
Programming Ethernet

with Socket API

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

9/14/2015 1CSCI 445 – Fall 2015

Acknowledgements

 Some pictures used in this presentation were obtained

from the Internet

 The instructor used the following references
 Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems

Approach, 5th Edition, Elsevier, 2011

 Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall,

2010

 James F. Kurose and Keith W. Ross, Computer Networking: A Top-

Down Approach, 5th Ed., Addison Wesley, 2009

 Larry L. Peterson’s (http://www.cs.princeton.edu/~llp/) Computer

Networks class web site

 IBM e-server iSeries Socket Programming Manual Version 5 Release 3

(http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?t

opic=/rzab6/rzab6soxoverview.htm)

9/14/2015 CSCI 445 – Fall 2015 2

http://publib.boulder.ibm.com/infocenter/iseries/v5r3/index.jsp?topic=/rzab6/rzab6soxoverview.htm

Outline

 Networking communication modes

 Network application models

 Programming and experimentation environment

 Ethernet implementation in practice

 Berkeley sockets for programming Ethernet

9/14/2015 CSCI 445 – Fall 2015 3

Network Application

 At least two processes

 Server logic: listening to client’s requests

 Client logic: sending request to server

 Example setup

 Process A: server logic

 Process B: client logic

9/14/2015 CSCI 445 – Fall 2015 4

Process
A

(Server)

Host 1

Process
B

(Client)

Host 2

Server and Client Interaction:

An Example

9/14/2015 CSCI 445 – Fall 2015 5

Server Client

Server starts

Waits and listens to requests
Client starts

Sends request

Receives request

Processes request

Sends reply
Receives Reply

Process Reply

Sends Request

Client-Server and Peer-to-Peer

Models

Client-Server Model

 Server

 Runs server logic

 Passively waiting: listening

to client requests

 Serving client requests

 Client

 Runs client logic

 Actively requesting service

from server

Peer-to-Peer Model

 Any of the communicating

party contains both server

and client logics

 Each party listens to and

serves requests from

other parties

 Each party can initiate

requests and send

requests

9/14/2015 CSCI 445 – Fall 2015 6

Hybrid Model combines the above

Network Programming

 Example programs using a client-server model

 Write two programs (A, B)

 Program A contains the server logic

 Program B contains the client logic

9/14/2015 7CSCI 445 – Fall 2015

Connectionless & Connection-

Oriented Modes

 Network applications or protocols can follow

either one of the two communication modes

 Connectionless communication

 Does not require to establish a connection before

transmitting data and to tear down the connection

after transmitting the data

 Connection-oriented communication

 Requires to establish a connection before transmitting

data

9/14/2015 CSCI 445 – Fall 2015 8

Connection-Oriented Mode

 Setting up a connection

 Determine whether there is a communication path

between the two communication parties

 Reserve network resources

 Transmitting and receiving data

 Tearing down the connection

 Release resources

9/14/2015 CSCI 445 – Fall 2015 9

Choosing Connected-Oriented

or Connectionless Modes

 Consider application requirement and decide

which one works best for the application*
 How reliable must the connection be?

 Must the data arrive in the same order as it was sent?

 Must the connection be able to handle duplicate data packets?

 Must the connection have flow control?

 Must the connection acknowledge the messages it receives?

 What kind of service can the application live with?

 What level of performance is required?

 If reliability is paramount, then connection-oriented

transport services (COTS) is the better choice.

9/14/2015 CSCI 445 – Fall 2015 10

*From Transport Interfaces Programming Guide, SunSoft, 1995

https://docs.oracle.com/cd/E19620-01/805-4041/index.html

Experiment Environment

 Use multiple Linux virtual machines

 Recommend Oracle Virtual Box

 Free for Mac OS X, Windows, and Linux

 Support various networking setups

 See class website for additional information

9/14/2015 CSCI 445 – Fall 2015 11

Ethernet: Where Are They?

9/14/2015 CSCI 445 – Fall 2015 12

Ethernet: Where Are They?

 Ethernet Adapter

9/14/2015 CSCI 445 – Fall 2015 13

Ethernet: Where Are They?

 Beside hardware, firmware inside

 Example

 Encoding

 Error Detection

 Medium Access Control (CSMA/CD)

9/14/2015 CSCI 445 – Fall 2015 14

Ethernet: Upper Layer Protocol

Design and Programming

9/14/2015 CSCI 445 – Fall 2015 15

Host-to-network layer

Network layer

Transport Layer

Application
Layer Application

&
Operating

System

 How to access functionality of

Ethernet adapter?

Ethernet: Upper Layer Protocol

Design and Programming

9/14/2015 CSCI 445 – Fall 2015 16

Host-to-network layer

Network layer

Transport Layer

Application
Layer Application

&
Operating

System

Ethernet: Upper Layer Protocol

Design and Programming

 How to access functionality of

Ethernet adapter?

9/14/2015 CSCI 445 – Fall 2015 17

Host-to-network layer

Network layer

Transport Layer

Application
Layer

Application
&

Operating
System

Driver
software

Ethernet: Upper Layer Protocol

Design and Programming

 How to access functionality of Ethernet adapter?

9/14/2015 CSCI 445 – Fall 2015 18

Host-to-network layer

Network layer

Transport Layer

Application
Layer

Application
&

Operating
System

Driver
software

OS System
Calls and APIs

Programming Ethernet

 Writing programs using functionality provided by

Ethernet adapters and availed by their drivers

 Low-level program for creating network

applications

 Useful to create new upper-layer network

protocols or application

9/14/2015 CSCI 445 – Fall 2015 19

Berkeley Sockets
 Protocol provides a set of interfaces abstract

 API (application programming interface) how the interfaces

exposed in a particular operating system

 Berkeley socket interfaces

 APIs to multiple protocols

 Socket: a “point” where an application process attaches to the

network; “end-point” of communication

Process

Host 1

Process

Host 2
9/14/2015 20CSCI 445 – Fall 2015

Programming Ethernet with

Socket API

 Learn socket APIs to

 Create a socket

 Send messages via the socket

 Receive message via the socket

 Example programs using a typical setup

 Write two programs (A, B)

 Program A contains and runs the server logic

 Program B contains and runs the client logic

9/14/2015 21CSCI 445 – Fall 2015

Creating Socket

int socket(int domain, int type, int

protocol)

 Creates an endpoint for communication and

returns a descriptor.

 Look it up in Linux manual: see socket(2)

 which means issue command “man 2 socket”.

9/14/2015 CSCI 445 – Fall 2015 22

Communication Domain

 int socket(int domain, int type, int

protocol)

 AF_PACKET is our interest: Low level packet

interface

“Packet sockets are used to receive or send raw

packets at the device driver (OSI Layer 2) level. They

allow the user to implement protocol modules in user

space on top of the physical layer.”

 More information, see packet(7)

9/14/2015 CSCI 445 – Fall 2015 23

Communication Type

 int socket(int domain, int type, int

protocol)

 Specify a communication semantics with a

communication domain

 For AF_PACKET domain

 SOCK_RAW: for raw packets (including the link level

header)

 SOCK_DGRAM: for cooked packets (with the link

level header removed)

9/14/2015 CSCI 445 – Fall 2015 24

Protocol

 int socket(int domain, int type, int

protocol)

 Specifies a particular protocol to be used with

the socket.

 Protocol is a protocol number in network order

 For AP_PACKET domain

 Protocol can be the IEEE 802.3 protocol number in

network order.

 linux/if_ether.h lists acceptable protocol numbers for

Ethernet (typical location: /usr/include/linux/if_ether.h)

9/14/2015 CSCI 445 – Fall 2015 25

Protocol Number for Ethernet

 linux/if_ether.h lists acceptable protocol

numbers for Ethernet

 typical location: /usr/include/linux/if_ether.h

……

#define ETH_P_LOOP 0x0060 /* Ethernet Loopback packet */

#define ETH_P_PUP 0x0200 /* Xerox PUP packet */

#define ETH_P_PUPAT 0x0201 /* Xerox PUP Addr Trans packet */

#define ETH_P_IP 0x0800 /* Internet Protocol packet */

……

#define ETH_P_802_3 0x0001 /* Dummy type for 802.3 frames */

#define ETH_P_AX25 0x0002 /* Dummy protocol id for AX.25 */

#define ETH_P_ALL 0x0003 /* Every packet (be careful!!!) */

……

9/14/2015 CSCI 445 – Fall 2015 26

Protocol Number

 Which protocol number to use?

 Depending on payload

 If payload is an IP packet, use ETH_P_IP, i.e.,

0x0800

 If payload is an ARP packet, use ETH_P_ARP, i.e.,

0x0806

9/14/2015 CSCI 445 – Fall 2015 27

Protocol Number: Byte Order

 Protocol number must be in network order

 Use functions to convert between host and

network order

uint32_t htonl(uint32_t hostlong);

uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);

uint16_t ntohs(uint16_t netshort);

 Example

 htons (0x0800) or htons(ETH_P_IP)

9/14/2015 CSCI 445 – Fall 2015 28

Protocol Number: New Protocol

 What about developing a new protocol?

 Choose a number not used

 May run into the problem that other people also choose the

same unused number as you

 Get approval from the IANA

 What about receiving all frames

9/14/2015 CSCI 445 – Fall 2015 29

https://www.iana.org/

Protocol Number: All Frames

 What about receiving all frames

 Use protocol number ETHER_P_ALL

 In network order, htons(ETH_P_ALL) or

htons(0x0003)

9/14/2015 CSCI 445 – Fall 2015 30

Putting Together: Raw Packet
#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET,

SOCK_RAW,

htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

/* deal with error */

}

9/14/2015 CSCI 445 – Fall 2015 31

Putting Together: Cooked

Packet
#define MY_PROTOCOL_NUM 0x60001

int sockfd;

……

sockfd = socket(AP_PACKET,

SOCK_DGRAM,

htons(MY_PROTOCOL_NUM));

if (sockfd == -1) {

/* deal with error */

}

9/14/2015 CSCI 445 – Fall 2015 32

Putting Together: All Raw

Packet
int sockfd;

……

sockfd = socket(AP_PACKET,

SOCK_RAW,

htons(ETH_P_ALL));

if (sockfd == -1) {

/* deal with error */

}

9/14/2015 CSCI 445 – Fall 2015 33

Sending Messages
ssize_t sendto(int sockfd, const void *buf, size_t

len, int flags, const struct sockaddr *dest_addr,

socklen_t addrlen);

ssize_t send(int sockfd, const void *buf, size_t

len, int flags);

ssize_t write(int fd, const void *buf, size_t

count);

ssize_t sendmsg(int sockfd, const struct msghdr

*msg, int flags);

9/14/2015 34CSCI 445 – Fall 2015

Sending Messages: Manual

Pages

 See send(2)

 See sendto(2)

 See sendmsg(2)

 See write(2)

9/14/2015 CSCI 445 – Fall 2015 35

Sending Message: Differences

 Relationship among the system calls

 write(fd, buf, len);

is equivalent to

send(sockfd, buf, len, 0);

 send(sockfd, buf, len, flags);

is equivalent to

sendto(sockfd, buf, len, flags, NULL, 0);

 write(fd, buf, len);

is equivalent to

sendto(sockfd, buf, len, 0, NULL, 0);

9/14/2015 CSCI 445 – Fall 2015 36

Sending Messages: sendto(…)

 ssize_t sendto(int sockfd, const void *buf, size_t

len, int flags, const struct sockaddr *dest_addr,

socklen_t addrlen);

 sockfd: the file descriptor of the sending socket

 buf: message to send

 len: message length

 flags: the bitwise OR of flags or 0

 dest_addr: the address of the target

 addrlen: the size of the target address

9/14/2015 CSCI 445 – Fall 2015 37

Message

 Case 1: raw packet

sockfd = socket(AP_PACKET, SOCK_RAW,

htons(MY_PROTOCOL_NUM));

 buf contains Ethernet header and data (i.e., payload)

 Case 2: cooked packet

sockfd = socket(AP_PACKET, SOCK_DGRAM,

htons(MY_PROTOCOL_NUM));

 buf contains data (i.e, payload)

9/14/2015 CSCI 445 – Fall 2015 38

Destination Address

 struct sockaddr *desk_addr

 struct sockaddr * is a place holder

 desk_addr should points to an instance of struct

sockaddr_ll

9/14/2015 CSCI 445 – Fall 2015 39

Link Layer Address

 See packet(7)

struct sockaddr_ll {

unsigned short sll_family; /* Always AF_PACKET */

unsigned short sll_protocol; /* Physical layer protocol */

int sll_ifindex; /* Interface number */

unsigned char sll_pkttype; /* Packet type */

unsigned char sll_halen; /* Length of address */

unsigned char sll_addr[8]; /* Physical layer address */

};

9/14/2015 CSCI 445 – Fall 2015 40

Receiving Messages
ssize_t recvfrom(int sockfd, void *buf, size_t len,

int flags, struct sockaddr *src_addr, socklen_t

*addrlen);

ssize_t recv(int sockfd, void *buf, size_t len, int

flags);

ssize_t write(int fd, const void *buf, size_t

count);

ssize_t recvmsg(int sockfd, struct msghdr *msg, int

flags);

9/14/2015 41CSCI 445 – Fall 2015

Receiving Message: Manual

Pages

 See recv(2)

 See recvfrom(2)

 See recvmsg(2)

 See read(2)

9/14/2015 CSCI 445 – Fall 2015 42

Receiving Message: Differences

 Relationship among the system calls

 read(fd, buf, len);

is equivalent to

recv(sockfd, buf, len, 0);

 recv(sockfd, buf, len, flags);

is equivalent to

recvfrom(sockfd, buf, len, flags, NULL, NULL);

 read(fd, buf, len);

is equivalent to

recvfrom(sockfd, buf, len, 0, NULL, NULL);

9/14/2015 CSCI 445 – Fall 2015 43

Message

 Case 1: raw packet

sockfd = socket(AP_PACKET, SOCK_RAW,

htons(MY_PROTOCOL_NUM));

 buf contains Ethernet header and data (i.e., payload)

 Case 2: cooked packet

sockfd = socket(AP_PACKET, SOCK_DGRAM,

htons(MY_PROTOCOL_NUM));

 buf contains data (i.e., payload)

9/14/2015 CSCI 445 – Fall 2015 44

Socket Option

 Packet sockets can be used to configure

physical layer multicasting and promiscuous

mode.

 Get socket option

 int getsockopt(int sockfd, int level, int optname, void

*optval, socklen_t *optlen);

 Set socket option

 int setsockopt(int sockfd, int level, int optname, const

void *optval, socklen_t optlen);

9/14/2015 CSCI 445 – Fall 2015 45

Socket Option: Promiscuous

Mode

 See packet(7) for PACKET_MR_PROMISC and

PACKET_ADD_MEMBERSHIP

 See setsockopt(2) and getsockopt(2)

9/14/2015 CSCI 445 – Fall 2015 46

Putting Together

 Sample programs

 Two pairs of programs

 ethercap and etherinj

 ethersend and etherrecv

9/14/2015 CSCI 445 – Fall 2015 47

Summary

 Client-Server and Peer-to-Peer models

 Connection-oriented and Connectionless

communication modes

 Programming Ethernet with Socket APIs

 Byte order and network order

 If you forgot byte order, continue to study the rest of

the slides

9/14/2015 48CSCI 445 – Fall 2015

Byte Order: Big Endian and

Little Endian

 Little Endian

 Low-order byte of a word is

stored in memory at the lowest

address, and the high-order

byte at the highest address

The little end comes first

 Big Endian

 high-order byte of a word is

stored in memory at the lowest

address, and the low-order byte

at the highest address The

big end comes first

9/14/2015 CSCI 445 – Fall 2015 49

Endian-ness: Transfer Integer

over Network
 Integer to transfer: 0x04030201

little-endian: little end
comes first

04 03 02 01

0 21 3address

9/14/2015
50

CSCI 445 – Fall 2015

little-endian

01 02 03 04

0 21 3address

big-endian

01 02 03 04

0 21 3address

big-endian: big end
comes first

04 03 02 01

0 21 3address

memorymemory

01 02 03 04register 04 03 02 01RegisterOops!

memory

04 03 02 01register

memory

01 02 03 04registerOops!

Network Order

9/14/2015 CSCI 445 – Fall 2015 51

 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t n=

04 03 02 01

0 21 3Address

uint32_t n= 04 03 02 01

0 21 3Address

uint32_t m=

uint32_t m=

ntohl(m)

Network Order

9/14/2015 CSCI 445 – Fall 2015 52

 Integer to transfer: 0x04030201

x86: little-endian

01 02 03 04

0 21 3Address

PowerPC: big-endian

04 03 02 01

0 21 3Address

htonl(n)

uint32_t n=

04 03 02 01

0 21 3Address

uint32_t n= 04 03 02 01

0 21 3Address

uint32_t m=

uint32_t m=

ntohl(m)

