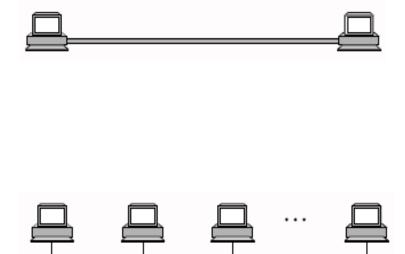
L6: Building Direct Link Networks IV


Hui Chen, Ph.D. Dept. of Engineering & Computer Science Virginia State University Petersburg, VA 23806

Acknowledgements

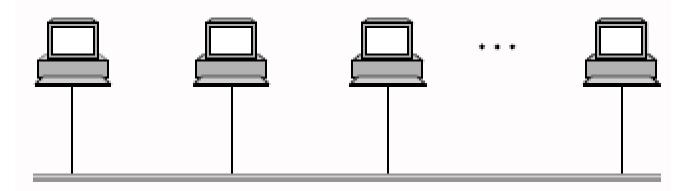
- Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site
 - Shun Y. Cheung, Introduction to Computer Networks (http://www.mathcs.emory.edu/~cheung/Courses/455/index.html)

Direct Link Networks

- □ Types of Networks
 - Point-to-point
 - Multiple access

- □ Encoding
 - Encoding bits onto transmission medium
- **D** Framing
 - Delineating sequence of bits into messages
- **D** Error detection
 - Detecting errors and acting on them
- **D** Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link

Outlines


Media Access Control

Contention Resolution Approaches

- Performance analysis
- □ Ethernet

Multiple Access Network

- □ More than two nodes share a single physical link
 - Bus (Ethernet/802.3)
 - Ring (Token-ring/802.5)
 - Wireless (Wireless LAN/802.11)

Multiple Access Networks

□ Characteristics

- A transmitter can be heard by multiple receivers
- A receiver can hear multiple transmitters

□ Problems

- How to identify nodes?
 - Cannot identify node by stating "the sender" and "the receiver"
 - Addressing
- How to mediate nodes' access to the link?
 - Interference and collision of transmission
 - Media access control

Media Access Control

- □ How to allocate a multi-access channel among multiple competing users
 - Rules that each node must follow to communicate and avoid interference and collision

Media Access Control Approaches

□ Can be classified into two categories

- Static
 - Channel's capacity is divided into fixed portions
 - Each node is allocated a portion for all time
 - **Better suited when traffic is predictable**
 - Examples: TDMA, FDMA, and CDMA
- Dynamic
 - Allocate channel capacity based on the traffic generated by the users
 - Try to obtain better channel utilization and delay when traffic is unpredictable
 - Examples: ALOHA, Slotted ALOHA, and MACA

Dynamic Channel Allocation

- □ Perfectly scheduled approaches
- □ Contention resolution approaches
- Approaches that combined both scheduling and contention resolution

Perfectly Scheduled Approaches

- A schedule is dynamically formed based on which users have data to send
- Users transmit contention free according to the schedule
- □ Schedule can be formed by polling, reservation, etc.

Contention Resolution Approaches

□ Contention

- A node transmits a packet when it has data to send
- A collision occurs if multiple nodes transmit at the same time
- Packets/Frames must be retransmitted based on some rule
- □ Examples
 - Pure ALOHA, Slotted ALOHA
 - MACA, MACAW
 - CSMA, CSMA/CD and CSMA/CA
 - D-MAC

Performance Metrics

- □ Latency (delay)
 - In particular, when traffic load is low
- □ Throughput (channel efficiency)
 - In particular, when traffic load is high
- □ Jitter

Performance Analysis

- □ Multiple-access model
- □ Pure ALOHA
- □ Slotted ALOHA
- **C**SMA

Performance Analysis

- □ References and Further Readings
 - Kleinrock, L.; Tobagi, F.A, "Packet Switching in Radio Channels: Part I--Carrier Sense Multiple-Access Modes and Their Throughput-Delay Characteristics," Communications, IEEE Transactions on , vol.23, no.12, pp.1400,1416, Dec 1975. doi: 10.1109/TCOM.1975.1092768.
 - Abramson, Norman, "Development of the ALOHANET," Information Theory, IEEE Transactions on , vol.31, no.2, pp.119,123, Mar 1985. doi: <u>10.1109/TIT.1985.1057021</u>.

Multiple-Access Model

□ User Model

- N users (nodes, or stations).
- At each station, frames to be transmitted randomly arrive
- The arrivals are independent of each other

□ Channel model

All communications of the N users rely on one single shared channel

□ Transmission model

- Frames are garbled and cannot be received, whenever the frames overlap in time (called a *collision*)
- Only errors allowed are introduced by collisions. If no collisions, a frame is successfully received

□ Feedback model

All stations are able to detect if a frame is collided with another or successfully sent after a complete frame is sent

Approaches in Feedback Model

□ Listen while transmitting

- Typically, collisions can be detected in a delay of ~RTT
 - **□** Ethernet (link length, 4 segments, 2500 meter): 51.2 μs

□ Satellite: it may take as much as 270 ms delay

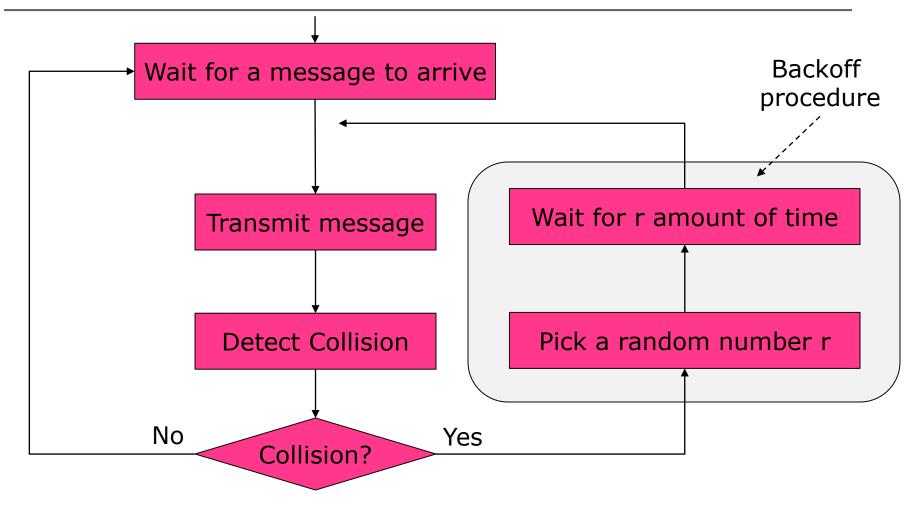
□ If not possible, acknowledgements are used

- Not until recently is it considered possible to listen while transmitting on wireless networks
- Dinesh Bharadia, Emily McMilin, and Sachin Katti. 2013. Full duplex radios. In *Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM* (SIGCOMM '13). ACM, New York, NY, USA, 375-386. DOI=10.1145/2486001.2486033.

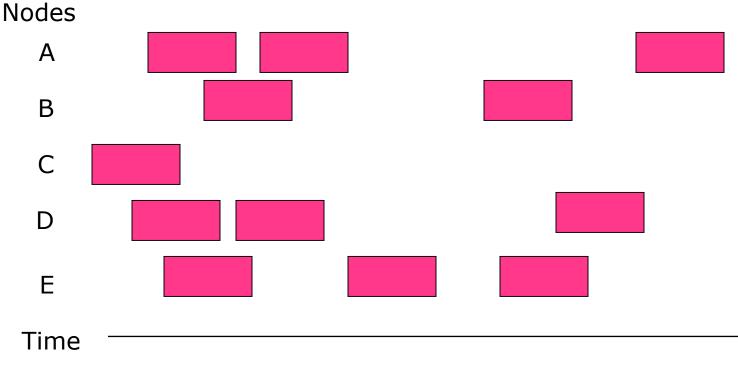
http://doi.acm.org/10.1145/2486001.2486033

Pure ALOHA

- Initially developed by Norman Abramson, University of Hawaii in 1970's
- □ Served as a basis for many contention resolution


protocols

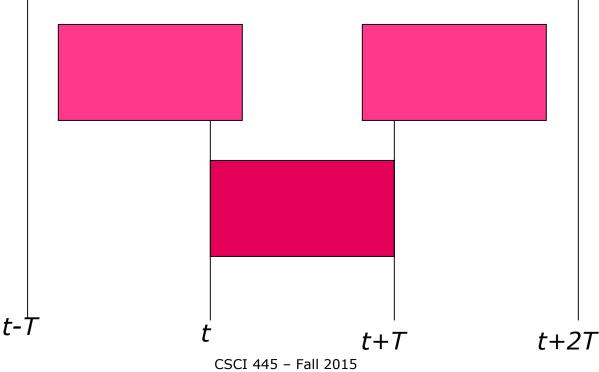
Pure ALOHA: Protocol


- Transmit message : A node transmits whenever it has data to send
- Detect collision: The sender wait to see if a collision occurred after the complete frame is sent
 - Note: a collision may occur if multiple nodes transmit at the same time
- Random backoff: If collision occurs, all the stations involved in collision wait a random amount of time, then try again
- **D** Questions
 - Is it a good protocol? (how much can the throughput be?)
 - How would we choose the random amount of waiting time?

Pure ALOHA: Protocol

Pure ALOHA: Throughput Analysis

Frames are transmitted and retransmitted at completely arbitrary times


Pure ALOHA: Throughput Analysis

□ Assume

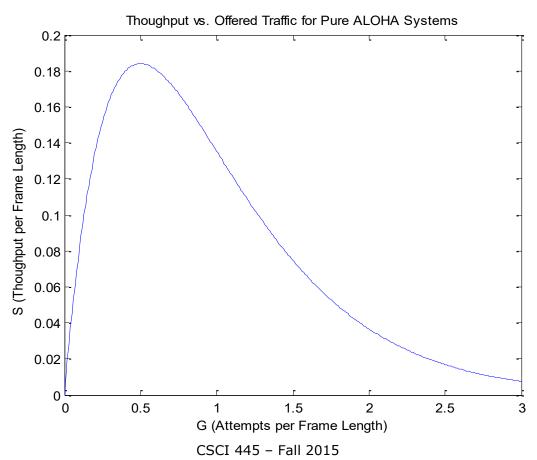
- Infinite number of nodes
- Fixed length frames. Denote length as T
- Overall arrival of frames is a Poisson process with rate λ frames/second
- □ Then, denote S as the number of frames arriving in T seconds
 - $\bullet S = \lambda T$
- □ In case of a collision, retransmission happens
 - New transmission and retransmission combined (all transmissions) is a Poisson process
 - Let the rate be G attempts per T seconds
- □ Note that
 - $\bullet S \leq G$
 - Equality only if there are no collisions.
- □ Assume the system is in a stable state and denote the probability of a successful transmission by P_0
 - $\bullet S = GP_0$

Vulnerable Period/Contention Window

A frame is successfully transmitted, if there are no frames transmitted in the contention window of 2T seconds

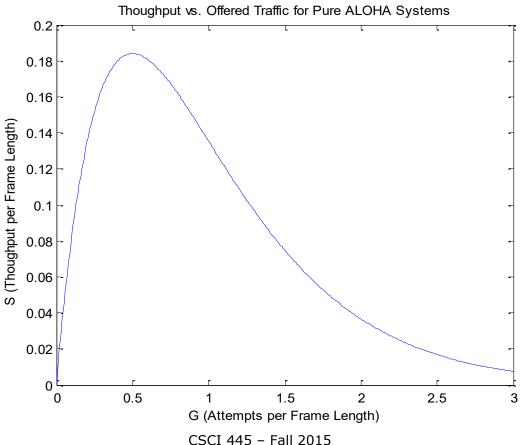
Frames Generated in Vulnerable Period

- □ Vulnerable Period: 2T seconds
- □ The rate of all transmissions in 2T seconds: 2G
- The probability that k frames are generated during 2T seconds is given by a Poisson distribution

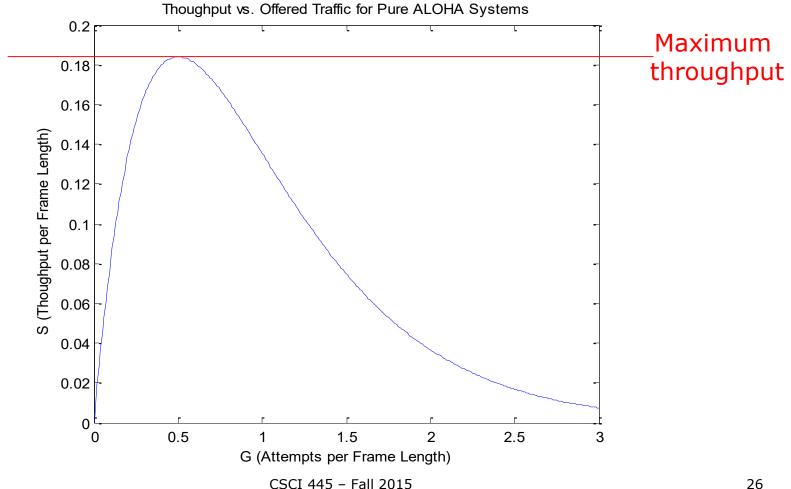

$$\Pr[k] = \frac{(2G)^k e^{-2G}}{k!}$$

□ The probability of no other frames being initiated (new transmission and retransmission) during the entire vulnerable period is

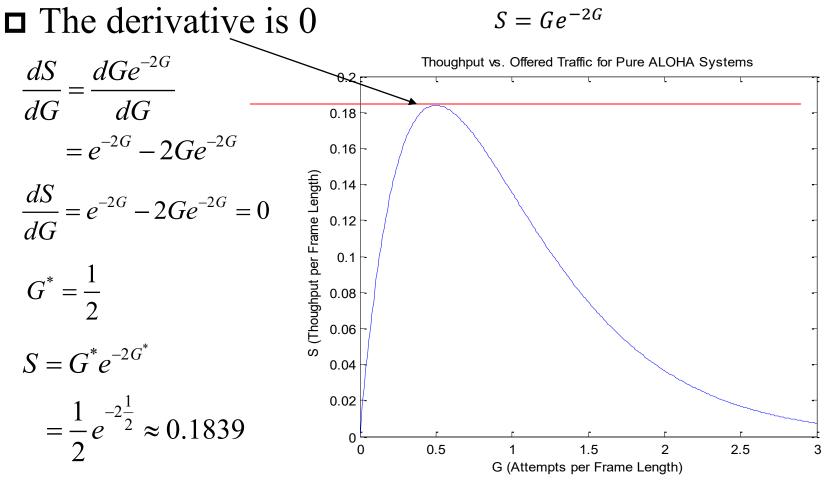
$$S = GP_0 = G \frac{(2G)^0 e^{-2G}}{0!} = G e^{-2G}$$


Throughput of Pure ALOHA

$\Box \text{ Let us graph it } S = Ge^{-2G}$



Throughput of Pure ALOHA


□ What is the implication?

Maximum Throughput of Pure **ALOHA**

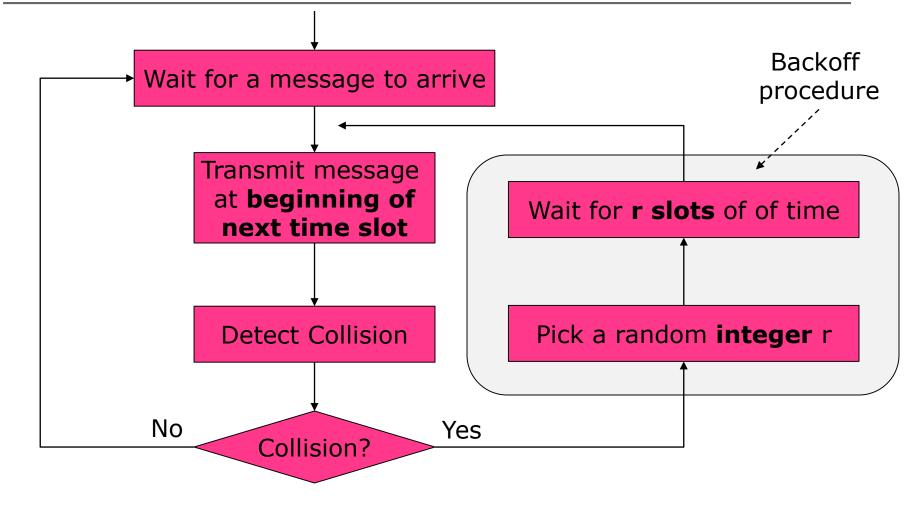
Maximum Throughput of Pure ALOHA

9/9/2015

CSCI 445 - Fall 2015

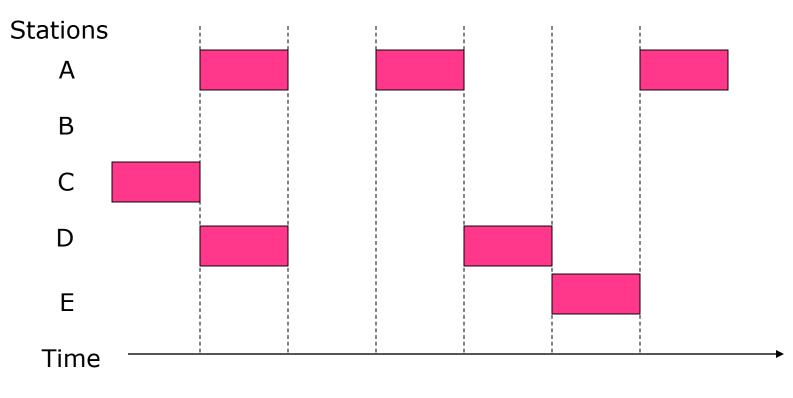
Pure ALOHA: Remark

- Considered a simplified analysis of a pure Aloha
 - Found that the maximum throughput is limited to be at most 1/(2e).
 - Not taken into account
 - How the offered load changes with time
 - How the retransmission time may be adjusted.
- Channel utilization of a <u>busy</u> Pure ALOHA system is 18%
- □ What improvement can we make?

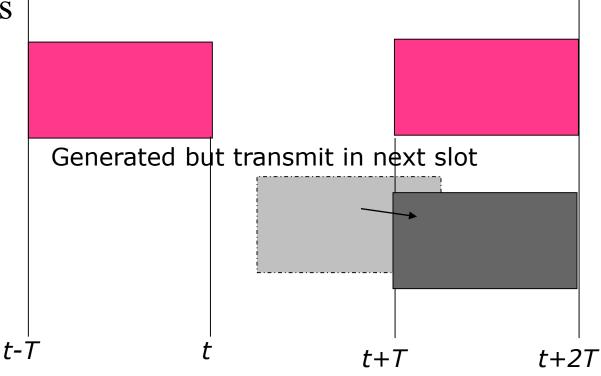

Pure ALOHA: Remark

- □ What improvement can we make?
 - Collision causes retransmission and reduces throughput
 - Can we reduce chance of collisions?
 - Collisions happen within the <u>Vulnerable</u> <u>Period/Contention Window</u>.
 - Can we shorten the <u>Vulnerable</u> <u>Period/Contention Window</u>?
 - □ Slotted ALOHA

Slotted ALOHA


- □Improvement to Pure ALOHA
 - Divided time into discrete intervals
 - Each interval corresponds to a frame
 - Require stations agree on slot boundaries

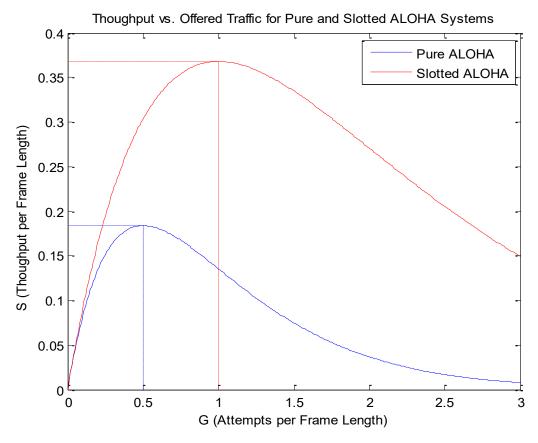
Slotted ALOHA: Protocol


Slotted ALOHA: Throughput Analysis

D Time is slotted

Vulnerable Period/Contention Window

A frame is successfully transmitted, if there are no frames transmitted in the contention window of T seconds


Frames Generated in **Vulnerable Period**

- □ Vulnerable Period: T seconds
- □ The rate of all transmissions in T seconds: G
- □ The probability that k frames are generated during T seconds is given by a Poisson distribution $\Pr[k] = \frac{G^k e^{-G}}{-G}$

$$S = GP_0 = G \frac{G^0 e^{-G}}{0!} = G e^{-G}$$

Throughput of Slotted ALOHA

 $S = Ge^{-G}$

Exercise L6-1

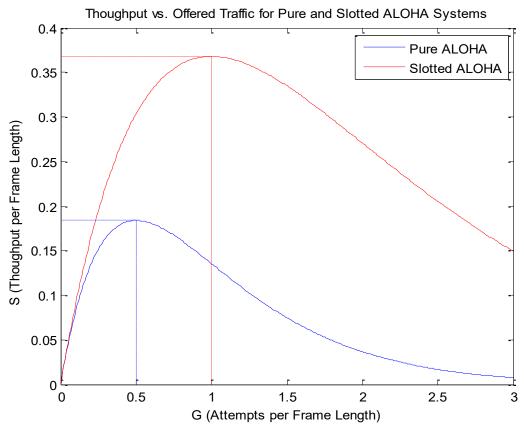
- Derive the maximum throughput of the Slotted ALOHA protocol
- How much is the maximum throughput?Note

 $S = Ge^{-G}$

Implications of Performance Analysis (1)

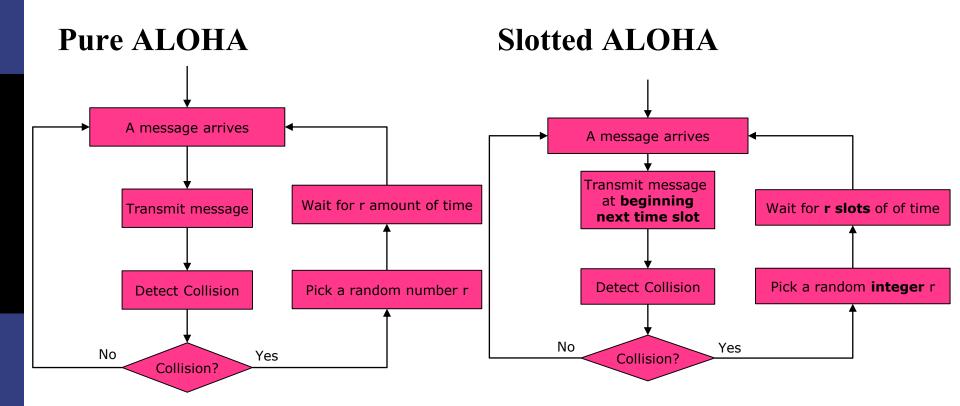
In original ALOHA system, packets are of fixed size of 34 ms. Assume each active user sending a message packet at an average rate of once every 60 seconds. Estimate maximum number of users does the system can concurrently support?

□ Answer:

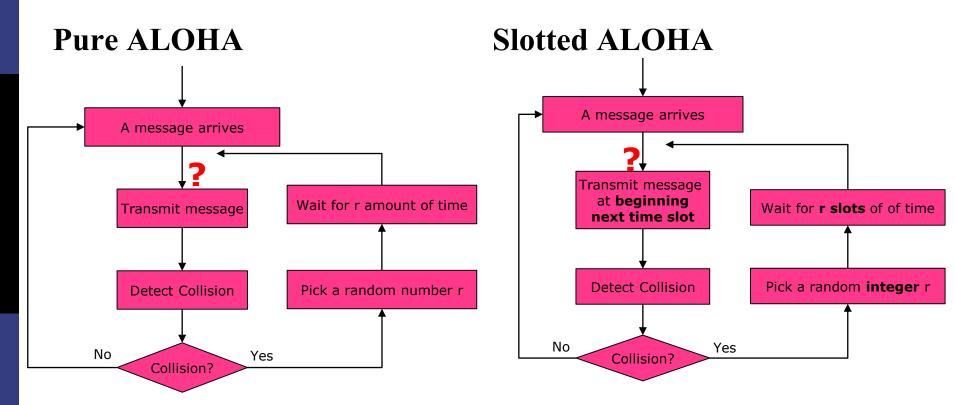

- Maximum throughput = maximum channel utilization = 1/(2e) → channel can only be 1/(2e) full.
- packet rate: $\lambda = 1/60$
- Packet length: $\tau = 34$ ms
- Maximum # of concurrent users: k_{max}
- $k_{max}\lambda\tau = 1/(2e)$
- $k = 1/(2e\lambda\tau) \approx 1/(2\times2.7183\times1/60\times0.034) \approx 324$

Application of Performance Analysis (2)

- In an ALOHA system, packets are 816 bits and link bandwidth is 24 kbps. Assume each active user sending a message packet at an average rate of once every 60 seconds. Estimate maximum number of users does the system can concurrently support?
- □ Answer:
 - Maximum throughput = maximum channel utilization = 1/(2e) → channel can only be 1/(2e) full.
 - packet rate: $\lambda = 1/60$
 - Packet length: $\tau = 816/24 \text{ kbps} = 816/24000 = 0.034 \text{ sec} = 34 \text{ ms}$
 - Maximum # of concurrent users: k_{max}
 - $k_{max}\lambda\tau = 1/(2e)$
 - $k = 1/(2e\lambda\tau) \approx 1/(2\times 2.7183 \times 1/60 \times 0.034) \approx 324$


Making Further Improvements?

□ Maximum throughputs are small



CSCI 445 - Fall 2015

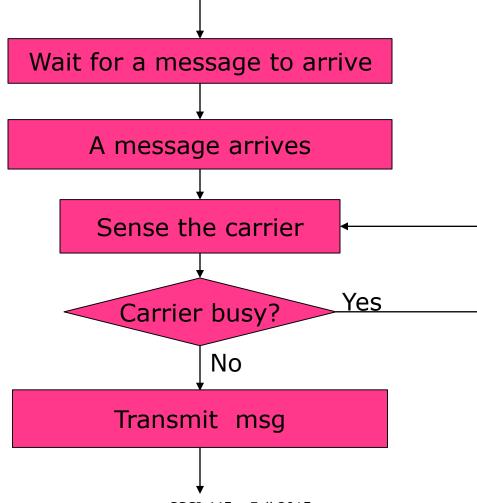
Making Further Improvements?

Making Further Improvements?

■ ALOHA transmits even if another node is transmitting → collision

9/9/2015

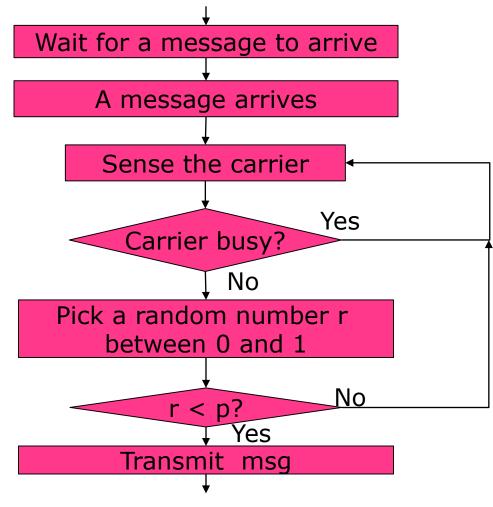
Carrier Sense


□Listen first, transmit when the channel is idle → reduce chance of collision

Carrier Sense (without Collision Detection)


□ Non-persistent CSMA

- Transmit after a random amount of waiting time regardless if channel is idle (from carrier sense)
- Large delay when channel is idle
- □ 1-persistent CSMA
 - Transmit as soon as the channel becomes idle
 - Collision happens when two or more nodes all want to transmit
- □ p-persistent CSMA
 - If idle, transmit the frame with a probability p


1-persistent CSMA

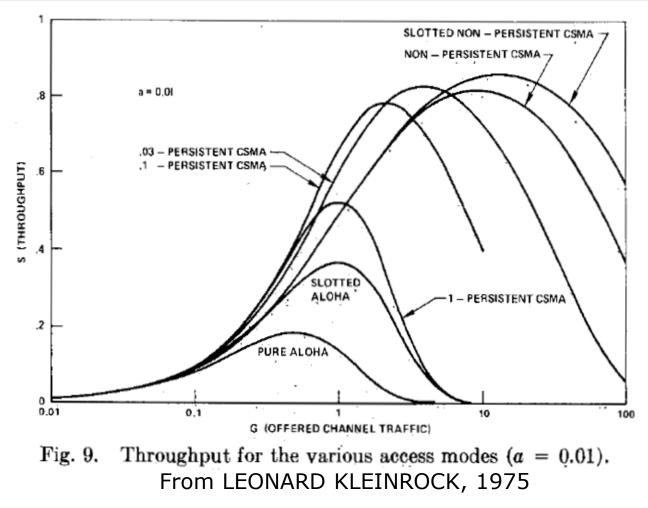
Non-persistent CSMA

p-persistent CSMA

Comparison of Throughput

- □ Pure ALOHA
- □ Slotted ALOHA
- □ Nonpersistent CSMA
- □ 1-persistent CSMA
 - Unslotted
 - Slotted
- p-persistent CSMAskipped

$$S = Ge^{-2G}$$


$$S = Ge^{-G}$$

$$S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG}}$$

$$S = \frac{G\left[1 + G + aG\left(1 + G + aG/2\right)\right]e^{-G(1+2a)}}{G\left(1+2a\right) - \left(1 - e^{-aG}\right) + \left(1 + aG\right)e^{-G(1+a)}}$$

$$S = \frac{Ge^{-G(1+a)}\left[1 + a - e^{-aG}\right]}{(1+a)\left(1 - e^{-aG}\right) + ae^{-G(1+a)}}$$

Comparison of Throughput

Carrier Sense

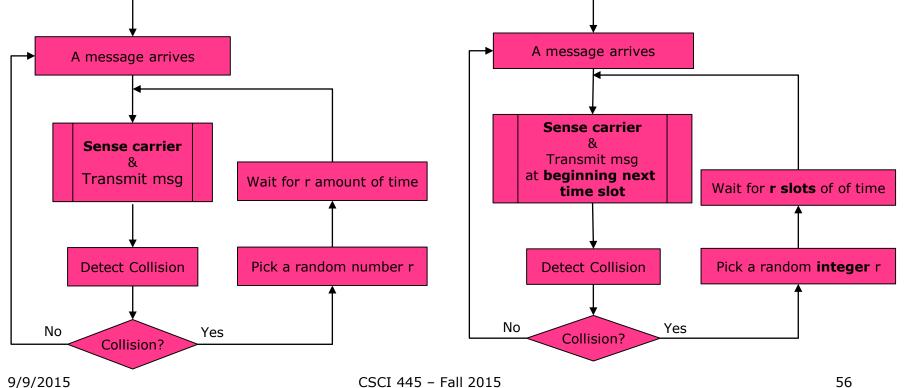
□Listen first, transmit when the channel is idle → reduce chance of collision □Can collisions be completely mitigated?

Carrier Sense

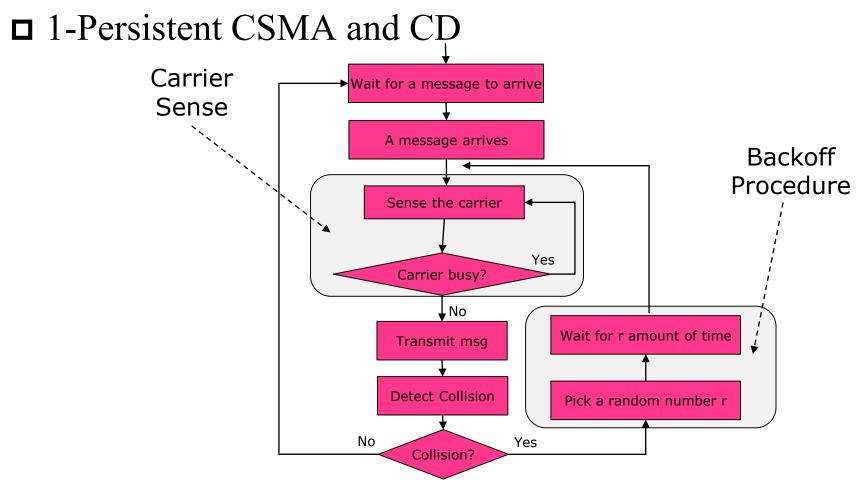
□Listen first, transmit when the channel is idle → reduce chance of collision
 □Can collisions be completely mitigated?
 □Q: Under what condition can Carrier Sense be more beneficial to throughput?

Carrier Sense and Collision

- □ Even with CSMA there can still be collisions.
- □ What do Pure ALOHA and Slotted ALOHA do?


Collision Detection

□ If nodes can detect collisions, abort transmissions!


- Requires a minimum frame size ("acquiring the medium")
- Continues to transmit a jamming signal (called runt) until other nodes detects it
- Requires a full duplex channel

Complete the Picture

□Carrier Sense Multiple Access and Collision Detection

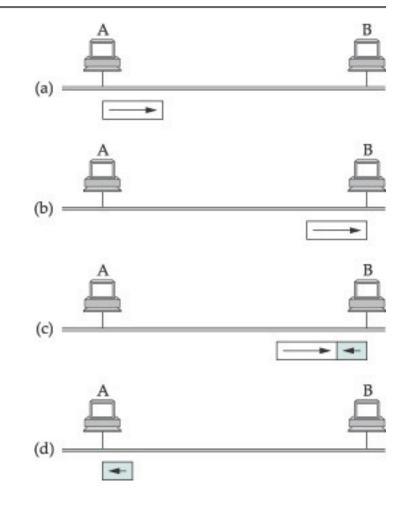
CSMA/CD

CSCI 445 - Fall 2015


Ethernet

- Multiple Access Networks
- Carrier Sense Multiple Access and Collision
 Detection (CSMA/CD) with Exponential Backoff
 - Inspired by the ALOHA network at the University of Hawaii
 - Developed by Robert Metcalfe and Bob Boggs at Xerox PARC

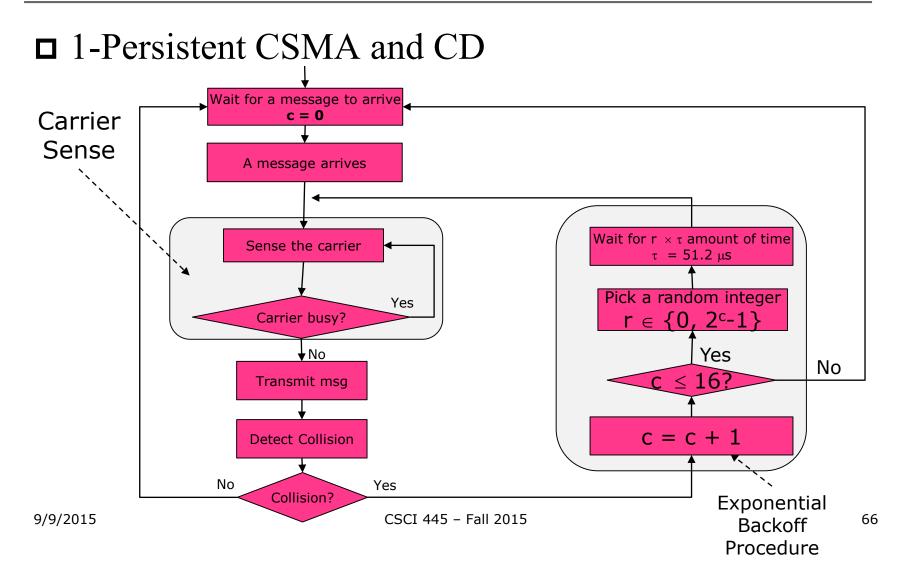
Ethernet: Carrier Sensing


- □ If line is idle
 - Send immediately
 - Upper bound message size = 1500 bytes
- □ If line is busy
 - Wait until idle and transmit immediately
 - 1-persistent (a special case of p-persistent)

Collision Detection on Ethernet

- No centralized control, distributed algorithm
- □ Two nodes may transmit almost at the same time → collision
- □ Worst case scenario
 - (a) A sends a frame at time t
 - (b) A's frame arrives at B at t + d
 - (c) B begins transmitting at time t + d and collides with A's frame. Upon detecting the collision, B sends a <u>runt</u> (32-bit frame) to A
 - (d) B's runt frame arrive at A at t + 2d
 - Why does B need to send a runt to A?
 - How long does it take for A to detect the collision?

Collision Detection on Ethernet


- Want the nodes that collide to know that a collision happened
 - Time during which a node (the transmitting node) may hear of a collision is 1 × RTT
 - Recall: under what condition can a network be benefited most from "carrier sense"?
 - Impose a minimum frame size that lasts for 1 × RTT
 - So the node can not finish transmitting before a collision takes place → carrier sense benefits the network the most
 - Consider an Ethernet: minimum frame is 64 bytes, longest link
 2500 meters (4 repeaters, 500 meter segment), 10-Mbps bandwidth
 - $1 \times RTT = 51.2 \ \mu s \ and \ 1 \times RTT \times Bandwidth = 512 \ bits = 64 \ bytes$

Ethernet: Collision Detection with Binary Exponential Backoff

D If collision

- Jam for 32 bits (by sending a runt), and stop transmitting frame
- Minimum frame is 64 bytes (14 bytes header + 46 bytes of data + 4 bytes CRC) for 10 Mbps Ethernet
- Exponential backoff
 - \square 1st time: 0 or 51.2 µs
 - Randomly select one of these two: imagine throwing an evenly made coin, if it lands tail, choose 0; otherwise, 51.2 µs
 - **\square** 2nd time: 0, 51.2, or 51.2 x 2 µs
 - Randomly select one of these two: imagine throwing a 3-sided die whose three faces are labeled as 0, 1, and 2. If it lands on side 0, choose 0; on side 1, 51.2 µs; on side 2, 51.2 x 2 µs
 - **□** 3rd time: 0, 51.2, 51.2 x 2, or 51.2 x 3 μs
 - Similar process with 4-sided die
 - **n**-th time: k x 51.2 μ s, randomly select k from 0..2ⁿ-1
 - Similar as before, you die (very strange die) has 2ⁿ sides labeled from 0 to 2ⁿ-1
 - Give up after 16 times

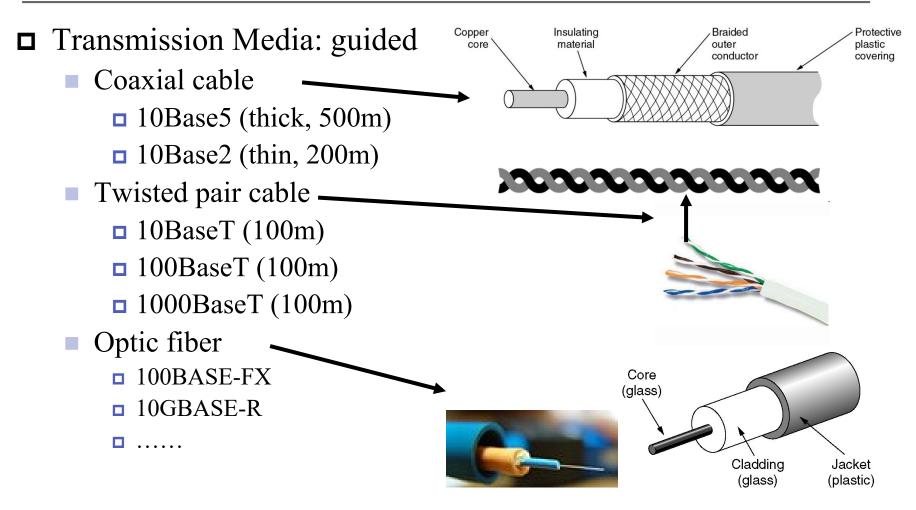
Ethernet: CSMA/CD with Exponential Backoff

IEEE Standard Association

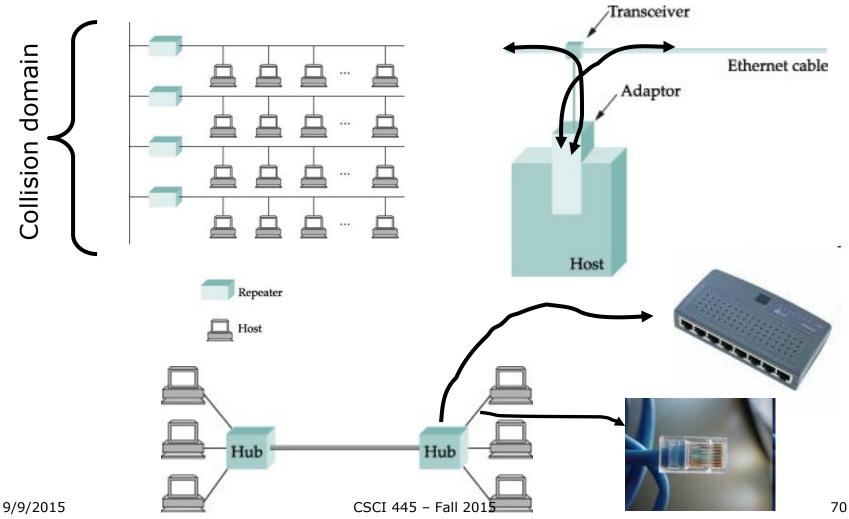
□ http://standards.ieee.org

IEEE Standards Association Project search leee-sa member area							
TextSize: A A A	Search IEEE-SA Site Go						
PRODUCTS & SERVICES IEEE-SA MEMBERSHIP STANDARDS DEVELOPMENT NEWS & INFORMATION HOME							
Get IEEE 802® Program Back to main page How to Support or Sponsor the Program LAN/MAN Standards Subscription IEEE 802® Draft Standards IEEE 802® Working Groups Wireless Zones	Get IEEE 802® Partnering with industry to close the digital divide Select from our menu to begin downloading IEEE LAN/MAN Standards Trouble downloading standards? <u>Click here for PDE Download Help</u> IEEE 802@: <u>Overview & Architecture</u> IEEE 802.1 ^m <u>Bridging & Management</u> IEEE 802.3 ^m : <u>CSMA/CD Access Method</u> IEEE 802.1 ^m : <u>Wreless</u> IEEE 802.15 ^m : <u>Wreless Personal Area Networks</u> IEEE 802.16 ^m : <u>Broadband Wreless Methopolitan Area Networks</u>						
	IEEE 802.15 ^m : <u>Wireless Personal Area Networks</u>						

Ethernet (IEEE 802.3) (1)

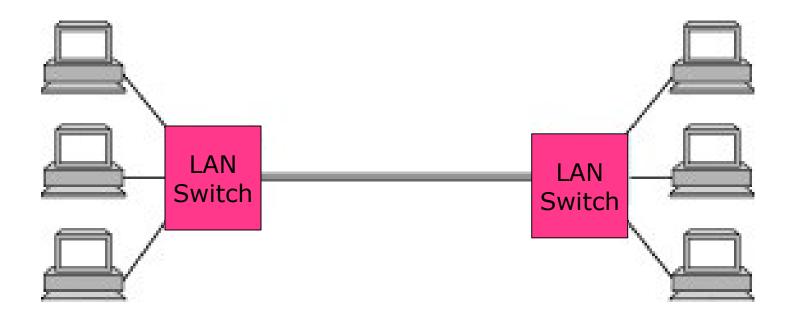

□ History

U. of Hawaii (Aloha, early 1970's) →Xerox PARC (mid 1970's) → Xerox PARC, DEC, and Intel (1978) → IEEE 802.3


□ CSMA/CD

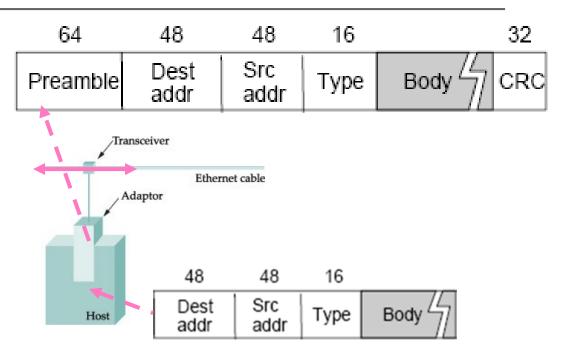
- Carrier Sense (CS)
- Multiple Access (MA)
- Collision Detection (CD)

Ethernet (IEEE 802.3) (2)



Ethernet (IEEE 802.3) (3)

Ethernet (IEEE 802.3) (4)


□ Today's deployment: discuss in future lessons

Ethernet: Frame Format

D Bit-oriented framing

- Preamble (64 bits): 101010... for signal synchronization
- Destination address (48 bits)
- Source address (48 bits)
- Type/length (16 bits)
- Body (46 1500 bytes)
- CRC (32 bits)

Frame Preamble and CRC

64	48	48	16	32
Preamble	Dest addr	Src addr	Туре	

- Be aware that Ethernet network interface cards often do not pass *preamble* and *CRC* to hosts
- In the future, we do not include preamble and CRC when discussing Ethernet frames

48	48	16	
Dest addr	Src addr	Туре	Body

Ethernet Address

- □ Unique in the world
- □ Assigned to adaptors
- **48-bit**
 - 0000 1000 0000 0000 0010 1011 1110 0100 1011 0001 0000 0010
 - 08:00:2b:e4:b1:02 (human-friendly form)

24-bit Organization Unique Identifier (OUI)

Checkout: http://standards.ieee.org/regauth/oui/oui.txt

Human-Friendly Notation

- □ Two common human-friendly notations
- Hex-digits-and-colons notation
 - Example
 - 08:00:2b:e4:b1:02
- □ Hex-digits-and-dash notation
 - Example
 - 08-00-2b-e4-b1-02

Ethernet Address Types

Unicast address

- For one to one communication
- Each adapter is assigned a unicast address

Broadcast address

- For one to all communication
- Multicast address (group address)
 - For one to a group communication

Unicast address

- □ Address of an adaptor (e.g., my_addr)
- Each frame transmitted on an Ethernet is received by every adapter connected to that Ethernet
- Each adapter recognizes those frames addressed to its address and passes only those frames onto the host
- □ In pseudo code,

```
If dest_addr == my_addr
    pass the frame to the host
```

Broadcast Address

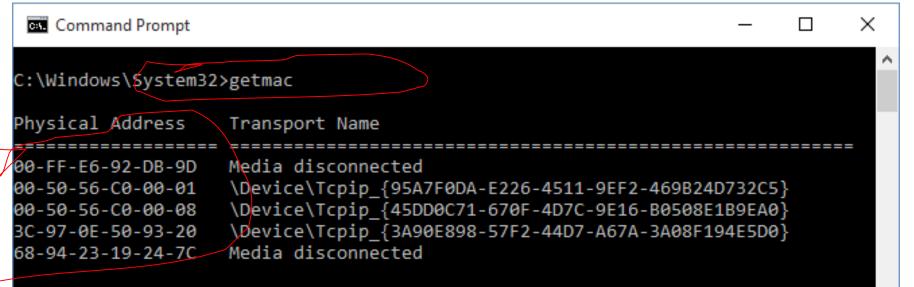
- □ Broadcast address
- One single broadcast address, i.e., all 1's in the address (ff:ff:ff:ff:ff:ff)
- □ All adapters pass frames addressed to the broadcast address up to their hosts.
- □ In pseudo code,
 - If dest_addr == 0xff ff ff ff ff ff
 Pass the frame to the host

Multicast address

- □ Multicast address (group address)
- □ A given host can program its adaptor to accept some set of multicast addresses (the group).
- □ An adapter in the group passes frames addressed to the group to the host
- □ Complex and requires group management
- Multicast addresses are addresses has the first bit set to 1, but is not the broadcast address (Ethernet transmits bytes from low-order bit to high-order bit)

□ In pseudo code,

```
If (dest_addr & 0x01 00 00 00 00 00) && (it has been instructed to listen to that multicast address)
```


```
deliver the frame to the host
```

Promiscuous Mode

- □ Not a normal mode
- An adaptor can also be programmed to run in promiscuous mode
- □ All frames will be delivered to the host

Experiment: Looking up Ethernet Adapters (1)

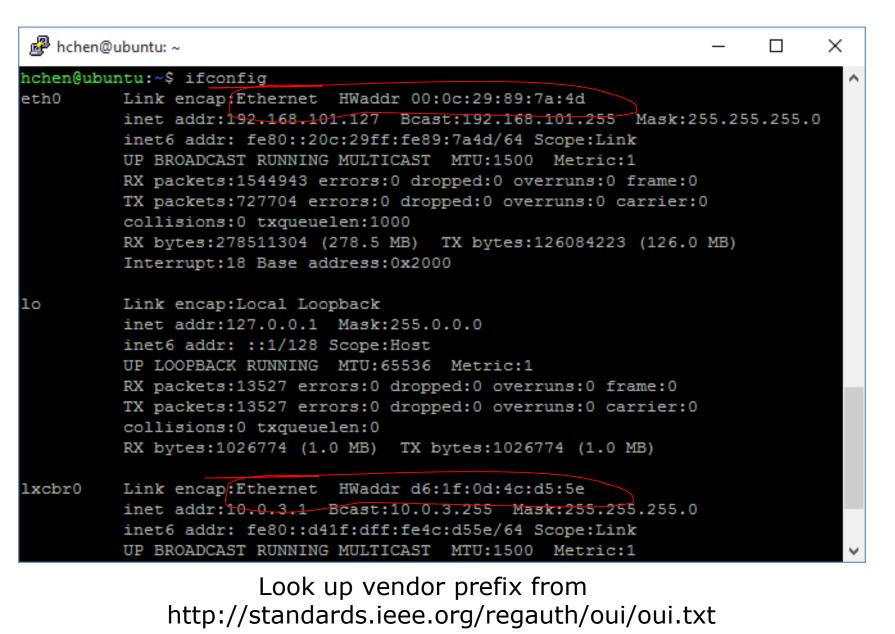
- On MS Windows (various version of NT systems, including 2000, XP, Vista, 7, 8, and 10 etc)
- □ Use the following tools
 - getmac
 - ipconfig

C:\Windows\System32>_

Look up vendor prefix from http://standards.ieee.org/regauth/oui/oui.txt CSCI 445 - Fall 2015

Х

C:\Windows\System32>ipconfig /all_


Ethernet adapter Ethernet:

Connection-specific DNS Suffix . : vsu.edu Description Qualcomm Atheros AR8162/8166/8168 PCI-E F ast Ethernet Controller (NDIS 6.30)
Physical Address
DHCP Enabled Yes
Autoconfiguration Enabled : Yes
Link-local IPv6 Address : fe80::546c:d12:4399:8aa2%5(Preferred)
IPv4 Address : 192.168.1.101(Preferred)
Subnet Mask
Lease Obtained Monday, September 28, 2015 7:42:59 AM
Lease Expires Monday, October 5, 2015 6:21:58 AM
Default Gateway : 192.168.1.1
DHCP Server
DHCPv6 IAID
DHCPv6 Client DUID
DNS Servers
150.174.7.167
NetBIOS over Tcpip : Enabled
Ethernet adapter VMware Network Adapter VMnet1:

Look the vendor prefix code 00-13-72 from IEEE website at http://standards.ieee.org/regauth/oui/oui.txt

Experiment: Looking up Ethernet Adapters (2)

- □ Similar query can be done on Unix/Linux systems
- **Use** following tools
 - ip (on latest versions of Linux)
 - ifconfig

9/9/2015

CSCI 445 - Fall 2015

hchen@ubuntu:~\$ ip link show

1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN mode DEFAULT group default

link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

2: eth0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP mo de DE<u>FAULT group default qlen 1000</u>

link/ether 00:0c:29:89:7a:4d brd ff:ff:ff:ff:ff:ff

3: lxcbr0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc noqueue state UNKNOW N mode DEFAULT group default

link ether b6:aa:39:e5:30:7e brd ff:ff:ff:ff:ff:ff

hchen@ubuntu:~\$

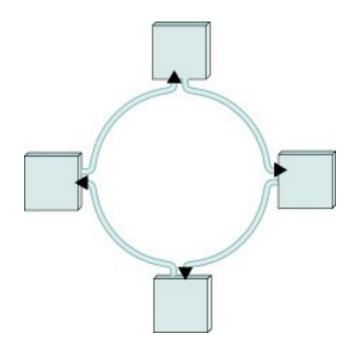
Look the vendor prefix code 00-23-AE from IEEE website at http://standards.ieee.org/regauth/oui/oui.txt

 \times

Exercise L6-2

- Q1: How many Ethernet adapters (NICs) does the Windows computer on your desk have? What are their Ethernet addresses (i.e., physical addresses as reported by Windows)?
- Q2: What is the vendors of the adapters you listed?Use the following to look up the vendors
 - http://standards.ieee.org/regauth/oui/oui.txt

Ethernet: Experience


- □ Work best under lightly loaded conditions
 - Utilization > $30\% \rightarrow$ too much collisions
- □ Great success
 - In practice, observations
 - fewer than 200 hosts
 - **□** Far shorter than 2,500 m (RTT ~ 5 μ s)
 - Host implements end-to-end flow control (such as TCP/IP), hosts do not pumping frames to NIC when busy
 - Extended LANs using Ethernet switches (2 nodes on an Ethernet) → future discussions
 - Easy to administer and maintain
 - **n** no routing
 - **n** no configuration
 - Simple: hardware such as adaptors are cheap

Contention Free Approaches

- □ Token-based approaches
 - Token ring (IEEE 802.5)
 - Token bus (IEEE 802.4)

Rings (802.5, FDDI, RPR)

- **D** Token rings
 - Token: a special bit string
 - Nodes are organized as a ring
 - Nodes receive and forward token if no frame to send
 - Node grabs the token, send the frame, then puts the token back to the ring

Media Access Control in Wireless Networks

- □ Wireless PAN (Example: 802.15)
- □ Wireless LAN (Example: 802.11)
- □ Wireless MAN (Example: WiMax/802.16)
- Wireless WAN (Personal Communications System, a.k.a., cell phone networks, such as GSM, CDMA)

Summary

- □ Media access control
- □ Ethernet
- □ Ring
- □ Wireless networks

Direct Link Networks: Summary

- □ Encoding
 - Encoding bits onto transmission medium
- □ Framing
 - Delineating sequence of bits into messages
- □ Error detection
 - Detecting errors and acting on them
- **D** Reliable delivery
 - Making links appear reliable despite errors
- Media access control
 - Mediating access to shared link
- □ Q: how many hosts an Ethernet can have? What is the approximate perimeter of an Ethernet? What if we want to have a network that covers entire campus, a city, a nation, a continent, a planet, or the galaxy? → network of networks: Switched Networks