L1: Computer Security Overview

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgement

- Many slides are or are revised from the slides of the author of the textbook
 - Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's Safari</u> <u>Book Online subscription</u>

<u>http://nob.cs.ucdavis.edu/book/book-intro/slides/</u>

Many labs used in this classes are from the SEED Labs

<u>http://www.cis.syr.edu/~wedu/seed/labs.html</u>

Outline

D Experimental environment preparation

- Creating virtual machines (Lab 1)
- **D** Basic concepts

Course Overview

 Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer</u> <u>Security @ VSU's Safari Book Online subscription</u>

Course Overview

- □ Introduction: Chapter 1
- Access Control Matrix: Sections 2.1 –
 2.3
- Security Policies
 - Sections 4.1 4.4
 - Selected sections from Chapter 5, 6,7
- **Cryptography:**
 - Basics: Chapter 8
 - Key distributions: Sections 9.1–9.2
 - Public Key Infrastructure: Section 9.3
 - Common Errors: Section 10.1
 - Cryptography in networks: Sections 10.3 – 10.4

- Noncryptographic mechanism
 - Identify: Sections 13.1 13.4
 - Identity and anonymity : 13.6
 - Controlling access to files: 14.1 14.2
 - Ring-based mechanism: 14.4
- □ Assurance
 - Chapter 18
- **Design Principles**
 - Chapter 12

Learning Environment

Virtual machines

- Use one computer system to emulate another
- Host (host system, host OS, host ...)
- Guest (guest system, guest OS, guest ...)
- Advantage
 - Portability
 - You can take the virtual machine with you
 - Isolation
 - Easier to prevent from interfering other systems

Common Virtualization Software

□ VMware

- VMware player is free for non-commercial use
 Available for Linux and Windows
- Feature-richer version are available from the department's VMWare/MSDNAA web store
 - Available for Linux, Windows, and Mac OS X
- Oracle VirtualBox
 - Free and available for Linux, Windows, and Mac OS X
 - Installed in classroom computers in HM 14S, 201S, and 210S

Operating System

□ Mostly we use Linux

- Open-source
- No need to get license when install on virtual machines

Basic Concepts

Confidentiality

- □ Integrity
- □ Availability

Confidentiality

Concealment of information or resources

- Access control *mechanism* supports confidentiality
 - Cryptography (cryptographic keys)
 - System-dependent mechanism
- Information or resources concealed
 - Data
 - Existence of data
 - Resource hiding

Integrity

- Trustworthiness of data or resources
- Prevent improper or unauthorized change
- **D** Types of integrity
 - Data integrity (the content of the information)
 - Origin integrity (the source of data, or authentication)
- Prevention mechanisms
 - Unauthorized attempts and change in unauthorized ways
- detection mechanisms
 - Report integrity violations

Availability

Ability to use the information or resource desiredDenial of service attacks

Threats

□ Threat: *potential* violation of *security*

Attacks: actions that may cause violations

Classes of Threats

Disclosure: unauthorized access to information

- Example: snooping
- Deception: acceptance of false data
 - Modification, masquerading (spoofing), repudiation of origin, denial of receipt
- Disruption: interruption or prevention of correct operation
 - Modification
- □ Usurpation: unauthorized control of a system
 - Modification, masquerading (spoofing), delay, denial of service

Policies and Mechanisms

- Security policy: statement of what is, and is not, allowed
 - It defines "security" for a system, a network, or a site
- Security mechanisms: method, tool, or procedure for enforcing a security policy
 - Mechanism can be nontechnical
 - Procedural mechanisms often complement technical mechanisms

Composition of Policies

- Mathematically, as a list of allowed (secure) and disallowed states
- In practice, policies often described in natural languages
- Example: two different systems communicate or cooperate
 - The policy of the network consists of the two are based on the security policies of the two systems
- If policies conflict, discrepancies may create security vulnerabilities

Goals of Security

Given a security policy (specifying "secure" and "nonsecure" actions), prevent and detection attacks or recover from attacks via security mechanisms

- Prevention
- Detection
- Recovery

Trust and Assumptions

- □ Underlie *all* aspects of security
- Policies
 - Unambiguously partition system states
 - Correctly capture security requirements
- D Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly

Assurance

Determine "how much" to trust a system

Specification

- Requirements analysis
- Statement of desired functionality
- Design
 - How system will meet specification
- **D** Implementation
 - Programs/systems that carry out design

Operational Issues

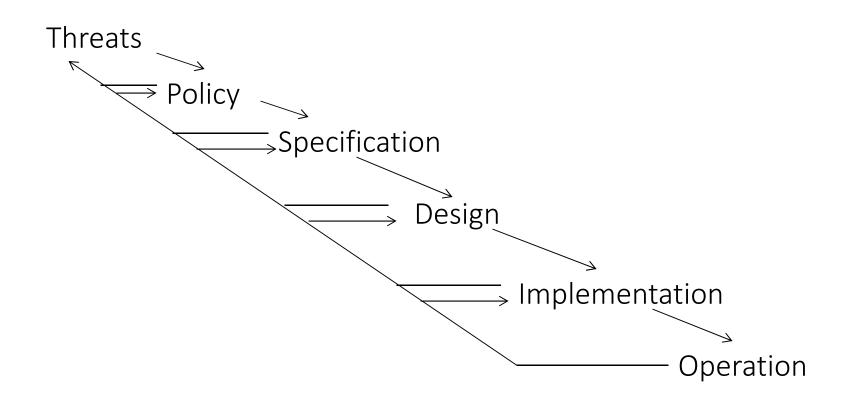
D Cost-Benefit Analysis

Is it cheaper to prevent or to recover?

Risk Analysis

- Should we protect something?
- How much should we protect this thing?

Laws and Customs


- Are desired security measures illegal?
- Will people do them?

Human Issues

Organizational Problems

- Power and responsibility
- Financial benefits
- **D** People problems
 - Outsiders and insiders
 - Social engineering

Tying Together

Lab 1

- Preparing Virtual-Machine based learning environment
- Demonstrate that you can run and log in your virtual machine in the class of Monday, August 22, 2016
 - No points for late work

Reading Assignment

Paper reading and presentation

- Three-student team makes an oral presentation using PowerPoint (or the similar) in the class on the designated date in the class website
- In the slides, state each team member's contribution
- The rest of class must prepare and ask questions
- The instructor grades students' presentation and class participation
- □ Who is the first tem?

Summary

- I Virtual machine based learning environment
- Policy defines security, and mechanisms enforce security
 - Confidentiality
 - Integrity
 - Availability
- Trust and knowing assumptions
- □ Importance of assurance
- **D** The human factor