
Applications Layer

Protocols

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

11/16/2015 1CSCI 445 - Fall 2015

Acknowledgements

 Some pictures used in this presentation were obtained from the

Internet

 The instructor used the following references

 Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems

Approach, 5th Edition, Elsevier, 2011

 Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-

Hall, 2010

 James F. Kurose and Keith W. Ross, Computer Networking: A Top-

Down Approach, 5th Ed., Addison Wesley, 2009

 Larry L. Peterson’s (http://www.cs.princeton.edu/~llp/) Computer

Networks class web site

10/26/2015 CSCI 445 – Fall 2015 2

Outline

 Network application architecture
 Peer-to-peer

 Client-server

 Hybrid

 Naming services
 DNS

 The World Wide Web
 HTTP

 E-mail
 SMTP

11/16/2015 3CSCI 445 - Fall 2015

Application architectures

 Client-server

 Peer-to-peer (P2P)

 Hybrid of client-server and P2P

11/16/2015 4CSCI 445 - Fall 2015

Client-Server Architecture
server:

 always-on host

 permanent IP address

 server farms for scaling

clients:

 communicate with server

 may be intermittently

connected

 may have dynamic IP

addresses

 do not communicate directly

with each other

client/server

11/16/2015 5CSCI 445 - Fall 2015

Pure P2P architecture
 no always-on server

 arbitrary end systems

directly communicate

 peers are intermittently

connected and change IP

addresses

Highly scalable but difficult to

manage

peer-peer

11/16/2015 6CSCI 445 - Fall 2015

Hybrid of Client-Server and P2P
Skype

 voice-over-IP P2P application

 centralized server: finding address of remote party:

 client-client connection: direct (not through server)
Instant messaging

 chatting between two users is P2P

 centralized service: client presence detection/location
 user registers its IP address with central server when it comes

online

 user contacts central server to find IP addresses of buddies

11/16/2015 7CSCI 445 - Fall 2015

Naming

 Terminology

 Domain Naming System

 Distributed File Systems

11/16/2015 8CSCI 445 - Fall 2015

Overview
 Why do names do?

 Identify objects

 Help locate objects

 Define membership in a group

 Specify a role

 Convey knowledge of a secret

 Name space

 Defines set of possible names

 Consists of a set of name to value bindings

 Example:

 Value Name

 123 ABC

 Resolution mechanism

 Returns the corresponding value when invoked with a name

11/16/2015 9CSCI 445 - Fall 2015

Properties

 Names vs. addresses

 Location transparent vs. location-dependent

 Flat vs. hierarchical

 Global vs. local

 Absolute vs. relative

 By architecture vs. by convention

 Unique vs. ambiguous

11/16/2015 10CSCI 445 - Fall 2015

Naming Services: Name Resolution
 Files

 Examples

 Unix/Linux: /etc/hosts

 Windows: C:\WINDOWS\system32\drivers\etc\hosts

 Sun Network Information Service (NIS) and NIS+

 Network Security Services (NSS) Database

 Example: NSS library for the Berkeley DB

 Light Weight Directory Service (LDAP)

 Example: OpenLDAP

 Domain Name Service (DNS)

 Put things together: real life example

 Unix/Linux:

 System Databases and Name Service Switch configuration file: /etc/nsswitch.conf

 man nsswitch.conf

 Windows:

 \HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\TCPIP\ServicePr
ovider

11/16/2015 11CSCI 445 - Fall 2015

Domain Naming System

 Hierarchy

11/16/2015 12CSCI 445 - Fall 2015

IP

Name Resolution: Application

Perspective

Name Server
(Name Resolution

Service)

TCP

Web Browser
(1. http://www.google.com)

IP

User

TCP

Web Server

2: www.google.com

3: 74.125.131.106

4: 74.125.131.106

5: 74.125.131.106

11/16/2015 13CSCI 445 - Fall 2015

Name Resolution: Name System

Perspective

 DNS consists of distributed and hierachical database

servers

 Naming resolution may involves multiple rounds of

message exchanges

11/16/2015 14CSCI 445 - Fall 2015

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

vsu.edu
DNS servers

uva.edu
DNS servers

yahoo.com
DNS servers

google.com
DNS servers

pbs.org
DNS servers

Distributed and Hierarchical

Database

11/16/2015 15CSCI 445 - Fall 2015

DNS: Root Name Servers
 Contacted by local name server that can not resolve name

 Root name server:

 contacts authoritative name server if name mapping not known

 gets mapping

 returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey,
CA

l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo

Alto, CA (and 36 other
locations)

i Autonomica, Stockholm
(plus 28 other locations)

k RIPE London (also 16 other
locations)

m WIDE Tokyo (also
Seoul, Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD

g US DoD Vienna, VA
h ARL Aberdeen, MD

j Verisign, (21 locations)

http://www.root-servers.org/

11/16/2015 16CSCI 445 - Fall 2015

http://www.root-servers.org/

TLD and Authoritative Servers
 Top-level domain (TLD) servers

 Reesponsible for com, org, net, edu, etc, and all top-level country
domains uk, fr, ca, jp.

 Examples

 Network Solutions maintains servers for com TLD

 Educause for edu TLD

 See http://www.iana.org/domains/root/db/

 Authoritative DNS servers

 organization’s DNS servers, providing authoritative hostname to IP
mappings for organization’s servers (e.g., Web, mail).

 can be maintained by organization or service provider

 Example: Virginia State University (vsu.edu)

 external.vsu.edu (150.174.7.17)

11/16/2015 17CSCI 445 - Fall 2015

http://www.iana.org/domains/root/db/

Local Name Server

 Does not strictly belong to hierarchy

 Each ISP (residential ISP, company, university) has
one.

 also called “default name server”

 When host makes DNS query, query is sent to its
local DNS server

 acts as proxy, forwards query into hierarchy

 Example: Virginia State University (vsu.edu)

 150.174.7.85 (vsu-dc-02v.vsu.edu)

 150.174.7.167 (vsu-dc-03v.vsu.edu)

11/16/2015 18CSCI 445 - Fall 2015

Local Name Servers

 A few well-known public local name servers for

testing

 Google’s public DNS servers

 8.8.8.8, 8.8.4.4

 Level 3’s Public DNS servers

 209.244.0.3, 209.244.0.4, 4.2.2.1, 4.2.2.2, 4.2.2.3, 4.2.2.4

 OpenDNS's DNS servers

 208.67.222.222, 208.67.220.220

11/16/2015 CSCI 445 - Fall 2015 19

Name Resolution

 Strategies

 Forward

 Iterative

 Recursive

 Local server

 Need to know root at only one place (not each host)

 Site-wide cache

11/16/2015 20CSCI 445 - Fall 2015

requesting host
www.google.com

root DNS server

local DNS server
150.174.7.85

1

2

45

6

authoritative DNS server
ns1.google.com

7

8

TLD DNS server

3

recursive query:
 puts burden of name resolution

on contacted name server

 heavy load?

DNS Name Resolution Example (2)

11/16/2015 21CSCI 445 - Fall 2015

requesting host
www.google.com

root DNS server

local DNS server
150.174.7.85

1

2

3

4

5

6

authoritative DNS server
ns1.google.com

7
8

TLD DNS server

DNS Name Resolution Example (1)

 Host at vsu.edu wants IP

address for

www.google.com

iterated query:
 contacted server replies

with name of server to

contact

 “I don’t know this name,

but ask this server”

11/16/2015 22CSCI 445 - Fall 2015

2: Application Layer 23

DNS: Caching and Updating Records
 Once (any) name server learns mapping, it caches

mapping

 cache entries timeout (disappear) after some time

 TLD servers typically cached in local name servers

Thus root name servers not often visited

 Dynamic update/notify mechanisms

 RFC 2136

 http://tools.ietf.org/html/rfc2136

11/16/2015 23CSCI 445 - Fall 2015

http://tools.ietf.org/html/rfc2136

Example: Windows DNS Cache

at Hosts
C:\Users\guest>ipconfig /displaydns | more

Windows IP Configuration

r20swj13mr.microsoft.com

--

Record Name : r20swj13mr.microsoft.com

Record Type : 5

Time To Live : 2939

Data Length : 8

Section : Answer

CNAME Record : ie9comview.vo.msecnd.net

Record Name :

ie9comview.vo.msecnd.net

Record Type : 5

Time To Live : 2939

Data Length : 8

Section : Answer

CNAME Record : cs1.wpc.v0cdn.net

Record Name : cs1.wpc.v0cdn.net

Record Type : 1

Time To Live : 2939

-- More --

11/16/2015 CSCI 445 - Fall 2015 24

DNS Records
DNS: distributed db storing resource records (RR)

 Type=NS

 name is domain (e.g.

foo.com)

 value is hostname of

authoritative name server

for this domain

RR format: (name, value, type, ttl)

 Type=A
 name is hostname
 value is IP address

 Type=CNAME
 name is alias name for some

“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

 value is canonical name

 Type=MX
 value is name of mailserver

associated with name

11/16/2015 25CSCI 445 - Fall 2015

DNS Protocol Messages
DNS protocol : query and reply messages, both with same

message format

msg header
 identification: 16 bit #

for query, reply to query
uses same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

11/16/2015 26CSCI 445 - Fall 2015

DNS Protocol Messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

11/16/2015 27CSCI 445 - Fall 2015

Inserting Records into DNS
 example: new startup “Network Utopia”

 register name networkuptopia.com at DNS registrar (e.g.,
Network Solutions)
 provide names, IP addresses of authoritative name server

(primary and secondary)

 registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com,
NS)

(dns1.networkutopia.com, 212.212.212.1, A)

 create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

11/16/2015 28CSCI 445 - Fall 2015

Exercise L19-1

 Q: How do people get IP address of

www.networkutopia.com from a computer on VSU

campus?

(networkutopia.com, dns1.networkutopia.com, NS)

(dns1.networkutopia.com, 212.212.212.1, A)

Turn your work in before you leave!

11/16/2015 29CSCI 445 - Fall 2015

http://www.networkutopia.com/

Web and HTTP

First some jargon

 Web page consists of objects

 Object can be HTML file, JPEG image, Java applet, audio

file,…

 Web page consists of base HTML-file which includes several

referenced objects

 Each object is addressable by a URL

 Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

11/16/2015 30CSCI 445 - Fall 2015

HTTP overview

HTTP: hypertext transfer

protocol

 Web’s application layer

protocol

 client/server model

 client: browser that

requests, receives,

“displays” Web objects

 server: Web server sends

objects in response to

requests

PC running

Explorer

Server
running

Apache Web

server

Mac running

Navigator

11/16/2015 31CSCI 445 - Fall 2015

HTTP overview (continued)

Uses TCP:

 client initiates TCP connection

(creates socket) to server, port 80

 server accepts TCP connection

from client

 HTTP messages (application-

layer protocol messages)

exchanged between browser

(HTTP client) and Web server

(HTTP server)

 TCP connection closed

HTTP is “stateless”

 server maintains no

information about past

client requests

Protocols that maintain
“state” are complex!

 past history (state) must
be maintained

 if server/client crashes,
their views of “state” may
be inconsistent, must be

reconciled

aside

11/16/2015 32CSCI 445 - Fall 2015

HTTP connections

Nonpersistent HTTP

 At most one object is sent

over a TCP connection.

Persistent HTTP

 Multiple objects can be

sent over single TCP

connection between client

and server.

11/16/2015 33CSCI 445 - Fall 2015

Nonpersistent HTTP

Suppose user enters URL
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP connection to

HTTP server (process) at

www.someSchool.edu on port 80

2. HTTP client sends HTTP request
message (containing URL) into TCP

connection socket. Message
indicates that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying

client

3. HTTP server receives request
message, forms response message
containing requested object, and

sends message into its sockettime

(contains text,
references to 10

jpeg images)

11/16/2015 34CSCI 445 - Fall 2015

Nonpersistent HTTP (Continued)

5. HTTP client receives response

message containing html file,

displays html. Parsing html file,

finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

11/16/2015 35CSCI 445 - Fall 2015

Non-Persistent HTTP: Response

time

Definition of RTT: time for a

small packet to travel from

client to server and back.

Response time:

 one RTT to initiate TCP

connection

 one RTT for HTTP request

and first few bytes of HTTP

response to return

 file transmission time

total = 2RTT+transmit time

time to
transmit

file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

11/16/2015 36CSCI 445 - Fall 2015

Persistent HTTP

Nonpersistent HTTP issues:

 requires 2 RTTs per object

 OS overhead for each TCP

connection

 browsers often open parallel

TCP connections to fetch

referenced objects

Persistent HTTP

 server leaves connection open

after sending response

 subsequent HTTP messages

between same client/server sent

over open connection

 client sends requests as soon as

it encounters a referenced

object

 as little as one RTT for all the

referenced objects

11/16/2015 37CSCI 445 - Fall 2015

HTTP request message

 two types of HTTP messages: request, response

 HTTP request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

11/16/2015 38CSCI 445 - Fall 2015

HTTP request message: general format

11/16/2015 39CSCI 445 - Fall 2015

Method types

HTTP/1.0

 GET

 POST

 HEAD

 asks server to leave

requested object out of

response

HTTP/1.1

 GET, POST, HEAD

 PUT

 uploads file in entity

body to path specified in

URL field

 DELETE

 deletes file specified in

the URL field

11/16/2015 40CSCI 445 - Fall 2015

Uploading form input

Post method:

 Web page often includes

form input

 Input is uploaded to server

in entity body

URL method:

 Uses GET method

 Input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

11/16/2015 41CSCI 445 - Fall 2015

2: Application Layer 42

HTTP response message

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

11/16/2015 42CSCI 445 - Fall 2015

2: Application Layer 43

HTTP response status codes

200 OK

 request succeeded, requested object later in this message

301 Moved Permanently

 requested object moved, new location specified later in this message

(Location:)

400 Bad Request

 request message not understood by server

404 Not Found

 requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

11/16/2015 43CSCI 445 - Fall 2015

2: Application Layer 44

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default HTTP server port) at turing.mathcs.vsu.edu.

Anything typed in sent
to port 80 at turing.mathcs.vsu.edu

telnet turing.mathcs.vsu.edu 80

2. Type in a GET HTTP request:

GET /~hchen/hello.html HTTP/1.1

Host: turing.mathcs.vsu.edu

By typing this in (hit carriage
return twice), you send

this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

11/16/2015 44CSCI 445 - Fall 2015

11/16/2015 45CSCI 445 - Fall 2015

User-server state: cookies

Many major Web sites use
cookies

Four components:

1) cookie header line of
HTTP response message

2) cookie header line in
HTTP request message

3) cookie file kept on user’s
host, managed by user’s
browser

4) back-end database at
Web site

Example:

 Susan always access Internet

always from PC

 visits specific e-commerce

site for first time

 when initial HTTP requests

arrives at site, site creates:

 unique ID

 entry in backend

database for ID

11/16/2015 46CSCI 445 - Fall 2015

Cookies: keeping “state” (cont.)

client
server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg

Amazon server
creates ID

1678 for user

create
entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access

ebay 8734
amazon 1678

backend
database

11/16/2015 47CSCI 445 - Fall 2015

Cookies (continued)
What cookies can bring:

 authorization

 shopping carts

 recommendations

 user session state (Web e-

mail)

Cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name

and e-mail to sites

aside

How to keep “state”:
 protocol endpoints: maintain state

at sender/receiver over multiple
transactions

 cookies: http messages carry state

11/16/2015 48CSCI 445 - Fall 2015

Web caches (proxy server)

 user sets browser: Web

accesses via cache

 browser sends all HTTP

requests to cache

 object in cache: cache

returns object

 else cache requests

object from origin

server, then returns

object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client Origin
server

origin

server

11/16/2015 49CSCI 445 - Fall 2015

More about Web caching

 cache acts as both client

and server

 typically cache is installed

by ISP (university,

company, residential ISP)

Why Web caching?

 reduce response time for

client request

 reduce traffic on an

institution’s access link.

 Internet dense with

caches: enables “poor”

content providers to

effectively deliver content

(but so does P2P file

sharing)

11/16/2015 50CSCI 445 - Fall 2015

Caching example
Assumptions

 average object size = 100,000 bits

 avg. request rate from institution’s

browsers to origin servers = 15/sec

 delay from institutional router to

any origin server and back to router

= 2 sec

Consequences

 utilization on LAN = 15%

 utilization on access link = 100%

 total delay = Internet delay + access

delay + LAN delay

= 2 sec + minutes + milliseconds

origin
servers

public

Internet

institutional

network 10 Mbps LAN

1.5 Mbps

access link

institutional
cache

11/16/2015 51CSCI 445 - Fall 2015

Caching example (cont)
possible solution

 increase bandwidth of access link

to, say, 10 Mbps

consequence

 utilization on LAN = 15%

 utilization on access link = 15%

 Total delay = Internet delay + access

delay + LAN delay

= 2 sec + msecs + msecs

 often a costly upgrade

origin
servers

public

Internet

institutional

network 10 Mbps LAN

10 Mbps

access link

institutional
cache

11/16/2015 52CSCI 445 - Fall 2015

Caching example (cont)

possible solution: install cache
 suppose hit rate is 0.4

consequence
 40% requests will be satisfied

almost immediately

 60% requests satisfied by origin
server

 utilization of access link reduced
to 60%, resulting in negligible
delays (say 10 msec)

 total avg delay = Internet delay
+ access delay + LAN delay =
.6*(2.01) secs + .4*milliseconds
< 1.4 secs

origin
servers

public

Internet

institutional

network 10 Mbps LAN

1.5 Mbps

access link

institutional
cache

11/16/2015 53CSCI 445 - Fall 2015

Conditional GET

 Goal: don’t send object if cache

has up-to-date cached version

 cache: specify date of cached

copy in HTTP request

If-modified-since:

<date>

 server: response contains no

object if cached copy is up-to-

date:

HTTP/1.0 304 Not

Modified

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

11/16/2015 54CSCI 445 - Fall 2015

Electronic Mail

 Message Format

 Message Transfer

 Mail Reader

11/16/2015 55CSCI 445 - Fall 2015

Electronic Mail

 Email is one of the oldest network applications

 It is important

 to distinguish the user interface (i.e., your mail reader) from

the underlying message transfer protocols (such as SMTP

or IMAP), and

 to distinguish between this transfer protocol and a

companion protocol (RFC 822 and MIME) that defines the

format of the messages being exchanged

11/16/2015 56CSCI 445 - Fall 2015

Electronic Mail: Message

Format – Brief Description
 RFC 822: header + body

 ASCII text

 MIME  all sorts of data

 Header

 <CRLF> terminated lines
 To: ….

 From: …

 Body

 MIME
 Header lines

 MIME-Version

 Content-Description: such as Subject: line

 Definitions content types: Can be multipart

 Encoding method: Example: base64

 Header and Body is separated by a blank line

11/16/2015 57CSCI 445 - Fall 2015

An Example of MIME Email

Message

11/16/2015 58CSCI 445 - Fall 2015

M
IM

E
 H

e
a
d
e
r

B
o
d
y

M
IM

E
 H

e
a
d
e
r

Electronic Mail: Message

Transfer
 Message transfer agent (MTA): the mail daemon that uses the Simple Mail Transfer

Protocol (SMTP) running over TCP to transmit the message to a daemon running

on another machine

 MTA at the receiving end puts incoming messages into the user’s mailbox

 Note:

 SMTP has many different implementations

 There may be many MTAs in between

11/16/2015 59CSCI 445 - Fall 2015

Electronic Mail: Mail Reader
 Users use mail readers to actually retrieve messages from mailbox: read, rely, and

save a copy

 Local reader: reside on the machine where the mailbox is.

 Remote reader: access mailbox on a remote machine using other protocol

 Examples: the Post Office Protocol (POP) and the Internet Message Access Protocol (IMAP)

11/16/2015 CSCI 445 - Fall 2015 60

Electronic Mail: IMAP

 IMAP is similar to SMTP in many ways.

 Client/server protocol running over TCP

 client (running on the user’s desktop machine) issues

commands in the form of <CRLF>-terminated ASCII text

lines

 mail server (running on the machine that maintains the

user’s mailbox) responds in-kind.

 Begins with the client authenticating him or herself, and

identifying the mailbox he or she wants to access.

11/16/2015 61CSCI 445 - Fall 2015

Electronic Mail: IMAP

IMAP State Transition Diagram
11/16/2015 62CSCI 445 - Fall 2015

Summary

 Network application architecture
 Peer-to-peer

 Client-server

 Hybrid

 Naming services
 DNS

 The World Wide Web
 HTTP

 E-mail
 SMTP

11/16/2015 63CSCI 445 - Fall 2015

