L4: Basic Cryptography III

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgement

Many slides are from or are revised from the slides of the author of the textbook

Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. Introduction to Computer Security @ VSU's Safari Book Online subscription

http://nob.cs.ucdavis.edu/book/book-intro/slides/

Overview

□ Classical Cryptography

- Caesar cipher
- Vigènere cipher
- DES
- AES
- Public Key Cryptography
 - Diffie-Hellman
 - RSA
- **□** Cryptographic Checksums
 - HMAC

Previous lectures

This and future lectures

Public Key Cryptography

Two keys

- Private key known only to individual
- Public key available to anyone
- Idea
 - Confidentiality
 - Encipher using public key, decipher using private key
 - Integrity and authentication
 - **D** Encipher using private key, decipher using public key

Requirements

- □ It must be *computationally easy* to encipher or decipher a message given the appropriate key
- It must be computationally infeasible to derive the private key from the public key
- It must be *computationally infeasible* to determine the private key from a chosen plaintext attack

RSA

R. L. Rivest, A. Shamir, and L. Adleman. 1978. A method for obtaining digital signatures and public-key cryptosystems. *Commun. ACM* 21, 2 (February 1978), 120-126. DOI=http://dx.doi.org/10.1145/359340.359342

D Exponentiation cipher

Relies on the difficulty of determining the number of numbers relatively prime to a large integer n

Background

\Box Totient function $\phi(n)$

Number of positive integers less than n and relatively prime to n

Relatively prime means with no factors in common with *n*

- **\square** Example: $\phi(10) = 4$
 - 1, 3, 7, 9 are relatively prime to 10
- **□** Example: $\phi(21) = 12$
 - 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

Algorithm

□ Choose two large prime numbers *p*, *q*

- Let n = pq; then $\phi(n) = (p-1)(q-1)$
- Choose e < n such that e is relatively prime to $\phi(n)$.
- Compute *d* such that *ed* mod $\phi(n) = 1$
- **D** Public key: (*e*, *n*); private key: *d*

For confidentiality

- Encipher: $c = m^e \mod n$
- Decipher: $m = c^d \mod n$
- **D** For integrity and authentication
 - Encipher: $c = m^d \mod n$
 - Decipher: m = c^e mod n

Example: Confidentiality

- **□** Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- **\square** Alice chooses e = 17, making d = 53
- Bob wants to send Alice secret message HELLO (07 04 11 11 14)
 - 07¹⁷ mod 77 = 28
 - 04¹⁷ mod 77 = 16
 - 11¹⁷ mod 77 = 44
 - 11¹⁷ mod 77 = 44
 - 14¹⁷ mod 77 = 42

D Bob sends 28 16 44 44 42

Example

□ Alice receives 28 16 44 44 42

\square Alice uses private key, d = 53, to decrypt message:

- 28⁵³ mod 77 = 07
- 16⁵³ mod 77 = 04
- 44⁵³ mod 77 = 11
- 44⁵³ mod 77 = 11
- 42⁵³ mod 77 = 14

□ Alice translates message to letters to read HELLO

No one else could read it, as only Alice knows her private key and that is needed for decryption

Exercise L4-1

Take p = 3, q = 5 and use RSA to encrypt the following message to achieve confidentiality H I

Example: Integrity and Authentication

- **D** Take p = 7, q = 11, so n = 77 and $\phi(n) = 60$
- **\square** Alice chooses e = 17, making d = 53
- Alice wants to send Bob message HELLO (07 04 11 11 14) so Bob knows it is what Alice sent (no changes in transit, and authenticated)
 - 07⁵³ mod 77 = 35
 - 04⁵³ mod 77 = 09
 - 11⁵³ mod 77 = 44
 - 11⁵³ mod 77 = 44
 - 14⁵³ mod 77 = 49

□ Alice sends 35 09 44 44 49

Analysis on Example: Integrity and Authentication

- **D** Bob receives 35 09 44 44 49
- **D** Bob uses Alice's public key, e = 17, n = 77, to decrypt message:
 - 35¹⁷ mod 77 = 07
 - 09¹⁷ mod 77 = 04
 - 44¹⁷ mod 77 = 11
 - 44¹⁷ mod 77 = 11
 - 49¹⁷ mod 77 = 14
- Bob translates message to letters to read HELLO
 - Alice sent it as only she knows her private key, so no one else could have enciphered it
 - If (enciphered) message's blocks (letters) altered in transit, would not decrypt properly

Example: Confidentiality and Integrity

- Alice wants to send Bob message HELLO both enciphered and authenticated (integrity-checked)
- □ Alice's keys: public (17, 77); private: 53
- **D** Bob's keys: public: (37, 77); private: 13
- □ Alice enciphers HELLO (07 04 11 11 14):
 - ($07^{53} \mod 77$)³⁷ mod 77 = 07
 - ($04^{53} \mod 77$)³⁷ mod 77 = 37
 - ($11^{53} \mod 77$)³⁷ mod 77 = 44
 - ($11^{53} \mod 77$)³⁷ mod 77 = 44
 - ($14^{53} \mod 77$)³⁷ mod 77 = 14

□ Alice sends 07 37 44 44 14

Analysis on Example: Security Services (1)

Confidentiality

Only the owner of the private key knows the private key, so text enciphered with public key cannot be read by anyone except the owner of the private key

Authentication

 Only the owner of the private key knows the private key, so text enciphered with private key must have been generated by the owner

Analysis on Example: Security Services (2)

□ Integrity

- Enciphered letters cannot be changed undetectably without knowing private key
- Non-Repudiation
 - Message enciphered with private key came from someone who knew it

Analysis on Example: Warnings

- Encipher message in blocks should be considerably larger than the examples above
 - If 1 character per block, RSA can be broken using statistical attacks (as in classical cryptosystems)
 - Attacker cannot alter letters, but can rearrange them and alter message meaning
 - Example: reverse enciphered message of text ON to get NO

Exercise L4-2

- Take p = 3, q = 5 and use RSA to encrypt the following message to achieve Integrity and Authentication.
- To describe your solution, use two personalities, Alice and Bob

ΗI

Can Alice and bob achieve both confidentiality and integrity/authentication and how?

Cryptographic Checksums

- □ Mathematical function to generate a set of k bits from a set of n bits (where $k \le n$).
 - k is smaller then n except in unusual circumstances
- **D** Example
 - ASCII parity bit
 - ASCII has 7 bits; 8th bit is "parity"
 - Even parity: even number of 1 bits
 - Odd parity: odd number of 1 bits

Example Use

D Bob receives "10111101" as bits.

□ Sender is using *even* parity

- Bob counts 6 1-bits and 6 is *even*; no error detected in the character received, assume the received character is correct
- Note: could still be garbled, but 2 or more bits would need to have been changed to preserve parity
- □ Sender is using *odd* parity
 - Bob counts 6 of 1-bits. Since 6 is even, so character was not received correctly

Cryptographic Checksum

□ Strong hash function or strong one-way function □ Cryptographic checksum $h: A \rightarrow B$:

- 1. For any $x \in A$, h(x) is easy to compute
- 2. For any $y \in B$, it is computationally infeasible to find $x \in A$ such that h(x) = y
- 3. It is computationally infeasible to find two inputs x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')

Collisions

□ If $x \neq x'$ and h(x) = h(x'), x and x' are a collision

- Pigeonhole principle: if there are n containers for n+1 objects, then at least one container will have 2 objects in it.
- Application: if there are 32 files and 8 possible cryptographic checksum values, at least one value corresponds to at least 4 files

Collision Requirement

- 3. It is computationally infeasible to find two inputs x, $x' \in A$ such that $x \neq x'$ and h(x) = h(x')Or
- 4. Given any $x \in A$, it is computationally infeasible to find another $x' \in A$ such that $x \neq x'$ and h(x) = h(x')
- Subtle difference between the one: it is considerably harder to find x' meeting the conditions in property 4 than it is to find a pair x and x' meeting the conditions in property 3

Keyless or Keyed Checksum

Keyless cryptographic checksum

- Requires no cryptographic key
- Example

□ MD5 (and MD4), SHA-1 (and SHA-2, SHA-3), HAVAL, and Snefru

- □ Keyed cryptographic checksum
 - Requires cryptographic key
 - Example
 - DES in chaining mode: encipher message, use last n bits. Requires a key to encipher, so it is a keyed cryptographic checksum.

Known Attacks

□ MD4 and MD5

Dobbertin's attack (1996)

Snefru

 Differential cryptanalysis if 4 rounds or less are used (Biham and Shamir, 1993)

□ SHA-0, SHA-1, and SHA-2

- Chabaud and Joux 's attack on SHA-0 (1998)
- Wang, Yin, and Yu's attack on SHA-1 (2005)
- Khovratovich, Rechberger and Savelieva's attack on SHA-2 (2011)

HMAC

- Make keyed cryptographic checksums from keyless cryptographic checksums
- □ *h*: keyless cryptographic checksum function
 - Input: blocks of b bytes
 - Output: blocks of / bytes
 - k': cryptographic key of length b bytes
 - If short, pad with 0 bytes; if long, hash to length b
 - *ipad* is 00110110 repeated b times
 - opad is 01011100 repeated b times

 $\Box \text{ HMAC-}h(k, m) = h(k' \oplus opad \mid \mid h(k' \oplus ipad \mid \mid m))$

• \oplus exclusive or, || concatenation

Strength of HMAC

Strength of HMAC depends on the strength of the hash function h (Bellare, Canetti, and Krawczyk, 1996)

Exercise L4-3

- In a Linux system, with your own research, create a checksum for a file and use it to check whether the file is modified after the checksum is created.
- Examine how it may be used by surveying a few file downloading sites,
 - e.g., the Fedora Linux project

http://mirror.pnl.gov/fedora/linux/releases/24/Workstation/x86_64/iso/

Summary

- Two main types of cryptosystems: classical and public key
- Classical cryptosystems encipher and decipher using the same key
 - Or one key is easily derived from the other
- Public key cryptosystems encipher and decipher using different keys
 - Computationally infeasible to derive one from the other
- Cryptographic checksums provide a check on integrity