L3: Building Direct Link Networks I

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- **D** The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Direct Link Networks

- **D** Types of Networks
 - Point-to-point
 - Multiple access

What problems do we need to solve to build even a direct link network?

8/22/2016

CSCI 445 - Fall 2016

Direct Link Networks

D Types of Networks

- Point-to-point
- Multiple access

Encoding

- Encoding bits onto transmission medium
- **D** Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- **D** Reliable delivery
 - Making links appear reliable despite errors
- Media access control (specific to multiple access networks)
 - Mediating access to shared link

8/22/2016

Physical Medium

- Guided media: transmission in "bounded media (wires)"
 - Examples: Twisted pair, coaxial cable, optical fiber
- Unguided media: transmission in "open space (wireless)"
 - Examples: Radio, Sonar
- Some wave oscillation propagates in the medium and carries signal
 - Frequency of carrier waves (or carrier signals)
- Problem: convert digital data to physical signal that is transmitted in a physical medium

Modulation

D Modulation

Varying frequency, amplitude, or phase of carrier signal with a modulating signal that carries information

Encoding

□ Encoding

- Encode bits (binary data) into the signals
- Modulation is not our focus
- Assume working with two discrete signals: high and low
- □ Nonreturn-to-zero (NRZ)
- □ Nonreturn-to-zero-inverted (NRZI)
- Manchester
- **u** 4B/5B

Non-Return-to-Zero (NRZ)

- $\Box \text{ Low } \rightarrow 0$
- □ High →1

□ Long strings of 1s or 0s

- Baseline wander
- Difficult to recover clock

Non-Return-to-Zero-Inverted (NRZI)

\Box Signal transition \rightarrow 1

 $\Box \text{ No transition } \rightarrow 0$

Bits 0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0

Solve the problem caused by consecutive 1's
The problem caused by consecutive 0's remains

Manchester

D $0 \rightarrow$ low-to-high transition

- $1 \rightarrow$ high-to-low transition
- **\square** That is, NRZ signal \oplus Clock signal

- Solve the problems caused by both consecutive 1's and 0's
- New problem
 - 50% efficient: Two samples per clock cycle to detect a transition, bit rate is 50% of baud rate (rate of signal changes)

Exercise L3-1

Encode bit sequence 01101 using NRZ, NRZI, Manchester encoding by indicating bits and by drawing clock, NRZ, NRZI, and Manchester signals as in page 80 of the textbook

4B/5B

D Motivations

- To cope with baseline wander
- To ease clock recovery
- To increase encoding efficiency (bit rate/baud rate)

4B/5B

□ Break long strings of repeated 0's and 1's

- before transmission: 4 bits \rightarrow 5 bits
 - Every 4 bits of actual data are encoded in a 5-bit code
 - □ 4 bits data symbols: 2⁴ = 16
 - **5** bits codes: $2^5 = 32$
 - No more than 1 leading 0's in codes and no more than 2 trailing 0's
 - No pair of 5-bit codes results in more than 3 consecutive 0's
 - 11111: line is idle 01101: control symbols
- Transmit codes using NRZI: 80% efficiency

4B/5B Encoding

4-Bit Data Symbol	5-Bit Code	4-Bit Data Symbol	5-Bit Code
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Exercise L3-2

Encode bit sequence 01011000 using 4B/5B encoding by showing the conversion between 4-bit sequences of data and their 5-bit sequences of codes and drawing clock and 4B/5B signals

4-Bit Data Symbol	5-Bit Code	4-Bit Data Symbol	5-Bit Cod
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Direct Link Networks

- □ Encoding
 - Encoding bits onto transmission medium
- □ Framing
 - Delineating sequence of bits into messages
- Error detection
 - Detecting errors and acting on them
- Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

Framing

- Packet-switched networks → block of data are exchanged between nodes
 - Breaking bits into frames
- □ Key issue: identity where a frame begins and the ends
- To discuss in the context of point-to-point links
 - Byte-oriented framing: frame as a collection of bytes
 - Bit-oriented framing: frame as a collection of bits
 - Clock-based framing (vs. sentinel-based approaches)
- Framing is a fundamental problem that must be addressed in multiple-access networks as well.

Byte-Oriented Framing

- Example: Binary Synchronous Communication (BISYNC)
- □ A frame is illustrated as a sequence of labeled fields

BISYNC

- Uses special characters known as sentinel characters to indicate whether frames begins and ends
- □ The beginning of a frame: SYN
- The data portion of the frame is contained between STX and ETX
- **D** The start of header: SOH

BISYNC

□ Problem: ETX may appear in the data

□ Solution: escaping

- ETX \rightarrow DLE ETX
- DLE \rightarrow DLE DLE

Exercise L3-3

- DATA = 1A E2 02 2A 16 10 20. Use the sentinels in ASCII table, what would be the bytes in the *body* of the frame using BISYNC?
- In the body of a frame using BISYNC, is it possible to see the following byte sequence and why?
 4A 10 51 6B

Bit-Oriented Framing

□ View a frame as a collection of bits

D Example: High-level Data Link Control (HDLC)

HDLC

- **D** Beginning and ending sequence: 01111110
- **\square** 01111110 may appear in the body of the frame \rightarrow bit stuffing
 - 11111 → 111110 → no 6 1's in a row in the body

Clock-based Framing

- Versus sentinel-based approaches
- **D** Example: SONET
 - Popular in network backbone
 - Has a close tie with telephony systems
 - Specification takes entire book
 - Frame is of fixed length
 - **125** µs for STS-1 (51.84 Mbps)
 - Q: How big is a Mega (sidebar in page 45)
 - 125 μs = ? Bytes
 - Detect the frame header at each interval of frame size

Summary

\square Bits \rightarrow signal

- Encoding
- **\square** Bits \rightarrow frames
 - Framing
- Q: What if the link is not error free? In other words, what if a frame is corrupted?
 - Error detection
 - Reliable transmission