End-to-End Protocols:
UDP and TCP

Hui Chen, Ph.D.
Dept. of Engineering & Computer Science

Virginia State University
Petersburg, VA 23806

10/26/2015 CSCI 445 - Fall 2015 1

Acknowledgements

O Some pictures used in this presentation were obtained from the
Internet

O The instructor used the following references

Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems
Approach, 5th Edition, Elsevier, 2011

Andrew S. Tanenbaum, Computer Networks, Sth Edition, Prentice-
Hall, 2010

James F. Kurose and Keith W. Ross, Computer Networking: A Top-
Down Approach, 5th Ed., Addison Wesley, 2009

Larry L. Peterson’s (http://www.cs.princeton.edu/~1lp/) Computer
Networks class web site

10/26/2015 CSCI 445 - Fall 2015 2

Acknowledgements

O Animations in the PDF version of the slides is
produced using
PPspliT

http://www.dia.uniroma3.it/~rimondin/downloads.php

10/26/2015 CSCI 445 - Fall 2015

42

http://www.dia.uniroma3.it/~rimondin/downloads.php

Outline

O User Datagram Protocol

O Transmission Control Protocol

10/26/2015 CSCI 445 - Fall 2015

Network Applications

10/26/2015 CSCI 445 - Fall 2015 4

Transport Layer Services and

Protocols

O provide logical communication
between application processes
running on different hosts

O transport protocols run in end
systems

send side

o breaks app messages into
segments, passes to
network layer

receive side:

O reassembles segments
into messages, passes to
app layer

O more than one transport protocol
available to applications

Internet: TCP and UDP

application
trans-ort

10/26/2015 CSCI 445 - Fall 2015

| dWication

transport

Transport vs. Network Layer (1)

O network layer: logical
communication between
hosts

O fransport layer: logical
communication between
processes

relies on, enhances,
network layer services

10/26/2015

Household analogy:

12 kids sending letters among

O
O

themselves via their parents
processes = kids

application messages = letters in
envelopes

hosts = houses

transport protocol = Ann and
Bill (parents)

network-layer protocol = postal
service

CSCI 445 - Fall 2015

Transport vs. Network Layer (2)

O Network layer: Underlying best- O Transport Layer: Common end-
effort network to-end services

drop messages guarantee message delivery
re-orders messages deliver messages in the same
delivers duplicate copies of a order they are sent
given message deliver at most one copy of
limits messages to some finite each message
size support arbitrarily large
delivers messages after an messages
arbitrarily long delay support synchronization

allow the receiver to flow
control the sender

support multiple application
processes on each host

10/26/2015 CSCI 445 - Fall 2015

Internet Transport-Layer
Protocols

O Reliable, in-order delivery

application
(TCP) anspo @M
networ
. data link
congestion control [physical -
d 'o
— work
flow control phy SR (- etwork
. ~Rhysical
connection setup ’
@? Q
O Unreliable, unordered & B _A
. data link
delivery: UDP physical |82
. . data link¥e
no-frills extension of] Physica
neTwork
“best-effort” 1P data link St on
physical I network ansbo
. . . data link etwo
O Services not available: L [ovecd e
‘ ﬁ physical

delay guarantees @ & c@ @
bandwidth guarantees

10/26/2015 CSCI 445 - Fall 2015 8

Multiplexing/Demultiplexing

Host-to-host delivery €= process-to-process delivery

10/26/2015 CSCI 445 - Fall 2015

Multiplexing/Demultiplexing

Host-to-host delivery €= process-to-process delivery

Demultiplexing at rcv host: — — Multiplexing at send host: _
delivering received segments gathering data from multiple
to correct socket sockets, enveloping data with
header (later used for
demultiplexin
[=socket (D =process emultiplexing)
applica application application
S
I
transport "Famsl‘pﬁ:r transport
network ne vl/ork network
link link link
physical physical physical
host 1 host 2 host 3

10/26/2015 CSCI 445 - Fall 2015 9

Simple Demultiplexer (1)

O Need to know to or from which process the data 1s
sent or come

Identify processes on hosts

O How to identify processes on hosts?
Introduce concept of “port”

Q: why not to use process id?

10/26/2015 CSCI 445 - Fall 2015

10

Processes ID: Windows

10/26/2015

File ©Options iew Help
#pplications | Processes | Performance | Metworking
Image Mame PID User Mame CPU Mem Usage | #
POWERPMNT . EXE 6104 hchen oo 19,160 K
pukty, exe 5944 hchen Qo 3,140 K
MSTORDE.EXE 5584 hchen oa 10,552 K
vk, exe 5516 hchen an 2,308 K
¥ ahooMessenger, exe 5132 hchen aa 28,152 K
pukky, exe 5020 hchen oo 2,954 K
searchprotocolhost, exe 4596 SYSTEM an 5,305 K
QUTLOOK, EXE 4645 hchen o 24,916 K
kaskmgr.exe 4540 hchen 01 3,316 K
agentsyr exe 4492 hchen oo TA0 K
WINWORD EXE 4400 hchen oo 45,056 K
acrobat,exe 4308 hchen aa 7,460 K
sh.exe 4192 hchen oo 2,828 K
WindowsSearch.exe 3968 hchen an 10,924 K,
rapimgr . exe 3872 hchen aa f,096 K
searchfilterhost, exe 3864 LOCAL SERVICE oo 4,908 K
GizmoS.exe 3840 hchen i 22,795 K
iexplore. exe 3616 hchen an 3,904 K
swrhnsk.eve A5A4 SWSTFM M 4. 75A K !
[End Process
Processes: A4 CPL Usage: 14% Commit Charge: 1292/ | 3938M

CSCI 445 - Fall 2015

11

Processes |ID: Linux Example

' hchen@turing: -

[hechenfturing ~]1§ ps ax
FID TTY STAT TIME COMMAND

S5 102 init [5]

S 100 [mwigrationsO]
=11 100 [ksoftirgds/ O]
S 100 [watchdogd O]
S« :00 [migrationd1]
=) :00 [ksoftirgds 1]
< 100 [watchdoogs 1]
84 100 [wigrationdz]
=l 1) :00 [ksoftirgdsz]
g 100 [watchdoogl 2]
i 00 [mwigrationd3]
=) :00 [ksoftirgds 3]
g 100 [watchdoogl 3]
=T 00 [wigrationdd]
ol 100 [ksoftirogds 4]
S« 100 [watchdogd 4]
S :00 [mwigrationds]
ol 100 [ksoftirgds 5]
i 100 [watchdogd 5]
S 00 [migrationd&]
ol 100 [ksoftirgds a]
=T :00 [watchdogd a]

10/26/2015 CSCI 445 - Fall 2015

L R B O) (RS = L AU

L A e e el e el =
= O Wwom-1onn b wkbh e O

?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?

oo oooo oo ooooo0oo0oo0ooooda

]
]

Simple Demultiplexer (2)

O How to identify processes on hosts?

O: why not to use process id?

Introduce concept of “port™

o Endpoints identified by ports

o servers have well-known ports

o see /etc/services on Unix/Linux
o see C:\WINDOWS\system32\drivers\etc\services on MS Windows

Process 8 | *

Process 3

10/26/2015

CSCI 445 - Fall 2015

._|._.Process 3

Process 8

Host 2

13

Simple Demultiplexer: UDP

O Adds multiplexing to Internet Protocol 0 16 31
Endpoints identified by ports (UDP ports) SroPort DstPort
Demultiplex via ports on hosts Length Checksum
Nothing more is added Data

o Unreliable and unordered datagram service W

o No flow control
User Datagram Protocol (UDP)
o A process is identified by <host, port>
o Connectionless model
O Header format
Optional checksum
o psuedo header + UDP header + data

o pseudo header = protocol number + source IP address—— From IP header
and destination I[P address + UDP length field

— From UDP header
10/26/2015 CSCI 445 - Fall 2015 14

In-Class Exercise L15-1

O

10/26/2015

0 16 31
SrcPort DstPort
Length Checksum
Data
o~
A A T]

Q1: How many UDP ports are there?

Q2: How big are UDP headers?
Q3: How much data does a UDP datagram can carry?

Turn your work in before you leave!

CSCI 445 - Fall 2015

15

Transmission Control Protocol (TCP)

O Connection-oriented

O Byte-stream
applications writes bytes
TCP sends segments
applications reads bytes

O Full duplex
O Flow control: keep sender from overrunning receiver

O Congestion control: keep sender from overrunning
network

10/26/2015 CSCI 445 - Fall 2015

16

Data Link Versus Transport

O Potentially connects many different hosts O Potentially different capacity at
need explicit connection establishment destination
and termination O need to accommodate different
O Potentially different RTT node capacity
need adaptive timeout mechanism O Potentially different network
O Potentially long delay in network capacity
need to be prepared for arrival of very old H need to be prepared for
packets network congestion
@pﬁcaﬁnn prn% @i;]icatjnn pmc@
= B Tt
L1 Write] Read
: bytes . bytes
-]
TCP TCTP
| Receive buffer|

[Segment | | Segment | --- [Segment |

']

Transmit segments

10/26/2015 CSCI 445 - Fall 2015

17

Segment Format (1)

10/26/2015

0 4

10 16

31

SrcPort

DstPort

SequenceNum

Acknowledgment

HdrLen

0

Flags AdvertisedWindow

Checksum

UrgPtr

Options (variable)

Data

W/\/\/\//\/\/\/1

CSCI 445 - Fall 2015

18

Segment Format (2)

O

O

10/26/2015

Each connection identified with 4-tuple:
(SrcPort, SrcIPAddr, DsrPort, DstIPAddr)
Sliding window + flow control
acknowledgment, SequenceNum, AdvertisedWinow
Flags
SYN, FIN, RESET, PUSH, URG, ACK
Checksum
pseudo header + TCP header + data

Data (SequenceNum)

/ T
Sender Receiver

~ -

Acknowledgment +
AdvertisedWindow

CSCI 445 - Fall 2015

19

Sequence and Acknowledgement
Numbers (1)

O Host A sends a file of 500,000 bytes over a TCP
connection with Maximum Segment Size (MSS) as
1,000 bytes to host B

How many segments? 500,000/1,000 = 500

Sequence number assignments

o Sequence number of 1% segment? 0
o Sequence number of 27 segment? 1,000
o Sequence number of 3™ segment? 2,000

10/26/2015 CSCI 445 - Fall 2015 20

Sequence and Acknowledgement
Numbers (2)

O Scenario 1
Host B received all bytes numbered 0 to 1,999 from host A
WIE(‘; would host B put in the acknowledgement number field of the segment i1t sends
to A
o 2,000: the sequence number of the next byte host B is expecting
O Scenario 2
Host B received two segments containing bytes from 0-999, and 2,000-2,999,
respectively?
Wlxt(; would host B put in the acknowledgement number field of the segment it sends
to A

o 1000: TCP only acknowledges bytes up to the first missing byte in the stream, and it is the
next byte host B is expecting

O Scenario 3

Host B received 1%t segment containing bytes from 0-999. Somehow, next it received
31 segment containing bytes from 2,000-2,999.

What does host B in this case that the segments arrive out of order?

o TCP does not specify how to deal with this situation. Hence, it is up to the implementation.
= Option 1: Host B immediately discards out-of-order segment = simple receiver design

= Option 2: Host B keeps the out-of-order segment and waits for missing bytes to fill in the gaps = more
efficient on bandwidth utilization > taken in practice
10/26/2015 CSCI 445 - Fall 2015 21

TCP is Connection-Oriented

O Keep track of states of receiver and sender
Connection Establishment
Connection Termination

TCP finite state machine and state transition

10/26/2015 CSCI 445 - Fall 2015

22

Connection Establishment

Active participant Passive participant
(client) (server)

10/26/2015 CSCI 445 - Fall 2015 23

Connection Termination

@ client server@

close

M‘

CcK
/ close
/
K

d wait

2 time

close

10/26/2015 CSCI 445 - Fall 2015

-
-
-~
-~o

CLOSED | \‘\\
B Active open/5YN \\
Passive open Close \\
Close \
L \
\
LISTEN Y
1 \ , \
| | Same Stat
\
SYN/ISYN + ACK Qnmﬁ‘m '| : ame \ ate
T SYN/SYN + ACK ™ - '
SYN_RCVD |= * SYN_SENT \
—— i \
ACK \ ﬁ;‘m + ACK/ACK !
\
i f \
L | \|
Close/FIN FSTABLISHED ‘.
T :
1
1 Cn’osefFI_'[‘f__/ \p_xrqmck ,‘
FIN_WAIT_1 [~ . T | CLOSE_WAIT :
., FINJACK 1
ACK f{;F Close/FIN ,
L i . ¥ i ,I
/
FIN_WAIT_2 CLOSING LAST_ACK g
| Ack Timeout after two ACK /'/
\) Y segment lifetimes v ’
__ FIN/ACK _ K
- = TIME_WAIT =~ CLOSED /
10/26/2015 CSCI445=Falt2015 - /25

Connection Establishment and State Transition

10/26/2015 CSCI 445 - Fall 2015

26

Connection Establishment and State Transition

10/26/2015 CSCI 445 - Fall 2015

26

Connection Establishment and State Transition

CLOSED - =
- Active open/SYN
Passive open Close
Close
LISTEN
\
II
I| |
SYN/SYN =+ ;y enfﬂSYh | |
SYMN/SYN + ACK -
SYN_RCVD : SYN_SENT

ﬂw + ACK/ACK

10/26/2015

Close/FIN ESTABLISHED

CiCI 445 - Fall 2015

clien

26

Connection Establishment and State Transition

CLOSED |

Active open/SYN
Passive open Close

Close

LISTEN

| II

| i

SYN/SYN =+ ;y enfﬂSYh '| |
SYN/SYN + ACK

= SYN_SENT

ﬂw + ACK/ACK
10/26/2015 CSCI 445 - Fall 2015
Closa/FIN ESTABLISHED CI Ien

SYN_RCVD

Connection Establishment and State Transition

CLOSED |~ CLOSED | ———
e A i] T Active open/SYN
Fassive open Close Passive open Close
Close Close
LISTEN LISTEN
1 \ | — \
| | \ \ | |
I| | || I
SYN/SYN + fy Qnms*m | ' SYN/SYN + y anﬂs‘m | |
T SYNISYN + ACK ™ - R T— GYNSYN+ ACE——
SYN_RCVD |2 — e SYN_SENT SYN_RCVD |2 — SYNSYN+ ACR SYN_SENT
ACK \ ﬂYN + ACK/ACK ACK \ ﬁ.‘m + ACK/ACK
| | ! |
10/26/2015 L. - _CSCI 445 - Fall 2p15 vy
Close/FIN ESTABLISHED CI ien

Close/FIN

ESTABLISHED

server

Connection Establishment and State Transition

SYN_RCVD

10/26/2015
Close/FIN

Passive open

Active open/SYN

CLOSED [

Close

Passive open
LISTEN

Active open/SYN
Close

Close
LISTEN
o I'|| I'|
SYM/SYM + ACK Send/SYMN
- N SYMNSYN + ACK —

] | \ \
\ \ |
II |
SYN/SYN + y anﬂs‘m
— — SYN_SENT SYN_RCVD - —_— SYN/SYN + ACK —
ACK \ ﬂw + ACK/ACK
! |
L]

L

— — SYN_SENT
ACK \ ﬁ.‘m + ACK/ACK
1 |
= CSCI 445 - Fall 2p15 LI
ESTABLISHED CI ien

Close/FIN

ESTABLISHED

server

Connection Establishment and State Transition

Active open/SYN
Passive open

Close

LISTEN

Passive open

Close
LISTEN
o I'|| I'|
SYMN/SYN + ACK SendSYN
I SYMNSYN + ACK —
SYN_RCVD [2 !

— \ .
\ i |
II |
SYN/SYN + y anﬂs‘m
— — SY:‘I_SENT SYN_RCVD - —_— SYN/SYN + ACK —
ACK \ ﬂw + ACK/ACK
! |
L]

Active open/SYN

L

10/26/2015
Close/FIN

ESTABLISHED

— - SYN_SENT
ACK \ ﬁ.‘m + ACK/ACK
1 |
= CSCI 445 - Fall 2p15 LI
clien

Close/FIN

ESTABLISHED

server

Connection Establishment and State Transition

............... Action: passive open

Active open/SYN Active open/SYN

Passive open Passi |
assive open

Close

Close
LISTEN L]STE\
|
1] II| i
II| II II II
SYMN/SYN + ACK endﬁSYh | L] SYM/ASYN + ACK Bnl.‘i-"s‘r'h I| '
SYN/SYN + ACK ~ - —
SYN_RCVD * SYN_SENT SYN_RCVD SYNSYN + ACK = SYN_SENT

ﬂw + ACK/ACK ﬁw + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15
Lot ESTABLISHED clien Closa/FIN ESTABLISHED se rv&r

Connection Establishment and State Transition

............... Action: passive open
listen

CLOSED - =
Active open/SYN i B

Active open/SYN

Passive open . |
Passive open
Close

Close
LISTEN
'|| | \
II| II III |
SYMNMAYN + ACK en-.‘i-"SYh | ' SYN/SYN + ACK Send5YN || '
SYN/SYN + ACK - — — SYNSYN + ACK —

SYN_RCVD SYN_SENT SYN_RCVD SYN_SENT

ﬂY\T + ACK/ACK ACK \ ﬁ.w + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15
Close/FIN ESTABLISHED clien Close/FIN ESTABLISHED Se rv&r

Connection Establishment and State Transition

ion: active open— o L Action: passive open
listen

CLOSED - =
Active open/SYN i B

Active open/SYN

Passive open . |
Passive open
Close

Close
LISTEN
'|| \
II| '| ||| I
SYN/SYN =+ fy endas*fh | v, SYN/SYN + ACK SendSYN II !
SYN_RCVD STV R = SYN_SENT SYN_RCVD = — SYN/SYN + ACK E— SYN _SENT

ﬂY\T + ACK/ACK ACK \ ﬁ.w + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15
Close/FIN ESTABLISHED clien Close/FIN ESTABLISHED Se rv&r

Connection Establishment and State Transition

ion: activeopen—""""1 ... b Action: passive open

SY, .
\N%hsten
=X

CLOSED - =
Active open/SYN i B

Active open/SYN

Passive open .
P Passive open |

Close Close
LISTEN
'|I \
II| '| ||| Ill
SYN/SYN =+ fy endas*fh | v, SYN/SYN + ACK SendSYN II !
SYN_RCVD SYRSYN + ACK = SYN_SENT SYNRCVD |3 SYNSYN+ AT~ l" o ey

ﬂY\T + ACK/ACK ACK \ ﬁ.w + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15
Close/FIN ESTABLISHED clien Close/FIN ESTABLISHED Se rv&r

Connection Establishment and State Transition

ion: activeopen——""""""1 ... = fe Action: passive open

SYN :
SYN_SENT\W“Sten
=X

e y

CLOSED

CLOSED =
Active open/SYN i I

Active open/SYN

Passive open Close . I
Passive open
Close Close

LISTEN

| I|
SYN/SYN + AC K(1 P endeYh _ SYNBYN+ACK Send/SYN '| !
S ANSYN +« ACK — — SYMN/SYN + ACK
SYN_RCVD |2 — SYN_RCVD u SYN_SENT
AC sw + ACK/AC ACK \ ﬁ.w + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15 é
CloselFIN ESTABLISHED clien Close/FIN ESTABLISHED Server

Connection Establishment and State Transition

ion: activeopen——""""""1 ... = fe Action: passive open

SYN :
SYN_SENT\W“Sten
=X

e y

CLOSED

CLOSED =
Active open/SYN i I

Active open/SYN

Passive open Close . I
Passive open
Close Close

LISTEN

| I|
SYN/SYN + AC K(1 P endeYh _ SYNBYN+ACK Send/SYN '| !
S ANSYN +« ACK — SYMN/SYN + ACK
SYN_RCVD |2 — SYN_RCVIT = u SYN_SENT
AC sw + ACK/AC ACK \ ﬁ.w + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15 é
CloselFIN ESTABLISHED clien Close/FIN ESTABLISHED Server

Connection Establishment and State Transition

SYN
S
-II- e UenCeNum
=X

ion: active open
SYN_SEN

CLOSED :_E"'L
B Active open/SYN
Passive open Close
Close
LISTEN

|
|
SYN/SYN =+ ;y enfﬂSYh
SYN/SYN + ACK

| I|

| |

'ﬁYh+555f“/ \\HH:TdﬁYh | |
SYN/SYN + ACK

SYN_RECV

CLOSED

Active open/SYN
Passive open Close

Close

LISTE\

SYN_RCVD SYN_SENT
ﬂw + ACK/A \ ﬁw + ACK/ACK
10/26/2015 - CSCI 445 - Fall 2p15
CloselFIN ESTABLISHED clien Close/FIN ESTABLISHED se rv&r

Connection Establishment and State Transition

ion: active open-—

SYN
SYN_SENf\\\“éﬁﬂﬁﬂﬁﬂﬂl:\»
— X
SYN_RECV

CLOSED | = ™ E— S
-~ CLOSED | ~
_ Active open/SYN B Active open/SYN
Passive open Close Passive open Close
Close
Close
LISTEN LISTEN

SYN/SYN =+ ;y enfﬂSYh
SYN/SYN + ACK PR

\ ﬁ.‘r\n ACK/ACK
10/26/2015 = CSCI 445 - Fall 2p15

Close/FIN ESTABLISHED clien CloselFIN ESTABLISHED server

SYN_RCVD

SYN_SENT

Connection Establishment and State Transition

ion: active open-—

SYN
SYN_SENf\\\“éﬁﬂﬁﬂﬁﬂﬂl:\»
— X
SYN_RECV

CLOSED | = ™ E— S
-~ CLOSED | ~
_ Active open/SYN B Active open/SYN
Passive open Close Passive open Close
Close
Close
LISTEN LISTEN

SYN/SYN + fy QH%YN
SYN/SYN + ACK oy
\ SYN + ACKIAC \ ﬁ.w + ACK/ACK
1
T

10/26/2015 - CSCI 445 - Fall 2p15
Close/FIN ESTABLISHED clien Close/FIN ESTABLISHED Se rv&r

SYN_RCVD

SYN_SENT

..ar

Connection Establishment and State Transition

ion: active open

Establishe

CLOSED

Passive open Close

Close

LISTEN

] I
SYN/SYN + fy Qnms‘m
. SYN/SYN + ACK ™

Active open/SYN

| v,

-

SYN_RCVD

L
SYN_SENT

SYN + ACKIACK

ACK \

10/26/2015
Close/FIN

clie

CSCI 445 - Fall 2p15
n Close/FIN

SYN_RECV

CLOSED

Passive open

Close

) \ ||
| [
|

T - Qﬁdﬁ‘fh{ | I\
— SYNSYN + ACK —7—u

Active open/SYN

Close

AC \

vy

ﬁﬁm + ACK/ACK

ESTABLISHED

SYN_SENT

server

Connection Establishment and State Transition

ion: active open

Establishe

CLOSED

Passive open Close

Close

LISTEN

] I
SYN/SYN + fy Qnms‘m
. SYN/SYN + ACK ™

Active open/SYN

| v,

-

SYN_RCVD

L
SYN_SENT

SYN + ACKIACK

ACK \

10/26/2015
Close/FIN

clie

CSCI 445 - Fall 2p15
n Close/FIN

SYN_RECV

CLOSED

Passive open

Close

) \ ||
| [
|

T - Qﬁdﬁ‘fh{ | I\
— SYNSYN + ACK —7—u

Active open/SYN

Close

AC \

vy

ﬁﬁm + ACK/ACK

ESTABLISHED

SYN_SENT

server

Connection Establishment and State Transition

ion: active open

Establishe

CLOSED

Passive open Close

Close

LISTEN

] I
SYN/SYN + fy Qnms‘m
" SYN/SYN + ACK ™ _

Active open/SYN

| v,

-

L
SYN_SENT

SYN + ACKIACK

SYN_RCVD |2 —
ACK \

10/26/2015 - CSCI 445 - Fall 2p15
Close/FIN CI ien Close/FIN

SYN_RECV

CLOSED

Active open/SYN
Passive open Close
Close
L]STE\
. \
|I|I |II
ACK \nn‘,’s‘r’h | |
SYN/SYN
A SYN_SENT
ACK R ﬁ. N + ACK/ACK
! |
\’l L)
]-',S'I'EBI ISHED se rv& r

Connection Establishment and State Transition

ion: active open

Establishe

CLOSED

Passive open Close

Close

LISTEN

] I
SYN/SYN + fy Qnms‘m
. SYN/SYN + ACK ™

Active open/SYN

| v,

-

SYN_RCVD

L
SYN_SENT

SYN + ACKIACK

ACK \

10/26/2015
Close/FIN

clie

CSCI 445 -

CLOSED

Passive open Close

IiISTE}-'
L I

i \ lI
| |
SYN/SYN + ili/ anﬂs‘m '| '
P = P — SYN/SYN + ACK ———
SYN_RCVIT [Fm———— i

Established

Active open/SYN

Close

Fall 2015
Close/FIN

SYN + ACK/ACK

SYN_SENT

server

Connection Termination and State Transition

(1) @ client server@

 a
o
=
O
£
Client closes +
first flesed
ClosalFIN ESTABLISHED ClosalFIN ESTABLISHED
— —
f f
L CFosefFI_T‘_C/ \ENMCK L cmseﬂ"-l_rg/ \ENMCK
FIN_WAIT_1 [~ . T | CLOSE_WAIT FIN_WAIT_1 [~ . T | CLOSE_WAIT
-, FINJACK -, FINJACK
ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
L “.-{} ! J L “.-{} ! J
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LAST_ACK
r r
|I R ACK Timeout a;f:er_:wo ACK |I T ACK Timeout aftﬁ'r_two ACK
@/Zﬁl@Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127
— - » TIMF_WAIT = CLOSED — - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1)

L

client

SCF‘VCF‘@

 a
o
=
O
£
Client closes +
firs osed
Close/FIN Close/FIN ESTABLISHED
—
f
L Cmseﬂ"-l_rg_/ FIN/ACK L cmseﬂ"-l_rg/ \ENMCK
FIN_WAIT_1 [~ . T | CLOSE_WAIT FIN_WAIT_1 [~ . T | CLOSE_WAIT
-, FINJACK -, FINJACK
ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
L “.-{} ! J L “.-{} ! J
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LAST_ACK
| 4 Ack Timeout after two ACK | 4 Ack Timeout after two ACK
I@/Zﬁ;@ﬁ?(lﬁ r segment lifetimes 'Q(LI 45 - Fall '20\15 EINVACK r segment lifetimes ,_‘27'
— - » TIMF_WAIT = CLOSED — - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1)

@ client server@
 a
o
=
O
£
Client closes +
firs osed
Close/FIN Close/FIN
L C{oseﬂ“-l_rg/ FIN/ACK L cmseﬂ“-l_rg_/ FIN/ACK
FIN_WAIT_1 [T | CLOSE_WAIT FIN_WAIT_1 [T | CLOSE_WAIT
-, FINJACK -, FINJACK
ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
L S ! J 1 L ! J
.y .y
FIN_WAIT_2 ’4;:? CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
r r
|I R ACK Timeout a;f:er_:wo ACK |I T ACK Timeout aftﬁ'r_two ACK
@/ZQA%Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127
— - » TIMF_WAIT = CLOSED — - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close
 a
o
=
O
£
Client closes +
firs osed
Close/FIN Close/FIN
1
L Close/FIN FIN/ACK L cmsefl“-l_rg_/ FIN/ACK
FIN_WAIT_t¢¥==-=-- == T | CLOSE_WAIT FIN_WAIT_1 [~ . T | CLOSE_WAIT
., FINJACK ., FINJACK
ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
L “.-{} ! J L “.-{} ! J
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LAST_ACK
e e
|I ACK Timeout a;f:er_:wo ACK |I T ACK Timeout aftﬁ'r_two ACK
@/ZQA%Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127
— - » TIMF_WAIT = CLOSED — - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1)

@ client server@
close
FIN
 a
o
=
O
£
Client closes +
firs osed
Close/FIN Close/FIN
L Close/FIN FIN/ACK L cmseﬂ“-l_rg_/ FIN/ACK
FIN_WAIT_M{=====-----"" T | CLOSE_WAIT FIN_WAIT_1 [T | CLOSE_WAIT
FINJACK -, FINJACK
ACK 0, Close/FIN ACK f{;-f. Close/FIN
L “.4" ! J L “.4" ! J
FIN_WAIT_2 ’4;:? CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
r r
|I ACK Timeout a;f:er_:wo ACK |I T ACK Timeout aftﬁ'r_two ACK
@/ZQA%Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127
— - » TIMF_WAIT = CLOSED — - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close
FIN
+
o
=
o)
£
Client closes +
first closed
Closa/FTN ESTABLISHED Closa/FTN
—
|ll
Cn’csefFI_T‘_L/,’ \p_rrmm(1 cmsem_rg_/ FIN/ACK
- - | CLOSE_WAIT FIN_WAIT_1 [- | CLOSE_WAIT
p FINJACK . FINJACK
"Qf_ Close/FIN ACK "Qf_ Close/FIN
“.4" ! J L “.4" ! J
FIN_WAIT_2 ’4;:? CLOSING LAST ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
e e
| L Jack Tmeoutattortwo — JACK | L Jack Tmeoutattortwo | ACK
\10/28420¢R il SC1445 - Fall 2015 ppyiack gme 2/
— = TIMFE_WAIT - CLOSED — = TIMFE_WAIT - CLOSED

Connection Termination and State Transition

(1) @ client server@

FIN

timed wait

Client closes 1
closed

ClosalFIN fl rSt]{S'I'ABI.ISI—IFJ\ZT ClosalFIN
[

h
/
1
ClosaTIN ,/,’ \FINMCK ! C fosefFIN/ 3 FINVACK
i - —— - i ——

" ™| CLOSE_WAIT FIN_WAIT_1 . Voo T A CLOSE_WAIT
P FINJACK ., FINJACK
"Qf_ Close/FIN ACK "Qf_ Close/FIN
“.4" ! J L “.4" ! J
FIN_WAIT_2 ’4;:? CLOSING LAST_ACK FIN_WAIT_2 ’4;:? CLOSING LAST_ACK
|I 4 ACK Timeout after two ACK |I (¢ ACK Timeout after two ACK
10/21@@9(1§ r segment lifetimes SCL 445 - Fall 2015 EINVACK r segment lifetimes 127
k— - ' » TIMF_WAIT = CLOSED 2\— - ' » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close
FIN
pCK
+
-]
=
-
Q
_ £
Client closes +
Close/FIN fl rSt]{S'I'ABI.ISI—IFJCZT Osed Close/FIN

[
|ll
Close/FIN__~,’ _ENMCK 1 CloselfIN_~ 1 _FIN/ACK
- o n o > - A CLOSE_WAIT

_______ o CLOSE_WAIT FIN_WAIT 1 . S e __
P FINJACK ., FINJACK
"Qf_ Close/FIN ACK "Qf_ Close/FIN
“.-{} ! J L “.-{} ! J
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LAST_ACK
| (4 - Timeout after two . | 4 « Timeout after two .
' AR segment lifetimes . , AR segment lifetimes o
10/21§A%Q(1§ =Tt et SCI1 445 - Fa” 015 FINFACK =Tt et 27
k— - ' » TIMF_WAIT = CLOSED 2\— - ' » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close
FIN
pCK
+
o
=
o)
£
Client closes +
first closed
Closa/FTN ESTABLISHED Closa/FTN ESTABLISHED
] T
1 1
cmsem_rg_/,' \F_INM.CK 1 cmsem_rg/ '\\p_mmm
-——————— " _ :: - T | CLOSE_WAIT FIN_WAIT 1 & . R -
p FINJACK . FINJACK
"Qf_ Close/FIN ACK "Qf_ Close/FIN
4 — j * x 4 N B
FIN_WAIT_2 ’4;:? CLOSING LAST ACK FIN_WAIT_2 ’4;:? CLOSING LAST _ACK
e e
| L Jacx Tmeoutattertwo] ack | L Jacx Tmeoutattertwo] Ack
\10/28420¢R il SC1445 - Fall 2015 ppyiack gme 2/
— = TIMFE_WAIT - CLOSED — = TIMFE_WAIT - CLOSED

Connection Termination and State Transition

(1) @ client server@

close
FIN
pCK
 a
o
=
O
£
Client closes +
first flesed
ClosalFIN FSTABLISHED ClosalFIN FSTABLISHED
T | T]
1 1
CFosefFI_T‘_Q_/,’ \F_INM.CK L cmseﬂ“-l_rg_/ '\\F_INM.CK
-——————— " _ :: - T | CLOSE_WAIT FIN_WAIT 1 & . R -
Y FIN/ACK -, FINJACK
, (oY CloselFIN Ak g CloselFIN
1 o 2, L Y 1 " £ .

FIN_WAIT._2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LAST_ACK
|I 4 ACK Timeout after two ACK |I ‘4 ACK Timeout after two ACK
@/ZQA%Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127

— - » TIMF_WAIT = CLOSED —_ - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

() @ client server@
close
FIN
pCK
a
-
=
o)
£
Client closes +
first lesed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
| T
1 1
L CFosefFI_T‘_L/,’ \P_INM.CK L mosefl“-l_rg/ '\\F_INM.CK
FIN_WAIT_M{=====-----"" o " CLOSE_WAIT FIN_WAIT 1 [* . ST C
i FIN/ACK . FINJACK
Hack N Close/FIN ACK f{;-f. Close/FIN
4 — j * x 4 N B
. - . -
& CLOSING LAST_ACK FIN_WAIT_2 & CLOSING LAST_ACK
. 4 Ack Timeout after two ACK |I (¢ Ack Timeout after two ACK
@/ZQA%Q(lﬁ ' segment lifetimes _C‘"I 45 - Fall 20\15 EINVACK ' segment lifetimes r27
- - TIME_WAIT = CLOSED - - TIME_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/

=
-]
=
O
£
Client closes +
first flesed
ClosalFIN ESTABLISHED ClosalFIN ESTABLISHED
T | T 1
1 1
L CFosefEI_T‘_L//,’ \Er_{f;xc:}(L cmseﬂ_"-l_rg/ '\\Er_{mc&(
FIN_WAIT_M{==---- [o | CLOSE_WAIT FIN.WAIT_1 T Seee o o
[., FINJACK ., FINJACK
Aok g Close/FIN ack g ' Close/FIN
“.4" ! J L “J‘ ! 1
% CLOSING LAST_ACK FIN_WAIT_2 % CLOSING LAY _ACK
. 4 ACK Timeout after two ACK |I ‘4 ACK Timeout after two ACK
@/ZQA%Q(lﬁ r segment lifetimes SCL 445 - Fall 20\15 EINVACK r segment lifetimes 127
—_ - = TIME_WAIT = CLOSED —_ - = TIME_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close
FIN
pCK
close
FIN
 a
o
=
O
£
Client closes +
first lesed
CloselFIN ESTABLISHED CloselFIN ESTABLISHED
| T 7
1 1
1 CFosefFI_T‘_L/,’ \F_INM.CK 1 cmseﬂ"-l_rg/ '\\F_INMCK
FIN_WAIT_t{*=—---=----"" T " CLOSE_WAIT FIN_WAIT_1 [~ . Voo T A CLOSE_WAIT
i . FINJACK . FINJACK i
' ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
* S NE— ' 1 % 4 B B
% CLOSING LAST_ACK FIN_WAIT_2 % CLOSING
(¢ ACK Timeout after two ACK | 4 ACK Timeout after t
'@/Zﬁ‘p@%ﬁ] segment lifetimes “SCI 445 - Fall '20\15 B ' segment lifetimes 57
— - » TIMF_WAIT = CLOSED —_ - » TIMF_WAIT = CLOSED

Connection Termination and State Transition

(1) @ client server@

close

FIN

pCK
close
/

.

o

=

O

£
Client closes :j-

; €jose
A
CloselFIN ﬂ rSt FSTABLISHED CloselFIN FSTABLISHED
] | I
/i fo
! CFosefFI_T‘_L/,’ \FENM.CK L CchefFI_T‘_C_/ '\\ENMLCK
FIN_WAIT_M{*=====----""~ T ™| CLOSE_WAIT FIN_WAIT_1 [Voo T A CLOSE_WAIT
i -, FINJACK -, FINJACK i
! (oY Close/FIN ack o ' | Close/FIN
4 — j * x 4 N B
% CLOSING LAST_ACK FIN_WAIT_2 % CLOSING
n N} ACK Timeout after two ACK |I 4 ACK Timeout after t .
:@/Zﬁ)@Q(lﬁ ' segment lifetimes "SCI 445 - Fall 20\15 EINVACK ' segment lifetimes 27
N ~| TIME_WAIT = CLOSED - ~| TIME_WAIT = CLOSED
______________ |

Connection Termination and State Transition

server@

(1)

+=

)

2

5

Q

_ E

Client closes +1

closed

ClosalFTN fl rSt

FIN_WAIT 14

ESTABLISHED

Il
!
1

ClosslFIN_", \p_mmm

FIN

pCK
/
K

ClosalFIN

(\ 10/26/202

N —-——-

]
/ 1
1 Close/FIN__" '\\FINMCK
- - N ——

close

ESTABLISHED

------- :_’ a CLOSE_WAIT FIN_WAILT 1 . DS o e o _" >CL.~CL'=.E_‘5}F.“'5LIT
. FINJACK . FINJACK i
(s Close/FIN AcCKk o Close/FIN
{f.xﬁ ! J L {f.xﬁ !
% CLOSING LAST ACK FIN_WAIT_2 % CLOSING
(¢ ACK Timeout after two ACK | 4 ACK Timeout after t
r segment lifetimes 'Q(LI 45 - Fall '20\15 EINVACK i segment lifetimes 27

» TIMF_WAIT = CLOSED —_ - » TIMF_WAIT = CLOSED

-------- } S L

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/
K

=
-]
=
O
£
Client closes +
first flesed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
T | T]
1 1
\ CchefFI_T‘_L/,’ \ENMCK \ cmsem_b_:_/ '\\ENMCK
FIN_WAIT_M{*=====----""~ T ™| CLOSE_WAIT FIN_WAIT_1 [Voo T A CLOSE_WAIT
1 . FIN/ACK . FIN/ACK 1
' ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
1Y “‘.{} ! ' L “«4} 4“—
FIN_WAIT._2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING
4 (;f— ACK Timeout after two ACK | (’If" ACK Timeout after t
~C(' segment lifetimes 27

segment lifetimes SCI1 445 - Fall '20\15 FINFACK
CLOSED —

'\ 10/26/202

N —-——-

= TIME_WAIT - CLOSED

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/
K

=
-]
=
O
£
Client closes +
first flesed
Close/FIN ESTABLISHED Close/FIN ESTABLISHED
T | T]
1 1
\ CchefFI_T‘_L/,’ \ENMCK \ cmsem_b_:_/ '\\ENMCK
FIN_WAIT_M{*=====----""~ T ™| CLOSE_WAIT FIN_WAIT_1 [Voo T A CLOSE_WAIT
1 . FIN/ACK . FIN/ACK 1
' ACK f{;-f. Close/FIN ACK f{;-f. Close/FIN
1Y “‘.{} ! ' L “«4} 4“—
FIN_WAIT._2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING
4 (;f— ACK Timeout after two ACK | (’If" ACK Timeout after t
~C(' segment lifetimes 27

segment lifetimes SCI1 445 - Fall '20\15 FINFACK
CLOSED —

'\ 10/26/202

N —-——-

= TIME_WAIT ~ CLOSED

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/
K

d wait

2 time

Client closes
cjose

ClosaFIN fl rSt ESTABLISHED ClosaFIN ESTABLISHED
|

T 7
! !
1)
! c:fosefr-m_/,' \FINMCK ! mosefrm_/ '\\FINMCK
—_— - T —— —— N —

FIN_WAIT_M{*=------- - "| CLOSE_WAIT FIN_WAIT_1 . el T T A CLOSE_WAIT
1 . FIN/ACK . FIN/ACK 1
Aok g Close/FIN ack g ' | Close/FIN
1 Y “.-{} ! J L “.-{} ! [
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LA¥T_ACK

G 8
| A ooy LA | A o onimeg A
1 \10/26420dR cl L SCL445 - Fall 2015 ppyack gment lifeti
\ - CLOSED = = TIME_WAIT

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/
K

d wait

2 time

Client closes
cjose

ClosaFIN fl rSt ESTABLISHED ClosaFIN ESTABLISHED
|

T 7
! !
1)
! c:fosefr-m_/,' \FINMCK ! mosefrm_/ '\\FINMCK
—_— - T —— —— N —

FIN_WAIT_M{*=------- - "| CLOSE_WAIT FIN_WAIT_1 . el T T A CLOSE_WAIT
1 . FIN/ACK . FIN/ACK 1
Aok g Close/FIN ack g ' | Close/FIN
1 Y “.-{} ! J L “.-{} ! [
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LA¥T_ACK

G 8
| A ooy LA | A o onimeg A
1 \10/26420dR cl L SCL445 - Fall 2015 ppyack gment lifeti
\ — ooooooos CLOSED = = TIME_WAIT

Connection Termination and State Transition

(1) @ client server@

FIN

pCK
close
/
K

d wait

2 time

Client closes
cjose

ClosaFIN fl rSt ESTABLISHED ClosaFIN ESTABLISHED
|

T 7
! !
1)
! c:fosefr-m_/,' \FINMCK ! mosefrm_/ '\\FINMCK
—_— - T —— —— N —

FIN_WAIT_M{*=------- - "| CLOSE_WAIT FIN_WAIT_1 . el T T A CLOSE_WAIT
1 . FIN/ACK . FIN/ACK 1
Aok g Close/FIN ack g ' | Close/FIN
1 Y “.-{} ! J L “.-{} ! [
FIN_WAIT_2 4% CLOSING LAST_ACK FIN_WAIT_2 4% CLOSING LA¥T_ACK

r r
] L Jack Tmeoutattortwo | ACK | L Jacx Tmeoutattortwo] ack
2 I] 2 I]
1 \10/26420dR - 45 - Fall 2015 ppyack 2
\ — = TIME_WAIT [m=ec==== — = TIMFE_WAIT

Connection Termination and State
Transition (2)

O This side closes first

ESTABLISHED = FIN WAIT 1 = FIN WAIT 2 >
TIME WAIT

O Other side closes first

ESTABLISHED - CLOSE WAIT - LAST ACK -
CLOSED

O Both sides close at the same time

ESTABLISHED - FIN WAIT 1 - CLOSING -
TIME WAIT - CLOSED

10/26/2015 CSCI 445 - Fall 2015 28

TCP Sliding Window: Why Different?

O Potentially connects many different hosts O Potentially different capacity at destination

need explicit connection establishment need to accommodate different node
and termination capacity
O Potentially different RTT O Potentially different network capacity
need adaptive timeout mechanism need to be prepared for network congestion

O Potentially long delay in network
need to be prepared for arrival of very old

packets

@plicaﬁnn prn;\j} @]icatinn pmc@

= B T
L 1 Write 1 Read
: bytes : bytes

1 1

TCP TCP
Send buffer | Receive buffer|

&

[Segment | [Segment| --- | Segment |

Transmit segments

10/26/2015 CSCI 445 - Fall 2015 29

TCP Sliding Window: Reliable and
Ordered Delivery

TCP uses cumulative acknowledgements to acknowledge receiving of
all the bytes up to the first missing byte

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead

Y

¢ é : :

) : -
LastByteAcked LastByteSent NextByteExpected LastByteRcvd
O Sending side Receiving side
LastByteAcked < LastByteSent LastByteRead < NextByteExpected
LastByteSent < LastByte Written NextByteExpected < LastByteRcvd +1
buffer bytes between LastByteAcked and buffer bytes betweenNextByteRead and
LastByteWritten LastByteRcvd

10/26/2015 CSCI 445 - Fall 2015 30

TCP Flow Control (1)

O receive side of TCP connection has -flow control
a receive buffer sender won't overflow
O app process may be slow at reading receiver's buffer by
from bufter transmitting too much,
O speed-matching service: matching too fast

the send rate to the receiving app’s
drain rate

Sending application Receiving application

TCP / TCP
LastByteWritten LastByteRead

Y

¢ é : :

) : -
LastByteAcked LastByteSent NextByteExpected LastByteRcvd

10/26/2015 CSCI 445 - Fall 2015 31

TCP Flow Control (2)

10/26/2015

Send buffer size: MaxSendBuffer
Receive buffer size: MaxRcvBuffer
Receiving side
LastByteRcvd - LastByteRead < MaxRcvBuffer

AdvertisedWindow = MaxRcvBuffer — ((NextByteExpected -1) -
LastByteRead)) = maximum possible free space remaining in the buffer

Sending side
LastByteSent - LastByteAcked < AdvertisedWindow

o LastByteSent — LastByteAcked: unacknowledged bytes sender has put in TCP
o Otherwise, the sender may overrun the receiver

EffectiveWindow = AdvertisedWindow - (LastByteSent -LastByteAcked)
—> how much data it can sent

LastByteWritten - LastByteAcked < MaxSendBuffer

If the sender tries to write y bytes to TCP
o block sender if (LastByteWritten - LastByteAcked) + y > MaxSenderBuffer

Always send ACK in response to arriving data segment
Persist when AdvertisedWindow = 0

CSCI 445 - Fall 2015 32

Fony

o N kN =

_
N = O ©

13
14
15
16

-

Message

< request 8 buffers>
<ack = 15, buf = 4>
<seq = 0, data = m0>
<seq =1, data=m1>
<seq = 2, data = m2>
<ack =1, buf = 3>
<seq = 3, data = m3>
<seq = 4, data = m4>
<seq = 2, data = m2>
<ack = 4, buf = 0>
<ack = 4, buf = 1>
<ack = 4, buf = 2>
<seq = 5, data = m5>
<seq = 6, data = m6>
<ack = 6, buf = 0>
<ack = 6, buf = 4>

Control aan

B

PR E—

Buffering (3)

Comments —

A wants 8 buffers

B grants messages 0-3 only

A has 3 buffers left now

A has 2 buffers left now

Message lost but A thinks it has 1 left
B acknowledges 0 and 1, permits 2-4
A has 1 buffer left

A has 0 buffers left, and must stop

A times out and retransmits
Everything acknowledged, but A still blocked
A may now send 5

B found a new buffer somewhere

A has 1 buffer left

A is now blocked again

A is still blocked

Potential deadlock

Dynamic buffer allocation. The arrows show the direction of transmission. An ellipsis (...)

indicates a lost TCP segment
CSCI 445 - Fall 2015 33

10/26/2015

Adaptive Retransmission: Original
Algorithm

O Measure SampleRTT for each segment/ACK pair

O Compute weighted average of RTT

EstimatedRTT = a x EstimatedRTT + B x SampleRTT
where a + =1

O o between 0.8 and 0.9
o 3 between 0.1 and 0.2

Set timeout based on EstimatedRTT
0 TimeOut = 2 x EstimatedRTT

10/26/2015 CSCI 445 - Fall 2015

34

Example RTT estimation:

RTT (milliseconds)

10/26/2015

350 -

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

300

250

200 -

150

100

8 15 22 29 36 43 50 57 64 71 78 85 92

time (seconnds)

| —— SampleRTT —=— Estimated RTT |

CSCI 445 - Fall 2015

99

106

35

Adaptive Retransmission:
Karn/Partridge Algorithm

Problem with original algorithm
ACK does not really acknowledge a transmission, it acknowledges the receipt of
data - can not distinguish an ACK is for which transmission/retransmission of a
segment
Sender Receiver Sender Receiver

SampleRTT
SampleRTT

O Do not sample RTT when retransmitting

O Double timeout after each retransmission

Congestion is the most likely cause of lost segments = TCP should not react too aggressively

to a timeout
10/26/2015 CSCI 445 - Fall 2015 36

Jacobson/ Karels Algorithm

O Previous approaches did not take the variance of the sample RTT into account
If no variance, Estimated RTT is good enough, 2 x Estimated RTT is too
pessimistic
If variance large, timeout value should not be too dependent on Estimated RTT

O New Calculations for average RTT
Difference = SampleRTT — EstimtaecdRTT
EstimatedRTT = EstimatedRTT + (& x Difference)

Deviation = Deviation + &(|Difference| - Deviation)
o where 9 1s a factor between 0 and 1

Consider variance when setting timeout value
o TimeOut = p x EstimatedRTT + ¢ x Deviation
o wherepu=1and p=4

O Notes
algorithm only as good as granularity of clock (500ms on Unix)
accurate timeout mechanism important to congestion control

10/26/2015 CSCI 445 - Fall 2015 37

TCP: Sequence Number Wrap
Around

10/26/2015

Bandwidth

Time until Wraparound

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)

6.4 hours

57 minutes

13 minutes

Fast Ethernet (100 Mbps) | 6 minutes

OC-3 (155 Mbps)
OC-12 (622 Mbps)
OC-48 (2.5 Gbps)

4 minutes

55 seconds

14 seconds

Time until 32-bit sequence number space wraps around

CSCI 445 - Fall 2015

38

TCP: Can Keep Pipe Full?

10/26/2015

Bandwidth

Delay x Bandwidth Product

T1 (1.5 Mbps)
Ethernet (10 Mbps)
T3 (45 Mbps)

18 KB
122 KB
549 KB

Fast Echernet (100 Mbps) | 1.2 MB

OC-3 (155 Mbps)
OC-12 (622 Mbps)
OC-48 (2.5 Gbps)

1.8 MB
7.4 MB
29.6 MB

Required window size for 100-ms RTT.

CSCI 445 - Fall 2015

39

Solution: TCP Extensions

O Implemented as header options

. . 0 4 10 16 31
O Store timestamp 1n outgomg.. SroPort DstPort
segments = measure RTT ™. S
O Extend sequence space with 32-bit . Acknowledgment
timestamp > prOteCted against “HdrLen| 0 | Flags | AdvertisedWindow
sequence number wrap-around N——— gt
O Shift (scale) advertised window = ! Options (variable)
keep the pipe full Data
. W
O Selective acknowledgement — O

(SAC) = acknowledge any
additional (out-of-order) blocks of
received data

TCP Extensions for High Performance
http://tools.ietf.org/html/rfc1323

10/26/2015 CSCI 445 - Fall 2015 40

http://tools.ietf.org/html/rfc1323

Summary

O User Datagram Protocol
Multiplexer/Demultiplexer for IP

O Transmission Control Protocol
Reliable Byte Stream

o Connection-oriented
= (Connection establishment
= (Connection termination

o Automatics Repeated-Request: ACKs and NACKSs
o Flow-control

o Timeout value estimation

o Extensions

O Congestion control (future discussions)

10/26/2015 CSCI 445 - Fall 2015

41

