Subnetting and Classless Addressing

Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

Outline

□ Problem to scale to global network

- Many networks organized in hierarchical manner
- Scarcity of IP address
- □ Solution
 - Subnetting
 - Supernetting (classless routing)

Is 2³² too small a number?

- □ IPv4 address
 - **32** bit integers ~ $2^{32} = 4,294,967,296$
 - Many addresses, but not too many networks!

- Testimony: <u>http://www.iana.org/assignments/ipv4-address-space/</u>
- Examples
 - □ A network of two nodes needs a class C network
 - □ A network of 256 nodes needs a class B network

CSCI 445 - Fall 2015

Can the number of networks be too many?

- □ How many class B networks are there?
- □ Potentially how big a routing table can be?

Subnetting

- □ Add another level to address/routing hierarchy: *subnet*
- □ Subnet masks define variable partition of host part of class A and B addresses
- □ Subnets visible only within site

Subnetting: Example

Subnetting: Example

□ Forwarding Table at Router R1

SubnetNumber	SubnetMask	NextHop
128.96.34.0	255.255.255.128	Interface 0
128.96.34.128	255.255.255.128	Interface 1
128.96.33.0	255.255.255.0	R2

Forwarding Algorithm

D = destination IP address for each entry < SubnetNum, SubnetMask, NextHop> D1 = SubnetMask & D if D1 = SubnetNum if NextHop is an interface deliver datagram directly to destination else deliver datagram to NextHop (a router)

Subnetting: Discussion

- □ Would use a default router if nothing matches
- □ Subnet masks do not have to align with a byte boundary
- □ Subnet masks need **not** to be contiguous 1's
 - 255.255.1.0 is OK
 - **□** 11111111 1111111 00000001 0000000
 - What is subnet number of IP address 128.96.34.1?
 10000000 01100000 00100010 00000000 &
 11111111 1111111 00000001 00000000 →
 10000000 01100000 00000000 00000000 →
 128.96.0.0 → can not directly tell from the IP address

In practice, use contiguous 1's

- □ Multiple subnets can be on a single physical network
- □ Subnets not visible from the rest of the Internet

Subnetting: Discussion

How do you tell whether an IP address is on a given subnet?

Exercise L11-1

□ State to what next hop the IP packets addressed to each of the following destinations will be delivered

- (a) 128.96.171.92
- (b) 128.96.167.151
- (c) 128.96.163.151
- (d) 128.96.169.192
- (e) 128.96.165.121

Table 3.19 Routing Table for Exercise 56			
SubnetNumber	SubnetMask	NextHop	
128.96.170.0	255.255.254.0	Interface 0	
128.96.168.0	255.255.254.0	Interface 1	
128.96.166.0	255.255.254.0	R2	
128.96.164.0	255.255.252.0	R3	
$\langle default \rangle$		R4	

Scaling Problem

□ Need to address two scaling concerns in the Internet

- The growth of backbone routing table as more and more network numbers need to be stored in them
- Potential exhaustion of the 32-bit address space
- □ Address assignment efficiency
 - Arises because of the IP address structure with class A, B, and C addresses
 - Forces us to hand out network address space in fixed-size chunks of three very different sizes
 - A network with two hosts needs a class C address:
 - Address assignment efficiency = 2/255 = 0.78
 - A network with 256 hosts needs a class B address
 - Address assignment efficiency = 256/65535 = 0.39

First Attempt: No to Class B?

- Exhaustion of IP address space centers on exhaustion of the class B network numbers
- **D** Solution
 - Say "NO" to any Autonomous System (AS) that requests a class B address unless they can show a need for something close to 64K addresses
 - Instead give them an appropriate number of class C addresses
 - For any AS with at least 256 hosts, we can guarantee an address space utilization of at least 50%
- □ What is the problem with this solution?

First Attempt: No to Class B?

□ Problem with this solution

- Excessive storage requirement at the routers.
- □ If a single AS has, say 16 class C network numbers assigned to it,
 - Every Internet backbone router needs 16 entries in its routing tables for that AS
 - This is true, even if the path to every one of these networks is the same
- □ If we had assigned a class B address to the AS
 - The same routing information can be stored in one entry
 - Efficiency = $16 \times 255 / 65, 536 = 6.2\%$

Addressing Scaling Problem

□ Classless Inter-Domain Routing (CIDR)

- Addresses two scaling concerns in the Internet
 - Backbone routing tables are getting big
 - Potential exhaustion of the 32-bit address space
- Balancing two factors
 - □ Minimize the number of routes that a router needs to know
 - □ Allocate addresses efficiently.
- CIDR uses aggregate routes
 - Uses a single entry in the forwarding table to tell the router how to reach a lot of different networks
 - Breaks the rigid boundaries between address classes

Classless Addressing: Example

- □ Consider an AS with 16 class C network numbers.
- Instead of handing out 16 addresses at random, hand out a block of contiguous class C addresses
- Suppose we assign the class C network numbers from 192.4.16 through 192.4.31
- Observe that top 20 bits of all the addresses in this range are the same (11000000 00000100 0001)
 - We have created a 20-bit network number (which is in between class B network number and class C number)
- Requires to hand out blocks of class C addresses that share a common prefix (sometimes, called supnetting)

Classless Addressing: Notation

- Requires to hand out blocks of addresses that share a common prefix
- **D** Convention
 - Place a /X after the prefix where X is the prefix length in bits
- □ Example
 - 20-bit prefix for all the networks 192.4.16 through 192.4.31: 192.4.16/20
 - A single class C network number, which is 24 bits long: 192.4.16/24

Routing and Classes Addressing

- How do the routing protocols handle this classless addresses
 - It must understand that the network number may be of any length
- □ Represent network number with a single pair

<length, value>

□ All routers must understand CIDR addressing

Routing and Classless Addressing: Example

□ Route aggregation with CIDR

IP Forwarding Revisited

- □ Original *assumptions* in IP forwarding mechanism
 - It can find the network number from destination IP address in a packet
 - Then look up that number in the forwarding table
- □ Need to *change* this assumption in case of CIDR

IP Forwarding in CIDR

- □ Prefixes may be of any length, from 2 to 32 bits
 - Prefixes in the forwarding tables may overlap
- □ Some addresses may match more than one prefix
 - Example
 - Both 171.69/16 and 171.69.10/24 may coexist in the forwarding table of a single router
 - □ A packet destined to 171.69.10.5 clearly matches both prefixes.
 - Principle of "longest match"
 - □ A packet destined to 171.69.10.5 matches prefix 171.69.10/24
 - A packet destined to 171.69.20.5 matches 171.69/16

Exercise L11-2

- □ State to what next hop the IP packets addressed to each of the following destinations will be delivered
 - (a) C4.4B.31.2E
 - (b) C4.5E.05.09
 - (c) C4.4D.31.2E
 - (d) C4.5E.03.87
 - (e) C4.5E.7F.12
 - (f) C4.5E.D1.02

Table 3.21 Routing Table for Exercise 73		
Net/MaskLength	Nexthop	
C4.5E.2.0/23	А	
C4.5E.4.0/22	В	
C4.5E.C0.0/19	С	
C4.5E.40.0/18	D	
C4.4C.0.0/14	E	
C0.0.0/2	F	
80.0.0/1	G	

Summary

□ Subnetting

- Network number and network mask
- Classless addressing
 - □ Network prefix and length of prefix