
End-to-End Protocols:

UDP and TCP

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

10/26/2015 1CSCI 445 – Fall 2015

Acknowledgements

 Some pictures used in this presentation were obtained from the

Internet

 The instructor used the following references

 Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems

Approach, 5th Edition, Elsevier, 2011

 Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-

Hall, 2010

 James F. Kurose and Keith W. Ross, Computer Networking: A Top-

Down Approach, 5th Ed., Addison Wesley, 2009

 Larry L. Peterson’s (http://www.cs.princeton.edu/~llp/) Computer

Networks class web site

10/26/2015 CSCI 445 – Fall 2015 2

Acknowledgements

 Animations in the PDF version of the slides is

produced using

 PPspliT

 http://www.dia.uniroma3.it/~rimondin/downloads.php

10/26/2015 CSCI 445 – Fall 2015 42

http://www.dia.uniroma3.it/~rimondin/downloads.php

Outline

 User Datagram Protocol

 Transmission Control Protocol

10/26/2015 3CSCI 445 – Fall 2015

Network Applications

NetworkNetwork

• Users make use of networks via network applications
at hosts

• A hosts can run many network applications
simultaneously

• Each application is one or more running programs
(processes)

• Q: How processes share the underlying network
layers?

10/26/2015 4CSCI 445 – Fall 2015

Transport Layer Services and

Protocols

 provide logical communication
between application processes
running on different hosts

 transport protocols run in end
systems

 send side
 breaks app messages into

segments, passes to
network layer

 receive side:
 reassembles segments

into messages, passes to
app layer

 more than one transport protocol
available to applications

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

10/26/2015 5CSCI 445 – Fall 2015

Transport vs. Network Layer (1)

 network layer: logical

communication between

hosts

 transport layer: logical

communication between

processes

 relies on, enhances,

network layer services

Household analogy:

12 kids sending letters among

themselves via their parents

 processes = kids

 application messages = letters in

envelopes

 hosts = houses

 transport protocol = Ann and

Bill (parents)

 network-layer protocol = postal

service

10/26/2015 6CSCI 445 – Fall 2015

Transport vs. Network Layer (2)
 Network layer: Underlying best-

effort network

 drop messages

 re-orders messages

 delivers duplicate copies of a
given message

 limits messages to some finite
size

 delivers messages after an
arbitrarily long delay

 Transport Layer: Common end-
to-end services

 guarantee message delivery

 deliver messages in the same
order they are sent

 deliver at most one copy of
each message

 support arbitrarily large
messages

 support synchronization

 allow the receiver to flow
control the sender

 support multiple application
processes on each host

10/26/2015 7CSCI 445 – Fall 2015

Internet Transport-Layer

Protocols

 Reliable, in-order delivery

(TCP)

 congestion control

 flow control

 connection setup

 Unreliable, unordered

delivery: UDP

 no-frills extension of

“best-effort” IP

 Services not available:

 delay guarantees

 bandwidth guarantees

application
transport
network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

network
data link
physical

application
transport
network
data link
physical

10/26/2015 8CSCI 445 – Fall 2015

Multiplexing/Demultiplexing
Host-to-host delivery  process-to-process delivery

10/26/2015 9CSCI 445 – Fall 2015

Multiplexing/Demultiplexing

= process= socket

delivering received segments
to correct socket

Demultiplexing at rcv host:
gathering data from multiple
sockets, enveloping data with

header (later used for
demultiplexing)

Multiplexing at send host:

application

transport

network

link

physical

P1 application

transport

network

link

physical

application

transport

network

link

physical

P2P3 P4P1

host 1 host 2 host 3

Host-to-host delivery  process-to-process delivery

10/26/2015 9CSCI 445 – Fall 2015

Simple Demultiplexer (1)

 Need to know to or from which process the data is

sent or come

 Identify processes on hosts

 How to identify processes on hosts?

 Introduce concept of “port”

 Q: why not to use process id?

10/26/2015 10CSCI 445 – Fall 2015

Processes ID: Windows

Example

10/26/2015 11CSCI 445 – Fall 2015

Processes ID: Linux Example

10/26/2015 12CSCI 445 – Fall 2015

Simple Demultiplexer (2)
 How to identify processes on hosts?

 Q: why not to use process id?

 Introduce concept of “port”

 Endpoints identified by ports

 servers have well-known ports

 see /etc/services on Unix/Linux

 see C:\WINDOWS\system32\drivers\etc\services on MS Windows

Process 8

Host 1

Process 3

Host 2

Process 3 Process 8

10/26/2015 13CSCI 445 – Fall 2015

Simple Demultiplexer: UDP
 Adds multiplexing to Internet Protocol

 Endpoints identified by ports (UDP ports)

 Demultiplex via ports on hosts

 Nothing more is added

 Unreliable and unordered datagram service

 No flow control

 User Datagram Protocol (UDP)

 A process is identified by <host, port>

 Connectionless model

 Header format

 Optional checksum

 psuedo header + UDP header + data

 pseudo header = protocol number + source IP address
and destination IP address + UDP length field

From IP header

From UDP header
10/26/2015 14CSCI 445 – Fall 2015

In-Class Exercise L15-1

 Q1: How many UDP ports are there?

 Q2: How big are UDP headers?

 Q3: How much data does a UDP datagram can carry?

 Turn your work in before you leave!

10/26/2015 15CSCI 445 – Fall 2015

Transmission Control Protocol (TCP)

 Connection-oriented

 Byte-stream

 applications writes bytes

 TCP sends segments

 applications reads bytes

 Full duplex

 Flow control: keep sender from overrunning receiver

 Congestion control: keep sender from overrunning
network

10/26/2015 16CSCI 445 – Fall 2015

Data Link Versus Transport
 Potentially connects many different hosts

 need explicit connection establishment
and termination

 Potentially different RTT

 need adaptive timeout mechanism

 Potentially long delay in network

 need to be prepared for arrival of very old
packets

10/26/2015 17CSCI 445 – Fall 2015

 Potentially different capacity at
destination

 need to accommodate different
node capacity

 Potentially different network
capacity

 need to be prepared for
network congestion

Segment Format (1)

10/26/2015 18CSCI 445 – Fall 2015

Segment Format (2)
 Each connection identified with 4-tuple:

 (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

 Sliding window + flow control

 acknowledgment, SequenceNum, AdvertisedWinow

 Flags

 SYN, FIN, RESET, PUSH, URG, ACK

 Checksum

 pseudo header + TCP header + data

10/26/2015 19CSCI 445 – Fall 2015

Sequence and Acknowledgement

Numbers (1)

 Host A sends a file of 500,000 bytes over a TCP

connection with Maximum Segment Size (MSS) as

1,000 bytes to host B

 How many segments? 500,000/1,000 = 500

 Sequence number assignments

 Sequence number of 1st segment? 0

 Sequence number of 2nd segment? 1,000

 Sequence number of 3rd segment? 2,000

 ……

10/26/2015 20CSCI 445 – Fall 2015

Sequence and Acknowledgement

Numbers (2)
 Scenario 1

 Host B received all bytes numbered 0 to 1,999 from host A

 What would host B put in the acknowledgement number field of the segment it sends
to A?
 2,000: the sequence number of the next byte host B is expecting

 Scenario 2

 Host B received two segments containing bytes from 0-999, and 2,000-2,999,
respectively?

 What would host B put in the acknowledgement number field of the segment it sends
to A?
 1000: TCP only acknowledges bytes up to the first missing byte in the stream, and it is the

next byte host B is expecting

 Scenario 3

 Host B received 1st segment containing bytes from 0-999. Somehow, next it received
3rd segment containing bytes from 2,000-2,999.

 What does host B in this case that the segments arrive out of order?
 TCP does not specify how to deal with this situation. Hence, it is up to the implementation.

 Option 1: Host B immediately discards out-of-order segment  simple receiver design

 Option 2: Host B keeps the out-of-order segment and waits for missing bytes to fill in the gaps  more
efficient on bandwidth utilization  taken in practice

10/26/2015 21CSCI 445 – Fall 2015

TCP is Connection-Oriented

 Keep track of states of receiver and sender

 Connection Establishment

 Connection Termination

 TCP finite state machine and state transition

10/26/2015 22CSCI 445 – Fall 2015

Connection Establishment

10/26/2015 23CSCI 445 – Fall 2015

Connection Termination

client server

close

close

closed

ti
m

e
d
 w

ai
t

10/26/2015 24CSCI 445 – Fall 2015

State Transition Diagram

Same State

10/26/2015 25CSCI 445 – Fall 2015

Connection Establishment and State Transition

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

client
10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client
10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server
10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server
10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server

closed

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server

closed
Action: passive open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive openAction: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client

closed

server

listen
Action: passive openAction: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

listen
Action: passive open

SYN_SENT

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

listen
Action: passive open

SYN_SENT

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_SENT

SYN_RECV

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

SYN_RECV

Established

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

client

Connection Establishment and State Transition

server

client server

Established

Established

Action: active open

10/26/2015 CSCI 445 – Fall 2015 26

Connection Termination and State Transition

(1) server

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State Transition

(1) server

close

close

closed

client

ti
m

e
d
 w

ai
t

Client closes
first

10/26/2015 CSCI 445 – Fall 2015 27

Connection Termination and State

Transition (2)

 This side closes first

 ESTABLISHED  FIN_WAIT_1  FIN_WAIT_2 

TIME_WAIT

 Other side closes first

 ESTABLISHED  CLOSE_WAIT  LAST_ACK 

CLOSED

 Both sides close at the same time

 ESTABLISHED  FIN_WAIT_1  CLOSING 

TIME_WAIT  CLOSED

10/26/2015 28CSCI 445 – Fall 2015

TCP Sliding Window: Why Different?
 Potentially connects many different hosts

 need explicit connection establishment
and termination

 Potentially different RTT

 need adaptive timeout mechanism

 Potentially long delay in network

 need to be prepared for arrival of very old
packets

10/26/2015 29CSCI 445 – Fall 2015

 Potentially different capacity at destination
 need to accommodate different node

capacity

 Potentially different network capacity
 need to be prepared for network congestion

TCP Sliding Window: Reliable and

Ordered Delivery

 Sending side

 LastByteAcked LastByteSent

 LastByteSent  LastByteWritten

 buffer bytes between LastByteAcked and
LastByteWritten

Receiving side
LastByteRead < NextByteExpected

NextByteExpected  LastByteRcvd +1
buffer bytes betweenNextByteRead and

LastByteRcvd

TCP uses cumulative acknowledgements to acknowledge receiving of
all the bytes up to the first missing byte

10/26/2015 30CSCI 445 – Fall 2015

TCP Flow Control (1)
 receive side of TCP connection has

a receive buffer

 app process may be slow at reading
from buffer

 speed-matching service: matching
the send rate to the receiving app’s
drain rate

sender won’t overflow
receiver’s buffer by

transmitting too much,
too fast

flow control

10/26/2015 31CSCI 445 – Fall 2015

TCP Flow Control (2)
 Send buffer size: MaxSendBuffer

 Receive buffer size: MaxRcvBuffer

 Receiving side

 LastByteRcvd - LastByteRead  MaxRcvBuffer

 AdvertisedWindow = MaxRcvBuffer – ((NextByteExpected -1) -
LastByteRead))  maximum possible free space remaining in the buffer

 Sending side

 LastByteSent - LastByteAcked  AdvertisedWindow
 LastByteSent – LastByteAcked: unacknowledged bytes sender has put in TCP

 Otherwise, the sender may overrun the receiver

 EffectiveWindow = AdvertisedWindow - (LastByteSent -LastByteAcked)
 how much data it can sent

 LastByteWritten - LastByteAcked  MaxSendBuffer

 If the sender tries to write y bytes to TCP
 block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer

 Always send ACK in response to arriving data segment

 Persist when AdvertisedWindow = 0

10/26/2015 32CSCI 445 – Fall 2015

Flow Control and Buffering (3)

Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis (…)
indicates a lost TCP segment

10/26/2015 33CSCI 445 – Fall 2015

Adaptive Retransmission: Original

Algorithm

 Measure SampleRTT for each segment/ACK pair

 Compute weighted average of RTT

 EstimatedRTT = α x EstimatedRTT + β x SampleRTT

 where α + β = 1

 α between 0.8 and 0.9

 β between 0.1 and 0.2

 Set timeout based on EstimatedRTT

 TimeOut = 2 x EstimatedRTT

10/26/2015 34CSCI 445 – Fall 2015

Example RTT estimation:

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

100

150

200

250

300

350

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

R
T

T
 (

m
il

li
se

co
n

d
s)

SampleRTT Estimated RTT

10/26/2015 35CSCI 445 – Fall 2015

Adaptive Retransmission:

Karn/Partridge Algorithm

 Do not sample RTT when retransmitting

 Double timeout after each retransmission
 Congestion is the most likely cause of lost segments  TCP should not react too aggressively

to a timeout

Problem with original algorithm
ACK does not really acknowledge a transmission, it acknowledges the receipt of
data  can not distinguish an ACK is for which transmission/retransmission of a

segment

10/26/2015 36CSCI 445 – Fall 2015

Jacobson/ Karels Algorithm
 Previous approaches did not take the variance of the sample RTT into account

 If no variance, Estimated RTT is good enough, 2  Estimated RTT is too
pessimistic

 If variance large, timeout value should not be too dependent on Estimated RTT

 New Calculations for average RTT

 Difference = SampleRTT – EstimtaedRTT

 EstimatedRTT = EstimatedRTT + (δ x Difference)

 Deviation = Deviation + δ(|Difference| - Deviation)

 where δ is a factor between 0 and 1

 Consider variance when setting timeout value

 TimeOut = μ x EstimatedRTT + φ x Deviation

 where μ = 1 and φ = 4

 Notes

 algorithm only as good as granularity of clock (500ms on Unix)

 accurate timeout mechanism important to congestion control

10/26/2015 37CSCI 445 – Fall 2015

TCP: Sequence Number Wrap

Around

10/26/2015 38CSCI 445 – Fall 2015

TCP: Can Keep Pipe Full?

10/26/2015 39CSCI 445 – Fall 2015

Solution: TCP Extensions
 Implemented as header options

 Store timestamp in outgoing
segments  measure RTT

 Extend sequence space with 32-bit
timestamp  protected against
sequence number wrap-around

 Shift (scale) advertised window 
keep the pipe full

 Selective acknowledgement
(SAC)  acknowledge any
additional (out-of-order) blocks of
received data

TCP Extensions for High Performance
http://tools.ietf.org/html/rfc1323

10/26/2015 40CSCI 445 – Fall 2015

http://tools.ietf.org/html/rfc1323

Summary
 User Datagram Protocol

 Multiplexer/Demultiplexer for IP

 Transmission Control Protocol
 Reliable Byte Stream

 Connection-oriented
 Connection establishment

 Connection termination

 Automatics Repeated-Request: ACKs and NACKs

 Flow-control

 Timeout value estimation

 Extensions

 Congestion control (future discussions)

10/26/2015 41CSCI 445 – Fall 2015

