L10: Stream and Block Ciphers

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgement

- Many slides are from or are revised from the slides of the author of the textbook
 - Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's</u> <u>Safari Book Online subscription</u>
 - http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

- □ Block ciphers
 - Examples
 - Attacks against direct use of block ciphers
 - Cipher Block Chaining (CBC)
 - Multiple encryption
- □ Stream ciphers
 - One-time pad: proven secure
 - Synchronous Stream Ciphers
 - Self-Synchronous Stream Cipher

Block Ciphers

- Block ciphers divide a message into a sequence of parts, or blocks, and encipher each block with the same key
- \square *E* encipherment function
 - $E_k(b)$ encipherment of message b with key k
 - In what follows, $m = b_1 b_2 \dots$, each b_i of fixed length
- □ Block cipher

 $\bullet E_k(m) = E_k(b_1)E_k(b_2)\dots$

Block Cipher: Example

□ DES is a block cipher

• $b_i = 64$ bits, k = 56 bits

Each b_i enciphered separately using k

- □ AES is a block cipher
 - $b_i = 128$ bits, k = 128, or 192, or 256 bits
 - Each b_i enciphered separately using k

Block Ciphers

- □ Encipher and decipher multiple bits at once
- □ Each block enciphered independently
- Problem: identical plaintext blocks produce identical ciphertext blocks
 - Example: two database records
 - MEMBER: HOLLY INCOME \$100,000
 - □ MEMBER: HEIDI INCOME \$100,000
 - Encipherment:
 - □ ABCQZRME GHQMRSIB CTXUVYSS RMGRPFQN
 - □ ABCQZRME ORMPABRZ CTXUVYSS RMGRPFQN

Solutions

Use additional information

□ Use *Cipher Block Chaining* (CBC mode)

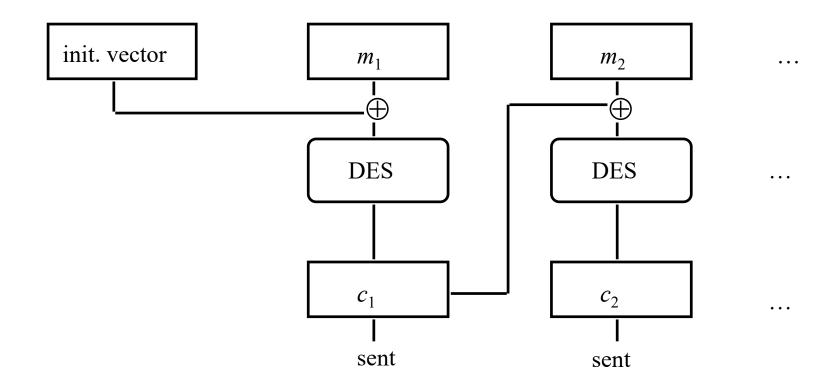
Additional Information

- Insert additional varying information into the plaintext block, then encipher
 - Information about block's position
 - Example:
 - **Bits from the preceding ciphertext block (Feistel, 1973)**
 - Sequence number on each block (Kent, 1976)

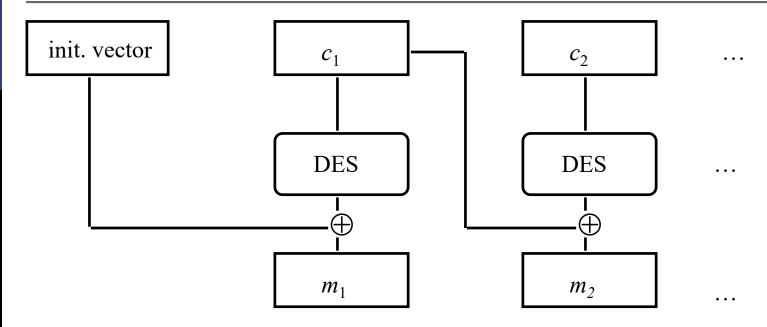
Disadvantage

Effective block size is reduced because a block is in effect {additional bits || bits from plaintext}

Cipher Block Chaining


- □ Cipher block chaining (CBC)
- Exclusive-or current plaintext block with previous ciphertext block:
 - $\bullet c_0 = E_k(m_0 \oplus I)$
 - $c_i = E_k(m_i \oplus c_{i-1})$ for i > 0

where *I* is the initialization vector


Recap on DES

- Electronic Code Book (ECB): directly use DES, a block cipher
- Cipher Feedback (CFB): generate pseudo one-time pad
- Output Feedback (OFB): generate pseudo one-time pad
- □ Cipher Block Chaining (CBC): commonly used mode

DES Recap: CBC Mode Encryption

DES Recap: CBC Mode Encryption

Multiple Encryption

- **Double encipherment:** $c = E_k(E_k(m))$
 - Effective key length is 2n, if k, k' are length n
 - Problem: breaking it requires 2ⁿ⁺¹ encryptions, not 2²ⁿ encryptions
- □ Triple encipherment:
 - EDE mode: $c = E_k(D_k(E_k(m)))$
 - Problem: chosen plaintext attack takes O(2ⁿ) time using 2ⁿ ciphertexts
 - Triple encryption mode: $c = E_k(E_k(E_{k'}(m)))$
 - Best attack requires $O(2^{2n})$ time, $O(2^n)$ memory

Stream Ciphers

- □ Stream ciphers use a nonrepeating stream of key elements to encipher characters of a message
- \square *E* encipherment function
 - $E_k(b)$ encipherment of message b with key k
 - In what follows, $m = b_1 b_2 \dots$, each b_i of fixed length

□ Stream cipher

- $k = k_1 k_2 \ldots$
- $E_k(m) = E_{k1}(b_1)E_{k2}(b_2) \dots$
- If $k_1k_2 \dots$ repeats itself, cipher is *periodic* and the kength of its period is one cycle of $k_1k_2 \dots$

Examples

□ Vigenère cipher

- $b_i = 1$ character, $k = k_1 k_2 \dots$ where $k_i = 1$ character
- Each b_i enciphered using $k_{i \mod \text{length}(k)}$
- Stream cipher

□ One-time pad

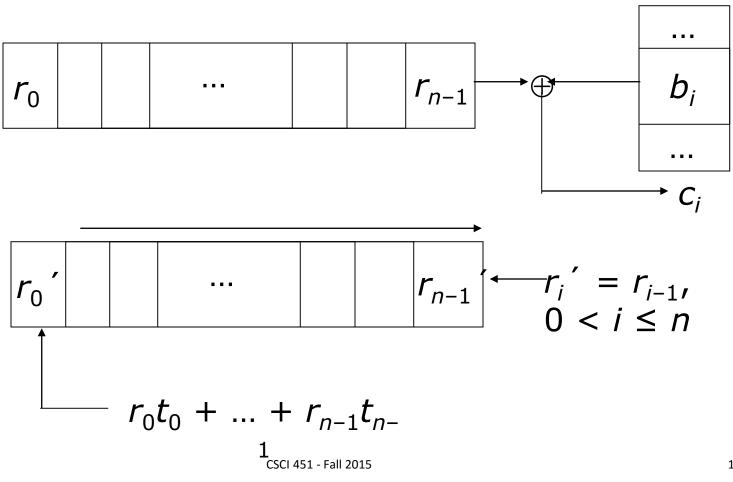
- A stream cipher
- Not periodic because the key stream never repeats
- Proven secure

Bit-Oriented Stream Ciphers

- □ Bit-oriented stream ciphers: each "character" is a bit
- Often (try to) implement one-time pad by xor'ing each bit of key with one bit of message
 - Example:

m = 00101k = 10010c = 10111

□ But how to generate a good key?


Synchronous Stream Ciphers

- To simulate a random, infinitely long key, synchronous stream ciphers generate key bits from a course other than the message itself
- Simplest approach: extracts bits from a register to use as the key
- Example: n-stage Linear Feedback Shift Register (LFSR)

n-stage Linear Feedback Shift Register

- \square *n* bit register $r = r_0 \dots r_{n-1}$
- \square *n* bit tap sequence $t = t_0 \dots t_{n-1}$
- **D** Operation
 - Use r_{n-1} as key bit
 - Compute $x = r_0 t_0 \oplus \ldots \oplus r_{n-1} t_{n-1}$
 - Shift *r* one bit to right, dropping r_{n-1} , *x* becomes r_0

Operation

Example

The least significant bit is the right-most bit
4-stage LFSR; t = 1001

r	k_i	new bit computation	new r
0010	0	$01 \oplus 00 \oplus 10 \oplus 01 = 0$	0001
0001	1	$01 \oplus 00 \oplus 00 \oplus 11 = 1$	1000
1000	0	$11 \oplus 00 \oplus 00 \oplus 01 = 1$	1100
1100	0	$11 \oplus 10 \oplus 00 \oplus 01 = 1$	1110
1110	0	$11 \oplus 10 \oplus 10 \oplus 01 = 1$	1111
1111	1	$11 \oplus 10 \oplus 10 \oplus 11 = 0$	0111
0111	0	$11 \oplus 10 \oplus 10 \oplus 11 = 1$	1011
— IZ		-1	010110

Key sequence has period of 15 (010001111010110)

Notes on n-stage LFSR

- A known plaintext attack can reveal parts of the key sequence
- If the known plaintext is of length 2n, the tap sequence of an n-stage LFSR can be determined completely

n-stage Non-Linear Feedback Shift Register

Do not use tap sequences. New key bit is any function of the current register bits

□ *n* bit register
$$r = r_0 \dots r_{n-1}$$

□ Use:

- Use r_{n-1} as key bit
- Compute $x = f(r_0, ..., r_{n-1})$; *f* is any function
- Shift *r* one bit to right, dropping r_{n-1} , *x* becomes r_0

Note same operation as LFSR but more general bit replacement function

Example

- □ The least significant bit is the right-most bit
- **□** 4-stage NLFSR; $f(r_0, r_1, r_2, r_3) = (r_0 \& r_2) | r_3$

r	k_i	new bit computation	new r
1100	0	(1 & 0) 0 = 0	0110
0110	0	(0 & 1) 0 = 0	0011
0011	1	(0 & 1) 1 = 1	1001
1001	1	(1 & 0) 1 = 1	1100
1100	0	(1 & 0) 0 = 0	0110
0110	0	(0 & 1) 0 = 0	0011
0011	1	(0 & 1) 1 = 1	1001

Key sequence has period of 4 (0011)

Eliminating Linearity

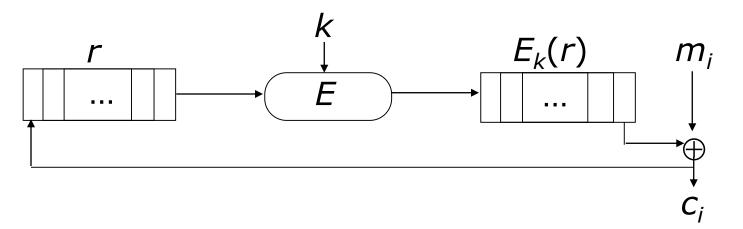
- □ NLFSRs not common
 - No body of theory about how to design them to have long period
- □ Alternate approach: *output feedback mode*
 - For *E* encipherment function, *k* key, *r* register:
 - Compute $r' = E_k(r)$; key bit is rightmost bit of r'
 - Set r to r' and iterate, repeatedly enciphering register and extracting key bits, until message enciphered
 - Variant: use a counter that is incremented for each encipherment rather than a register

D Take rightmost bit of $E_k(i)$, where *i* is number of encipherment

Self-Synchronous Stream Cipher

- □ Take key from message itself (*autokey*)
- □ Example: Vigenère, key drawn from plaintext
 - *key* XTHEBOYHASTHEBA
 - *plaintext* THEBOYHASTHEBAG
 - *ciphertext* QALFPNFHSLALFCT
- □ Problem:
 - Statistical regularities in plaintext show in key
 - Once you get any part of the message, you can decipher more

Another Example


- □ Take key from ciphertext (*autokey*)
- □ Example: Vigenère, key drawn from ciphertext
 - *key* XQXBCQOVVNGNRTT
 - *plaintext* THEBOYHASTHEBAG
 - *ciphertext* QXBCQOVVNGNRTTM

□ Problem:

 Attacker gets key along with ciphertext, so deciphering is trivial

Variant

- □ Cipher feedback mode: 1 bit of ciphertext fed into *n* bit register
 - Self-healing property: if ciphertext bit received incorrectly, it and next *n* bits decipher incorrectly; but after that, the ciphertext bits decipher correctly
 - Need to know *k*, *E* to decipher ciphertext

Summary

□ Block ciphers

- Examples: DES, AES
- Attacks against direct use of block ciphers
- Cipher Block Chaining (CBC)
- Multiple encryption

□ Stream ciphers

- Examples: Vigenère cipher, One-time pad
- One-time pad: proven secure
- Synchronous Stream Ciphers (LFSR, NLFSR)
- Self-Synchronous Stream Cipher