fixed passwords

� Attacker knows challenge r and response f(r); if f
encryption function, can try different keys

� May only need to know form of response; attacker can tell if guess
correct by looking to see if deciphered object is of right form

� Example: Kerberos Version 4 used DES, but keys had 20 bits of
randomness; Purdue attackers guessed keys quickly because
deciphered tickets had a fixed set of bits in some locations

10/7/2016 CSCI 451 - Fall 2016 39

Encrypted Key Exchange

� Defeats off-line dictionary attacks

� Idea: random challenges enciphered, so attacker

cannot verify correct decipherment of challenge

� Assume Alice, Bob share secret password s

� In what follows, Alice needs to generate a random

public key p and a corresponding private key q

� Also, k is a randomly generated session key, and RA

and RB are random challenges

10/7/2016 CSCI 451 - Fall 2016 40

EKE Protocol

10/7/2016 CSCI 451 - Fall 2016 41

Alice BobAlice || Es(p)

Alice Bob
Es(Ep(k))

Now Alice, Bob share a randomly generated
secret session key k

Alice BobEk(RA)

Alice Bob
Ek(RARB)

Alice Bob
Ek(RB)

Biometrics

� Automated measurement of biological, behavioral
features that identify a person

� Fingerprints: optical or electrical techniques
� Maps fingerprint into a graph, then compares with database

� Measurements imprecise, so approximate matching algorithms
used

� Voices: speaker verification or recognition
� Verification: uses statistical techniques to test hypothesis that

speaker is who is claimed (speaker dependent)

� Recognition: checks content of answers (speaker independent)

10/7/2016 CSCI 451 - Fall 2016 42

Other Characteristics

� Can use several other characteristics

� Eyes: patterns in irises unique
� Measure patterns, determine if differences are random; or

correlate images using statistical tests

� Faces: image, or specific characteristics like distance from
nose to chin

� Lighting, view of face, other noise can hinder this

� Keystroke dynamics: believed to be unique
� Keystroke intervals, pressure, duration of stroke, where key is

struck

� Statistical tests used

10/7/2016 CSCI 451 - Fall 2016 43

Cautions

� These can be fooled!

� Assumes biometric device accurate in the environment it is
being used in!

� Transmission of data to validator is tamperproof, correct

10/7/2016 CSCI 451 - Fall 2016 44

Location

� If you know where user is, validate identity by seeing

if person is where the user is

� Requires special-purpose hardware to locate user

� GPS (global positioning system) device gives location signature of

entity

� Host uses LSS (location signature sensor) to get signature for

entity

10/7/2016 CSCI 451 - Fall 2016 45

Multiple Methods

� Example: “where you are” also requires entity to have LSS and

GPS, so also “what you have”

� Can assign different methods to different tasks

� As users perform more and more sensitive tasks, must authenticate in

more and more ways (presumably, more stringently) File describes

authentication required

� Also includes controls on access (time of day, etc.), resources, and

requests to change passwords

� Pluggable Authentication Modules in Linux

10/7/2016 CSCI 451 - Fall 2016 46

PAM in Linux

� Idea: when program needs to authenticate, it checks central
repository for methods to use

� Library call: pam_authenticate

� Accesses file with name of program in /etc/pam_d

� Modules do authentication checking
� sufficient: succeed if module succeeds

� required: fail if module fails, but all required modules executed before
reporting failure

� requisite: like required, but don’t check all modules

� optional: invoke only if all previous modules fail

10/7/2016 CSCI 451 - Fall 2016 47

Example PAM File
auth sufficient /usr/lib/pam_ftp.so

auth required /usr/lib/pam_unix_auth.so use_first_pass

auth required /usr/lib/pam_listfile.so onerr=succeed \
item=user sense=deny file=/etc/ftpusers

For ftp:

1. If user “anonymous”, return okay; if not, set
PAM_AUTHTOK to password, PAM_RUSER to name, and fail

2. Now check that password in PAM_AUTHTOK belongs to
that of user in PAM_RUSER; if not, fail

3. Now see if user in PAM_RUSER named in /etc/ftpusers; if
so, fail; if error or not found, succeed

10/7/2016 CSCI 451 - Fall 2016 48

Exercise L7-4: Examine PAM in a

Linux system

� Read manual page

man 7 pam

man 8 pam_unix

man 8 pam_tally2

� Examine /etc/pam.d/login

� Configure the system so that it locks a user account

after 4 failed logins

� Create a new user to test this (otherwise, you may be

locked out)

10/7/2016 CSCI 451 - Fall 2016 49

Summary

� Authentication is not cryptography

� You have to consider system components

� Passwords are here to stay

� They provide a basis for most forms of authentication

� Protocols are important

� They can make masquerading harder

� Authentication methods can be combined

� Example: PAM

10/7/2016 CSCI 451 - Fall 2016 50

