
L15: Control Access

to Files

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

10/26/2015 CSCI 451 - Fall 2015 1

Acknowledgement

 Many slides are from or are revised from the slides of

the author of the textbook

 Matt Bishop, Introduction to Computer Security, Addison-

Wesley Professional, October, 2004, ISBN-13: 978-0-321-

24774-5. Introduction to Computer Security @ VSU's

Safari Book Online subscription

 http://nob.cs.ucdavis.edu/book/book-intro/slides/

10/26/2015 CSCI 451 - Fall 2015 2

http://proquest.safaribooksonline.com/book/networking/security/0321247442
http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

 Access control lists

 Capability lists

10/26/2015 CSCI 451 - Fall 2015 3

Access Control Lists

 Store columns of access control matrix with the

object it represents to form a list of pairs, e.g.,

 File1: {(Andy, rx), (Betty, rwxo), (Charlie, rx)}

 File2: {(Andy, r), (Betty, r), (Charlie, rwo)}

 File3: {(Andy, rwo), (Charlie, w)}

10/26/2015 CSCI 451 - Fall 2015 4

File1 File2 File3

Andy rx r rwo

Betty rwxo r

Charlie rx rwo w

Definition

Let S be the set of subjects, and R the set of rights, of a

system. An access control list (ACL) l is a set of pairs l

= { (s, r) : s ∊ S, r ⊆ R }. Let acl be a function that

determines the access control list l associated with a

particular object o. The interpretation of the access

control list acl(o) = { (si, ri) : 1 ≤ i ≤ n } is that subject si

may access o using any right in ri.

10/26/2015 CSCI 451 - Fall 2015 5

Default Permissions

 Normal: if not named, no rights over file

 Principle of Fail-Safe Defaults

 If many subjects, may use groups or wildcards in
ACL and given matched subjects default rights

10/26/2015 CSCI 451 - Fall 2015 6

Default Permission: Example

 UNICOS 7.0

 ACL entries are (user, group, rights)

 If user is in group, has rights over file

 ‘*’ is wildcard for user, group

 (holly, *, r): holly can read file regardless of her group

 (*, gleep, w): anyone in group gleep can write file

10/26/2015 CSCI 451 - Fall 2015 7

Abbreviations

 Combine subjects to make long access control lists short

10/26/2015 CSCI 451 - Fall 2015 8

Abbreviations: Example

 Unix divides users into three classes

 Owner of the file

 Group owner of the file

 All other users (the rest)

 Unix systems provides read (r), write (w), and

execute (x) rights

 Unix then represents the permissions as three triplets

 Unix assigns ownership based on creating process

 Some systems: if directory has setgid permission, file group

owned by group of directory (SunOS, Solaris)

10/26/2015 CSCI 451 - Fall 2015 9

Abbreviations: Discussion

 Suffer from a loss of granularity

 e.g., Unix system with 5 users

 Anne wants to allow Beth to read her file, Caroline to write

to it, Della to read and write to it, and Elizabeth to execute

it.

 Three triplets are insufficient to allow all desired modes of

access

 Cumbersome to express “everybody but user Fran”

10/26/2015 CSCI 451 - Fall 2015 10

ACLs + Abbreviations

 Augment abbreviated lists with full-blown ACLs

 Intent is to shorten ACL

 Use abbreviations as the default permission controls

 Explicit ACLs override abbreviations

 Exact method varies

10/26/2015 CSCI 451 - Fall 2015 11

Example: IBM AIX

 Base permissions are abbreviations

 Extended permissions are ACLs with user, group

 ACL entries specify permissions to be added or

deleted from the base permissions

10/26/2015 CSCI 451 - Fall 2015 12

Permissions in IBM AIX

attributes:

base permissions

owner(bishop): rw-

group(sys): r--

others: ---

extended permissions enabled

specify rw- u:holly

permit -w- u:heidi, g=sys

permit rw- u:matt

deny -w- u:holly, g=faculty
10/26/2015 CSCI 451 - Fall 2015 13

Creation and Maintenance of

ACLs

 Some issues …

 Which subjects can modify an object's ACL?

 If there is a privileged user (such as root in the UNIX system or

administrator in Windows NT), do the ACLs apply to that user?

 Does the ACL support groups or wildcards (that is, can users be

grouped into sets based on a system notion of “group” or on pattern

matching)?

 How are contradictory access control permissions handled? If one entry

grants read privileges only and another grants write privileges only,

which right does the subject have over the object?

 If a default setting is allowed, do the ACL permissions modify it, or is

the default used only when the subject is not explicitly mentioned in the

ACL?

10/26/2015 CSCI 451 - Fall 2015 14

ACL Modification

 Which subjects can modify an object's ACL?

 Creator is given own right that allows this

 System R provides a grant modifier (like a copy flag)

allowing a right to be transferred, so ownership not needed

 Transferring right to another modifies ACL

10/26/2015 CSCI 451 - Fall 2015 15

Privileged Users

 Do ACLs apply to privileged users (root)?

 Solaris: abbreviated lists do not, but full-blown ACL

entries do

 Other vendors: varies

10/26/2015 CSCI 451 - Fall 2015 16

Groups and Wildcards

 Does the ACL support groups or wildcards?

 Classic form: no; in practice, usually

 e.g., AIX: base perms gave group sys read only

permit -w- u:heidi, g=sys

line adds write permission for heidi when in that group

 e.g., UNICOS:

 holly : gleep : r

 user holly in group gleep can read file

 holly : * : r

 user holly in any group can read file

 * : gleep : r

 any user in group gleep can read file

10/26/2015 CSCI 451 - Fall 2015 17

Conflicts

 How are contradictory access control permissions
handled?

 Deny access if any entry would deny access

 AIX: if any entry denies access, regardless or rights given so far,
access is denied

 Apply first entry matching subject

 Cisco routers: run packet through access control rules (ACL
entries) in order; on a match, stop, and forward the packet; if no
matches, deny

 Note default is deny so honors principle of fail-safe defaults

10/26/2015 CSCI 451 - Fall 2015 18

Handling Default Permissions

 How are default permissions handled?

 Apply ACL entry, and if none use defaults

 Cisco router: apply matching access control rule, if any; otherwise,

use default rule (deny)

 Augment defaults with those in the appropriate ACL entry

 AIX: extended permissions augment base permissions

10/26/2015 CSCI 451 - Fall 2015 19

Revocation Question

 How do you remove subject’s rights to a file?

 Owner deletes subject’s entries from ACL, or rights from
subject’s entry in ACL

 What if ownership not involved?

 Depends on system

 System R: restore protection state to what it was before
right was given

 May mean deleting descendent rights too …

10/26/2015 CSCI 451 - Fall 2015 20

Windows NT ACLs

 Different sets of rights

 Basic: read, write, execute, delete, change permission, take ownership

 Generic: no access, read (read/execute), change

(read/write/execute/delete), full control (all), special access (assign any

of the basics)

 Directory: no access, read (read/execute files in directory), list, add,

add and read, change (create, add, read, execute, write files; delete

subdirectories), full control, special access

10/26/2015 CSCI 451 - Fall 2015 21

Icacls
C:\teaching\451>icacls vigenere.m

vigenere.m NT AUTHORITY\SYSTEM:(I)(F)

BUILTIN\Administrators:(I)(F)

TL_HM302SC\hui:(I)(F)

TL_HM302SC\demousr:(I)(F)

Successfully processed 1 files; Failed processing 0

files

C:\teaching\451>

10/26/2015 CSCI 451 - Fall 2015 22

cacls

 Windows 8 and 10 reports, “NOTE: Cacls is now

deprecated, please use Icacls.”

C:\teaching\451>cacls vigenere.m

C:\teaching\451\vigenere.m NT AUTHORITY\SYSTEM:(ID)F

BUILTIN\Administrators:(ID)F

TL_HM302SC\hui:(ID)F

TL_HM302SC\demousr:(ID)F

C:\teaching\451>

10/26/2015 CSCI 451 - Fall 2015 23

icacls /?
ICACLS preserves the canonical ordering of ACE entries:

Explicit denials

Explicit grants

Inherited denials

Inherited grants

perm is a permission mask and can be specified in one of two

forms:

a sequence of simple rights:

N - no access

F - full access

M - modify access

RX - read and execute access

R - read-only access

W - write-only access

D - delete access

a comma-separated list in parentheses of specific rights:

DE - delete

RC - read control

WDAC - write DAC

WO - write owner

S - synchronize

AS - access system security

MA - maximum allowed

GR - generic read

GW - generic write

GE - generic execute

GA - generic all

RD - read data/list directory

WD - write data/add file

AD - append data/add subdirectory

REA - read extended attributes

WEA - write extended attributes

X - execute/traverse

DC - delete child

RA - read attributes

WA - write attributes

inheritance rights may precede either form and are applied

only to directories:

(OI) - object inherit

(CI) - container inherit

(IO) - inherit only

(NP) - don't propagate inherit

(I) - permission inherited from parent container

10/26/2015 CSCI 451 - Fall 2015 24

Accessing Files

 User not in file’s ACL nor in any group named in

file’s ACL: deny access

 ACL entry denies user access: deny access

 Take union of rights of all ACL entries giving user

access: user has this set of rights over file

10/26/2015 CSCI 451 - Fall 2015 25

Capability Lists

 Store rows of access control matrix with the object it

represents to form a list of pairs, e.g.,

 Andy: { (file1, rx) (file2, r) (file3, rwo) }

 Betty: { (file1, rwxo) (file2, r) }

 Charlie: { (file1, rx) (file2, rwo) (file3, w) }

10/26/2015 CSCI 451 - Fall 2015 26

File1 File2 File3

Andy rx r rwo

Betty rwxo r

Charlie rx rwo w

Semantics

 Like a bus ticket

 Mere possession indicates rights that subject has over
object

 Object identified by capability (as part of the token)

 Name may be a reference, location, or something else

 Architectural construct in capability-based addressing; this
just focuses on protection aspects

 Must prevent process from altering capabilities

 Otherwise subject could change rights encoded in
capability or object to which they refer

10/26/2015 CSCI 451 - Fall 2015 27

Definition

Let O be the set of objects, and R the set of rights, of a

system. A capability list c is a set of pairs c = { (o, r) : o

∊ O, r ⊆ R }. Let cap be a function that determines the

capability list c associated with a particular subject s.

The interpretation of the capability list cap(s) = { (oi, ri)

: 1 ≤ i ≤ n } is that subject s may access oi using any

right in ri.

10/26/2015 CSCI 451 - Fall 2015 28

Implementation

 Tagged architecture

 Bits protect individual words

 B5700: tag was 3 bits and indicated how word was to be treated
(pointer, type, descriptor, etc.)

 Paging/segmentation protections

 Like tags, but put capabilities in a read-only segment or
page

 CAP system did this

 Programs must refer to them by pointers

 Otherwise, program could use a copy of the capability—which it
could modify

10/26/2015 CSCI 451 - Fall 2015 29

Implementation

 Cryptography

 Associate with each capability a cryptographic checksum enciphered
using a key known to OS

 When process presents capability, OS validates checksum

 Example: Amoeba, a distributed capability-based system

 Capability is (name, creating_server, rights, check_field) and is given to
owner of object

 check_field is 48-bit random number; also stored in table corresponding to
creating_server

 To validate, system compares check_field of capability with that stored in
creating_server table

 Vulnerable if capability disclosed to another process

10/26/2015 CSCI 451 - Fall 2015 30

Amplifying

 Allows temporary increase of privileges

 Needed for modular programming

 Module pushes, pops data onto stack

module stack … endmodule.

 Variable x declared of type stack

var x: module;

 Only stack module can alter, read x

 So process doesn’t get capability, but needs it when x is referenced—a
problem!

 Solution: give process the required capabilities while it is in module

10/26/2015 CSCI 451 - Fall 2015 31

Examples

 HYDRA: templates

 Associated with each procedure, function in module

 Adds rights to process capability while the procedure or function is
being executed

 Rights deleted on exit

 Intel iAPX 432: access descriptors for objects

 These are really capabilities

 1 bit in this controls amplification

 When ADT constructed, permission bits of type control object set to
what procedure needs

 On call, if amplification bit in this permission is set, the above bits
or’ed with rights in access descriptor of object being passed

10/26/2015 CSCI 451 - Fall 2015 32

Revocation

 Scan all capability-lists, remove relevant capabilities

 Far too expensive!

 Use indirection

 Each object has entry in a global object table

 Names in capabilities name the entry, not the object

 To revoke, zap the entry in the table

 Can have multiple entries for a single object to allow control of
different sets of rights and/or groups of users for each object

 Example: Amoeba: owner requests server change random
number in server table

 All capabilities for that object now invalid

10/26/2015 CSCI 451 - Fall 2015 33

Limits

 Problems if you do not control copying of capabilities

 The capability to write file lough is Low, and Heidi is

High. So she reads (copies) the capability; now she can

write to a Low file, violating the *-property (of the Bell-

Lapadula Model)!
10/26/2015 CSCI 451 - Fall 2015 34

Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough

C-List
Heidi (High)

Lou (Low)

Lough (Low)

rw*lough

rw*lough

C-List

r*lough

C-List

rw*lough

Remedies

 Label capability itself

 Rights in capability depends on relation between its
compartment and that of object to which it refers

 In example, as as capability copied to High, and High dominates
object compartment (Low), write right removed

 Check to see if passing capability violates security
properties

 In example, it does, so copying refused

 Distinguish between “read” and “copy capability”

 Take-Grant Protection Model does this (“read”, “take”)

10/26/2015 CSCI 451 - Fall 2015 35

ACLs vs. Capabilities

Both theoretically equivalent; consider 2 questions

1. Given a subject, what objects can it access, and how?

2. Given an object, what subjects can access it, and how?

 ACLs answer second easily; Capability-Lists, first

Suggested that the second question, which in the past
has been of most interest, is the reason ACL-based
systems more common than capability-based systems

 As first question becomes more important (in incident
response, for example), this may change

10/26/2015 CSCI 451 - Fall 2015 36

Exercise L15-1

 Question 2 in page 259 of the textbook

10/26/2015 CSCI 451 - Fall 2015 37

http://proquest.safaribooksonline.com/book/networking/security/0321247442/access-control-mechanisms/ch14lev1sec8

Summary

 Access control mechanisms provide controls for users

accessing files

 Many different forms

 ACLs

 Capabilities

 ACLs vs. Capabilities

 Forthcoming

 Ring-based mechanisms (Mandatory)

10/26/2015 CSCI 451 - Fall 2015 38

