L3: Security Policies

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgement

- Many slides are from or are revised from the slides of the author of the textbook
 - Matt Bishop, Introduction to Computer Security, Addison-Wesley Professional, October, 2004, ISBN-13: 978-0-321-24774-5. <u>Introduction to Computer Security @ VSU's Safari Book Online subscription</u>
 - http://nob.cs.ucdavis.edu/book/book-intro/slides/

Outline

- □ Review and Overview
- □ Confidentiality Polices
- □ Integrity Policies
- Availability Policies
- □ Case Study

Security Policy and Mechanism

- Security policy
 - A statement of what is allowed and what is not allowed
 - Example
 - A student may not copy another student's homework
 - Can be informal or highly mathematical
- Security mechanism
 - A method, tool, or procedure for enforcing security policy
 - Technical and non-technical
 - A homework electronic submission system (e.g., Blackboard) enforces who may read a homework submission

Security Policy

- Security policy
 - Partitions system states
 - Authorized (or secure) states
 - States the system can enter
 - Unauthorized (non-secure) states
 - Security violation if the system enters any of these states
 - Sets the context in which we can define a secure system.

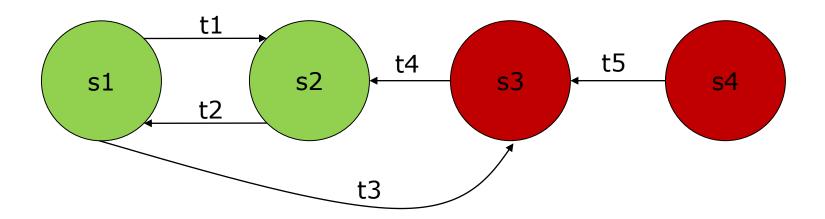
Secure System

■ A secure system is a system that starts in an authorized state and cannot enter an unauthorized state

Transfer Funds

□ Processes P and Q

```
int fromAccount, toAccount, amountToTransfer;
.....
transferFunds(fromAccount, toAccount, amountToTransfer);
.....
```

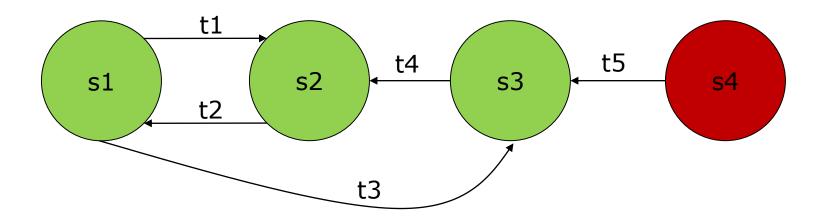

	fromAccount	toAccount	amountToTransfer	P	Q
P	rw	rw	rw	rwxo	
Q	r	r	r		rwxo

Secure System and Policy

- □ Secure System
 - A system is secure under one policy may not be secure under a different policy

Example

- □ An example
 - \blacksquare A = {s1, s2}, UA = {s3, s4}
- □ Is the system secure?


Example

- □ An example
 - \blacksquare A = {s1, s2, s3}, UA = {s4}
- □ Is the system secure?

Example

- □ An example
 - \blacksquare A = {s1, s2, s3}, UA = {s4}
- □ Is the system secure?

Breach of Security

■ A breach of security occurs when a system enters an unauthorized state

Security Properties

- Confidentiality
- □ Integrity
- □ Availability

- \square X set of entities, I information
- □ I has confidentiality property with respect to X if no $x \in X$ can obtain information from I
- □ I can be disclosed to others
- **□** Example:
 - X set of students
 - I final exam answer key
 - *I* is confidential with respect to *X* if students cannot obtain final exam answer key

□ Example:

- X set of students
- I final exam answer key
- I is confidential with respect to X if students cannot obtain final exam answer key

- □ Implies
 - Information must not be disclosed to some set of entities
 - May be disclosed to others
- Membership of X is often implicit
 - States entities that have access to information I
 - X is implicitly those entities that are not authorized to have such an access

- **□** Example:
 - Only course instructors can obtain the answer keys to the courses' final exam
- □ What is X and what is I?

Integrity

- \square X set of entities, I information
- □ *I* has *integrity* property with respect to *X* if all $x \in X$ trust information in *I*
- □ Types of integrity:
 - trust *I*, its conveyance and protection (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - I resource: means resource functions as it should (assurance)

Availability

- \square X set of entities, I resource
- □ I has availability property with respect to X if all $x \in X$ can access I
- □ Types of availability:
 - traditional: x gets access or not
 - quality of service: promised a level of access (for example, a specific level of bandwidth) and not meet it, even though some access is achieved

Security Policies

- Confidentiality policy
- □ Integrity policy
- □ Quality of service (Availability) policy

Policy Model

- Abstract description of a policy or class of policies
- □ Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Types of Security Policies

- □ Military (governmental) security policy
 - Policy primarily protecting confidentiality
- □ Commercial security policy
 - Policy primarily protecting integrity
- □ Confidentiality policy
 - Policy protecting only confidentiality
- □ Integrity policy
 - Policy protecting only integrity
 - Transaction-oriented integrity security policies

Integrity and Transactions

- □ Begin in consistent state
 - "Consistent" defined by specification
- □ Perform series of actions (*transaction*)
 - Actions cannot be interrupted
 - If actions complete, system in consistent state
 - If actions do not complete, system reverts to beginning (consistent) state

- □ Confidentiality policies place no trust in objects
- □ Integrity policies defines the level of trust
- □ Example 1

- Confidentiality policies place no trust in objects
- □ Integrity policies defines the level of trust
- □ Example 1
 - Administrator installs patch
 - 1. Trusts patch came from vendor, not tampered with in transit
 - 2. Trusts vendor tested patch thoroughly
 - 3. Trusts vendor's test environment corresponds to local environment
 - 4. Trusts patch is installed correctly

- □ Confidentiality policies place no trust in objects
- □ Integrity policies defines the level of trust
- □ Example 2

- □ Confidentiality policies place no trust in objects
- □ Integrity policies defines the level of trust
- □ Example 2
 - Trust in Formal Verification
 - \square Gives formal mathematical proof that given input i, program P produces output o as specified
 - Suppose a security-related program *S* formally verified to work with operating system *O*
 - What are the assumptions?

- Confidentiality policies place no trust in objects
- □ Integrity policies defines the level of trust
- □ Example 2
 - Trust in Formal Verification
 - Proof has no errors
 - Bugs in automated theorem provers
 - □ Preconditions hold in environment in which S is to be used
 - □ S transformed into executable S' whose actions follow source code
 - Compiler bugs, linker/loader/library problems
 - Hardware executes S' as intended
 - Hardware bugs (e.g., Pentium CPU's f00f bug)

Types of Access Control

- □ Discretionary Access Control (DAC, IBAC)
 - individual user sets access control mechanism to allow or deny access to an object
- Mandatory Access Control (MAC)
 - system mechanism controls access to object, and individual cannot alter that access
 - sometimes called rule-based access control
- □ Originator Controlled Access Control (ORCON)
 - originator (creator) of information controls who can access information

Case Studies

- □ Policy disallows cheating
 - Includes copying homework, with or without permission
- □ CS class has students do homework on computer
- □ Anne forgets to read-protect her homework file on the computer
- □ Bill copies it
- □ Who cheated?
 - Anne, Bill, or both?

Who Violated Security Policy?

- □ Bill cheated
 - Policy forbids copying homework assignment
 - Bill did it
 - System entered an unauthorized state
 - □ Unauthorized state: Bill having a copy of Anne's assignment
- ☐ If not explicit in computer security policy, certainly implicit
 - Not credible that a unit of the university allows something that the university as a whole forbids, unless the unit explicitly says so

Who Violated Security Policy?

- ☐ Anne did not protect her homework
 - Not required by security policy
- □ She did not breach security

Who Violated Security Policy?

- □ Let us change the policy
 - The university disallows cheating, which is defined to include copying another student's work with or without permission. The university mandates that every student must read-protect her or his work files on university computers.
- ☐ The policy said students had to read-protect homework files,
 - Anne did not do this
 - Anne also breached security (violated security policy)

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Reading Assignment

□ Section 4.5

Summary

- □ Policies describe *what* is allowed
- Mechanisms control how policies are enforced
- □ Trust underlies everything

Exercise L3-1

■ Exercises 1 of Exercises 4.8 in page 59 of the textbook

Exercise L3-2

■ Exercises 5(d) of Exercises 4.8 in page 60 of the textbook

Homework 3

■ Exercises 5(a), 5(b), and 5(c) of Exercises 4.8 in page 59 of the textbook