L3: Basic Cryptography II

Hui Chen, Ph.D.
Dept. of Engineering \& Computer Science
Virginia State University
Petersburg, VA 23806

Acknowledgement

- Many slides are from or are revised from the slides of the author of the textbook
- Matt Bishop, Introduction to Computer Security, AddisonWesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. Introduction to Computer Security @ VSU's Safari Book Online subscription
- http://nob.cs.ucdavis.edu/book/book-intro/slides/

Overview

- Classical Cryptography
- Caesar cipher
- Vigènere cipher
- DES
- AES
- Public Key Cryptography
- Diffie-Hellman
- RSA
- Cryptographic Checksums
- HMAC

The Data Encryption Standard

- DES = The Data Encryption Standard
- A Product Cipher: uses both transposition and substitution
- In 1977 the National Bureau of Standards announced a Data Encryption Standard to be used in unclassified U.S. Government applications
- For sensitive but unclassified U.S. government data
- Unclassified U.S. Government data: information not concerned with national security
- In wide international use
- e.g., banks used it for funds transfer security

DES: A Block Cipher

- Input, output, and key are each 64 bits long
- divides data into 64-bit blocks
- uses a 64 bit key (i.e., a key block) supplied by user
- encrypts the 64-bit blocks of data
- outputs 64-bit blocks of ciphertext

DES Key Block

- 64 bit key block, supplied by user
- 8 bytes
- Each byte
- 7 bits +1 parity bit
- 56 bit key
- $8 \times 7=56$ bits
- Drop 8 parity bits

DES Rounds

- The DES block cipher consists of 16 rounds (iterations)
- each round with a round key generated from the usersupplied key
- basic unit is the bit
- each round is a product cipher, i.e., each round performs both substitution and transposition (permutation) on the bits
- The rounds are executed sequentially
- The input of round $i+1$ is the output of round i

Overview of DES

- 3 major steps in both encipherment and decipherment
- $\kappa_{e}=\kappa_{d}$

Encipherment \& Decipherment

- Apply an initial permutation (IP) to the input block $\left(L_{\alpha}, R_{0}\right) \leftarrow I P$ (Input Block)
- Iterate 16 rounds

$$
\begin{aligned}
& L_{i} \leftarrow R_{i-1} \\
& R_{i} \leftarrow L_{i-1} \oplus f\left(R_{i-1}, K_{i}\right)
\end{aligned}
$$

- K_{i} is a round key, a substring of the 56 -bit input key
- f is called S-Box function: f provides the strength of DES
- Apply the inverse of IP to the output of round 16

Output Block $\leftarrow I P^{-1}\left(R_{16}, L_{16}\right)$

Encipherment \& Decipherment

Initial \& Final Permutations

- See Schneier, 1996 for more information
- Designed to load plaintext and ciphertext data into a DES chip in byte-sized pieces
- Does not affect DES's strength
- Bit-wise permutation trivial in hardware, but difficult (inefficient) in software
- Many software implementations leave the input \& final permutations out (they should not be called DES though)

IP and its Inverse

- Initial Permutation and its inverse (from Denning, 1982)

TABLE 2.3(a)							Initial permutation IP.
58	50	42	34	26	18	10	2
60	52	44	36	28	20	12	4
62	54	46	38	30	22	14	6
64	56	48	40	32	24	16	8
57	49	41	33	25	17	9	1
59	51	43	35	27	19	11	3
61	53	45	37	29	21	13	5
63	55	47	39	31	23	15	7

TABLE 2.3(b) Final permutation IP^{-1}.

40	8	48	16	56	24	64	32
39	7	47	15	55	23	63	31
38	6	46	14	54	22	62	30
37	5	45	13	53	21	61	29
36	4	44	12	52	20	60	28
35	3	43	11	51	19	59	27
34	2	42	10	50	18	58	26
33	1	41	9	49	17	57	25

Generation of Round Keys

- Round keys are 48 bits each

Generation of Round Keys: Permutations

- PC-1 and PC-2 are two permutations (from Denning 1982)

TABLE 2.7 Key permutation PC-1.

57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

PC-1: 56-bit input and output

TABLE 2.9 Key permutation PC-2.

14	17	11	24	1	5
3	28	15	6	21	10
23	19	12	4	26	8
16	7	27	20	13	2
41	52	31	37	47	55
30	40	51	45	33	48
44	49	39	56	34	53
46	42	50	36	29	32

PC-2: 56-bit input and 48-bit output

Generation of Round Keys: Left Circular Shift

- From Denning, 1982

TABLE 2.8 Key schedule of left shifts LS.

Iteration i		Number of Left Shifts
1		1
2		1
3	2	
4	2	
5	2	
6	2	
7	2	
8	2	
9	1	
10	2	
11	2	
12	2	
13	2	
14	2	
15	2	
16		1

f function

Inside f function: Expansion Permutation

- From Schneier, 1996
- Repeating some bits to achieve avalanche effect, i.e., to have every bit of the ciphertext depend on every bit of the plaintext and every bit of the key as quickly as possible.

Figure 12.3 Expansion permutation.

Inside f function: Substitution Boxes

- S-Boxes: From Denning, 1982 (and for complete table)
- 6 bit input
b1b2b3b4b5b6 b1b6 selects row b2b3b4b5 selects column

TABLE 2.6 Selection functions (S-boxes).

Row	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
2	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
3	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
2	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
3	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

Inside f function: P-Box Permutation

- From Schneier, 1996

Table 12.7
P-Box Permutation

16,	7,	20,	21,	29,	12,	28,	17,	1,	15,	23,	26,	5,	18,	31,	10,
2,	8,	24,	14,	32,	27,	3,	9,	19,	13,	30,	6,	22,	11,	4,	25

Controversy

- Diffie and Hellman claim that in a few years technology would allow DES to be broken in days (Diffie and Hellman, 1977)
- Design of efficient attacks using 1999 technology published
- See "Chronology" in
https://en.wikipedia.org/wiki/Data_Encryption_Standard
- Design decisions of S-boxes not public
- S-boxes may have backdoors

Undesirable Properties

- 4 weak keys
- They are their own inverses
- 12 semi-weak keys

Note: DES key space:
$2^{56}=72,057,594,037,927,936$ keys
Choosing weak keys (very unlikely) leads to the same round keys

- Each has another semi-weak key as inverse
- Complementation property
- $\mathrm{DES}_{k}(m)=c \Rightarrow \mathrm{DES}_{k}(m)=c^{\prime}$
- S-boxes exhibit irregular properties
- Distribution of odd, even numbers non-random
- Outputs of fourth box depends on input to third box

Differential and Linear Cryptanalysis on DES

- Chosen ciphertext attacks
- Differential cryptanalysis: based on how differences in inputs correlate with difference in outputs
- Requires 2^{47} plaintext-ciphertext pairs
- Revealed several properties
\square Small changes in S-boxes reduce the number of pairs needed
\square Making every bit of the round keys independent does not impede attack
- Linear cryptanalysis: based on correlations between inputs and outputs
- improved result, requires 2^{43} plaintext-ciphertext pairs

DES Modes

- Electronic Code Book Mode (ECB)
- Encipher each block independently
- Cipher Block Chaining Mode (CBC)
- Xor each block with previous ciphertext block
- Requires an initialization vector for the first one
- Encrypt-Decrypt-Encrypt Mode (2 keys: k, k)
- $c=\operatorname{DES}_{k}\left(\operatorname{DES}_{k^{\prime}}{ }^{-1}\left(\operatorname{DES}_{k}(m)\right)\right)$
- Encrypt-Encrypt-Encrypt Mode (3 keys: $k, k^{\prime}, k^{\prime}$)
- $c=\operatorname{DES}_{k}\left(\mathrm{DES}_{k^{\prime}}\left(\mathrm{DES}_{k^{\prime}}(m)\right)\right)$

CBC Mode Encryption

CBC Mode Encryption

Self-Healing Property

- Initial message
- 32313433363538373231343336353837 32313433363538373231343336353837
- Received as (underlined 4c should be 4b)
- ef7c4cb2b4ce6f3b f6266e3a97af0e2c $746 \mathrm{ab9a}$ 6308f4256 33e60b451b09603d
- Which decrypts to
- efca61e19f4836f1 $\frac{3231333336353837}{3231343336353837} 3231343336353837$
- Incorrect bytes underlined
- Plaintext "heals" after 2 blocks

Current Status of DES

- Design for computer system, associated software that could break any DES-enciphered message in a few days published in 1998
- Several challenges to break DES messages solved using distributed computing
- NIST selected the Rijndael cipher as Advanced Encryption Standard, successor to DES
- Designed to withstand attacks that were successful on DES

AES: Result of Open Competition

- NIST held an open competition and selected the Rijndael cipher as Advanced Encryption Standard (AES), a successor to DES
- NIST issued call for AES cipher in 1997
(http://csrc.nist.gov/archive/aes/pre-round1/aes 9709.htm)
- 15 candidates accepted in June 1998
(http://csrc.nist.gov/archive/aes/round1/r1report.htm)
- 5 finalists announced in August 1999
(http://csrc.nist.gov/archive/aes/round1/r1report.htm)
- Rijndael cipher accepted as the winner and AES
(http://www.nist.gov/public affairs/releases/g00-176.cfm and http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf)
- Designed by Vincent Rijmen and Joan Daemen in Belgium

Overview

- Some similarity to DES
- A product cipher (with transposition and substitution)
- Operates in rounds
- AES operates on blocks of 128 bits
- AES can use keys of 128,192 , or 256 bits
- Key-block-round combination (a word = 4 bytes $=32$ bits): final round slightly different from first $\mathrm{Nr}-1$ rounds

	Key Length (Nk words)	Block Size (Nb words)	Number of Rounds (Nr)
AES-128	4	4	10
AES-192	6	4	12
AES-256	8	4	14

AES Round

- Final round slightly different from first $\mathrm{Nr}-1$ rounds

Attacks on AES

- Differential Cryptanalysis
- High number of rounds increases difficulty of the attack
- Linear Cryptanalysis
- AES S-box (SubBypes) and MixColumns make the attack difficult

Exercise L3-1

- Using DES and AES as examples, argue why an encryption algorithm should not contain secret design parts?
- Submit your answer in Blackboard (cite references properly if you use any)
\square See the class website for the submission deadline

Exercise L3-2

- Suppose that a user chooses the keys used with DES to be only of the letters A-Z and 8 letters long. Give an approximation of the length of time it would take to try all such keys using exhaustive search, assuming each key can be tested in $1 \mu \mathrm{sec}$. Do the same for keys 8 letters (i.e., A-Z and a-z) or digits (i.e., 0-9) long.
\square Submit your answer in Blackboard.
\square See the class website for the submission deadline

Summary

- Classical cryptography in practice
- DES
- AES
- A few important items
- Key and key space
- Operation modes
- Chosen ciphertext attacks
- Differential cryptanalysis
- Linear Cryptanalysis
- Design philosophy (open or close?)

