
L17: Assurance

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

11/06/2015 CSCI 451 - Fall 2015 1

Acknowledgement

 Many slides are from or are revised from the slides of

the author of the textbook

 Matt Bishop, Introduction to Computer Security, Addison-

Wesley Professional, October, 2004, ISBN-13: 978-0-321-

24774-5. Introduction to Computer Security @ VSU's

Safari Book Online subscription

 http://nob.cs.ucdavis.edu/book/book-intro/slides/

11/06/2015 CSCI 451 - Fall 2015 2

http://proquest.safaribooksonline.com/book/networking/security/0321247442
http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

 Trust

 Problems from lack of assurance

 Types of assurance

 Life cycle and assurance

 Waterfall life cycle model

 Other life cycle models

 Adding security afterwards

11/06/2015 CSCI 451 - Fall 2015 3

“Secure” or “Trusted”?

 Two terms

 Secure systems

 Trusted systems

 Secure systems

 Can we build an “absolutely” secure system?

 Ultimate, albeit unachievable goal

 Trusted systems

 Trust: a belief or desire that a computer entity will do what

it should to protect resources and be safe from attack

 Trust: has very specific meaning in computer security

11/06/2015 CSCI 451 - Fall 2015 4

Trust

 Definition

 An entity is Trustworthy if there is sufficient credible
evidence leading one to believe that the system will meet a
set of requirements

 Trust is a measure of trustworthiness relying on the
evidence

11/06/2015 CSCI 451 - Fall 2015 5

Assurance

 Definition

 Security Assurance, or simply assurance, is confidence that

an entity meets its security requirements based on evidence

provided by applying assurance techniques

11/06/2015 CSCI 451 - Fall 2015 6

Example Assurance Techniques

 Formal vs. informal

 Development methodology

 Examples

 Brief description of the methodology to be followed

 System Security Engineering Capability Maturity Model (SSE-

CMM)

 Formal methods for design analysis

 Use machine-parsable languages with tools

 Formal mathematical proof

 Testing

11/06/2015 CSCI 451 - Fall 2015 7

Assurance, Policy, and

Mechanisms

11/06/2015 CSCI 451 - Fall 2015 8

Policy

Mechanisms

Assurance

Statement of requirements that explicitly defines
the security expectations of the mechanism(s)

Provides justification that the mechanism meets policy
through assurance evidence and approvals based on
evidence

Executable entities that are designed and implemented
to meet the requirements of the policy

Information Assurance vs.

Security Assurance

 Information assurance

 Refers to the ability to access information and preserve the

quality and security of that information

 Differs from security assurances

 Information assurance focuses on the threats to the

information and mechanisms used to protect information

 But not on the correctness, consistency, or completeness of

the requirements and implementation of those mechanisms

11/06/2015 CSCI 451 - Fall 2015 9

Trusted System

 Definition

 A trusted system is a system that has been shown to meet

well-defined requirements under an evaluation by a

credible body of experts who are certified to assign trust

ratings to evaluate products and systems

11/06/2015 CSCI 451 - Fall 2015 10

Example Evaluation Criteria

 Two earlier ones

 Trusted Computer System Evaluation Criteria

 Information Technology Security Evaluation Criteria

 Replaced by

 Common Criteria

 These mythologies provide a “level of trust”

 Each level has more stringent requirements than the

previous one

 Experts evaluate and review the evidence of

assurance
11/06/2015 CSCI 451 - Fall 2015 11

Problem Sources

1. Requirements definitions, omissions, and mistakes

2. System design flaws

3. Hardware implementation flaws, such as wiring and chip

flaws

4. Software implementation errors, program bugs, and compiler

bugs

5. System use and operation errors and inadvertent mistakes

6. Willful system misuse

7. Hardware, communication, or other equipment malfunction

8. Environmental problems, natural causes, and acts of God

9. Evolution, maintenance, faulty upgrades, and decommissions
11/06/2015 CSCI 451 - Fall 2015 12

Examples

 Challenger explosion

 Sensors removed from booster rockets to meet accelerated launch
schedule

 Deaths from faulty radiation therapy system

 Hardware safety interlock removed

 Flaws in software design

 Bell V22 Osprey crashes

 Failure to correct for malfunctioning components; two faulty ones
could outvote a third

 Intel 486 chip

 Bug in trigonometric functions

11/06/2015 CSCI 451 - Fall 2015 13

Role of Requirements

 Requirements are statements of goals that must be
met

 Vary from high-level, generic issues to low-level, concrete
issues

 Security objectives are high-level security issues

 Security requirements are specific, concrete issues

11/06/2015 CSCI 451 - Fall 2015 14

Type of Assurance

 Policy assurance is evidence establishing security

requirements in policy is complete, consistent, technically

sound

 Design assurance is evidence establishing design sufficient to

meet requirements of security policy

 Implementation assurance is evidence establishing

implementation consistent with security requirements of

security policy

 Operational assurance is evidence establishing system

sustains the security policy requirements during installation,

configuration, and day-to-day operation

 Also called administrative assurance
11/06/2015 CSCI 451 - Fall 2015 15

Life Cycle

 Conception

 Manufacture

 Deployment

 Fielded Product Life

11/06/2015 CSCI 451 - Fall 2015 16

Security requirements

Design

Implementation

1

3
2

4

Assurance
justification

Design and
implementation
refinement

Conception

 Idea

 Decisions to pursue it

 Proof of concept

 See if idea has merit

 High-level requirements analysis

 What does “secure” mean for this concept?

 Is it possible for this concept to meet this meaning of security?

 Is the organization willing to support the additional resources required
to make this concept meet this meaning of security?

11/06/2015 CSCI 451 - Fall 2015 17

Manufacture

 Develop detailed plans for each group involved

 May depend on use; internal product requires no sales

 Implement the plans to create entity

 Includes decisions whether to proceed, for example due to

market needs

11/06/2015 CSCI 451 - Fall 2015 18

Deployment

 Delivery

 Assure that correct masters are delivered to production and

protected

 Distribute to customers, sales organizations

 Installation and configuration

 Ensure product works appropriately for specific

environment into which it is installed

 Service people know security procedures

11/06/2015 CSCI 451 - Fall 2015 19

Fielded Product Life

 Routine maintenance, patching

 Responsibility of engineering in small organizations

 Responsibility may be in different group than one that

manufactures product

 Customer service, support organizations

 Retirement or decommission of product

11/06/2015 CSCI 451 - Fall 2015 20

Waterfall Life Cycle Model

 Requirements definition and analysis

 Functional and non-functional

 General (for customer), specifications

 System and software design

 Implementation and unit testing

 Integration and system testing

 Operation and maintenance

11/06/2015 CSCI 451 - Fall 2015 21

Relationship of Stages

11/06/2015 CSCI 451 - Fall 2015 22

Requirements
definition and
analysis

System and
software
design

Implementation
and unit
testing Integration

and system
testing

Operation
and
maintenance

Other Models of Software

Development

 Exploratory programming

 Prototyping

 Formal transformation

 System assembly from reusable components

 Extreme programming

11/06/2015 CSCI 451 - Fall 2015 23

Exploratory Programming

 Develop working system quickly

 Used when detailed requirements specification cannot

be formulated in advance, and adequacy is goal

 No requirements or design specification, so low

assurance

11/06/2015 CSCI 451 - Fall 2015 24

Prototyping

 Objective is to establish system requirements

 Future iterations (after first) allow assurance

techniques

11/06/2015 CSCI 451 - Fall 2015 25

Formal Transformation

 Create formal specification

 Translate it into program using correctness-

preserving transformations

 Very conducive to assurance methods

11/06/2015 CSCI 451 - Fall 2015 26

System Assembly

 System assembly from reusable components

 Depends on whether components are trusted

 Must assure connections, composition as well

 Very complex, difficult to assure

11/06/2015 CSCI 451 - Fall 2015 27

Extreme Programming

 Rapid prototyping and “best practices”

 Project driven by business decisions

 Requirements open until project complete

 Programmers work in teams

 Components tested, integrated several times a day

 Objective is to get system into production as quickly
as possible, then enhance it

 Evidence adduced after development needed for
assurance

11/06/2015 CSCI 451 - Fall 2015 28

Security: Built In or Add On?

 Think of security as you do performance

 You do not build a system, then add in performance later

 Can “tweak” system to improve performance a little

 Much more effective to change fundamental algorithms, design

 You need to design it in

 Otherwise, system lacks fundamental and structural
concepts for high assurance

11/06/2015 CSCI 451 - Fall 2015 29

Reference Validation

Mechanism

 Reference monitor is access control concept of an
abstract machine that mediates all accesses to objects
by subjects

 Reference validation mechanism (RVM) is an
implementation of the reference monitor concept.

 Tamperproof

 Complete (always invoked and can never be bypassed)

 Simple (small enough to be subject to analysis and testing,
the completeness of which can be assured)

 Last engenders trust by providing assurance of correctness

11/06/2015 CSCI 451 - Fall 2015 30

Examples

 Security kernel combines hardware and software to

implement reference monitor

 Trusted computing base (TCB) is all protection

mechanisms within a system responsible for

enforcing security policy

 Includes hardware and software

 Generalizes notion of security kernel

11/06/2015 CSCI 451 - Fall 2015 31

Adding On Security

 Key to problem: analysis and testing

 Designing in mechanisms allow assurance at all
levels

 Too many features adds complexity, complicates analysis

 Adding in mechanisms makes assurance hard

 Gap in abstraction from requirements to design may
prevent complete requirements testing

 May be spread throughout system (analysis hard)

 Assurance may be limited to test results

11/06/2015 CSCI 451 - Fall 2015 32

Example

 2 AT&T products

 Add mandatory controls to UNIX system

 SV/MLS

 Add MAC to UNIX System V Release 3.2

 SVR4.1ES

 Re-architect UNIX system to support MAC

11/06/2015 CSCI 451 - Fall 2015 33

Comparison: Architecture

 Architecting of System

 SV/MLS: used existing kernel modular structure; no

implementation of least privilege

 SVR4.1ES: restructured kernel to make it highly modular

and incorporated least privilege

11/06/2015 CSCI 451 - Fall 2015 34

Comparison: File Attributes

 File Attributes (inodes)

 SV/MLS added separate table for MAC labels, DAC

permissions

 UNIX inodes have no space for labels; pointer to table added

 Problem: 2 accesses needed to check permissions

 Problem: possible inconsistency when permissions changed

 Corrupted table causes corrupted permissions

 SVR4.1ES defined new inode structure

 Included MAC labels

 Only 1 access needed to check permissions

11/06/2015 CSCI 451 - Fall 2015 35

Summary

 Assurance is critical for determining trustworthiness

of systems

 Different levels of assurance, from informal evidence

to rigorous mathematical evidence

 Assurance needed at all stages of system life cycle

 Building security in is more effective than adding it

later

11/06/2015 CSCI 451 - Fall 2015 36

