L5: Building Direct
Link Networks Il

Hui Chen, Ph.D.
Dept. of Engineering & Computer Science

Virginia State University
Petersburg, VA 23806

9/2/2015 CSCI 445 - Fall 2015 1



Acknowledgements

O Some pictures used in this presentation were obtained from the
Internet

O The instructor used the following references

Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems
Approach, 5th Edition, Elsevier, 2011

Andrew S. Tanenbaum, Computer Networks, Sth Edition, Prentice-
Hall, 2010

James F. Kurose and Keith W. Ross, Computer Networking: A Top-
Down Approach, 5th Ed., Addison Wesley, 2009

Larry L. Peterson’s (http://www.cs.princeton.edu/~1lp/) Computer
Networks class web site

9/2/2015 CSCI 445 - Fall 2015 2



Direct Link Networks

O Types of Networks O Encoding
Point-to-point Encoding bits onto
Multiple access transmission medium
O Framing

Delineating sequence of bits
Into messages

Error detection

Detecting errors and acting
on them

O Reliable delivery

Making links appear
reliable despite errors

O Media access control

Mediating access to shared
link

9/2/2015 CSCI 445 - Fall 2015



Reliable Transmission

O How to make unreliable links appear to be reliable?

O What to do when a receiver detects that the received
frame contains an error?

9/2/2015 CSCI 445 - Fall 2015




Acknowledgment and Time-Out

O Two fundamental mechanisms to make channels
appear to be error-free

Acknowledgements (ACK)
Time out
O Automatic Repeat Request (ARQ)
Stop-and-Wait
Sliding Window
O Discuss Stop-and-Wait and Sliding Window
protocols 1n the context of point-to-point links

9/2/2015 CSCI 445 - Fall 2015




Stop-and-Wait

O Sender transmits a frame

O Sender waits for an acknowledgement before
transmitting the next frame

O If no acknowledgement arrives after a time-out, the
sender times out and refransmits the original frame

9/2/2015 CSCI 445 - Fall 2015




Stop-and-Wait

Sender Receiver Sender Receiver
_-_""h-_\_ F o, n F
5 oo O g T
E § aCE --f*'-: E ptC'!:-_f-"::-;
P P _,_,_:—-'_'_'-'-'_ r-' i
" "-'JI‘_'
== T “"--__"F_'f_ﬂ_;l]-m
E -Hq'"n____
: =
= AE—
_—"_'-'-'_F_-
B
Sender Receiver Sender Receiver
__““H-___f@_;m o Tfram,
= S 2 T
-\-\_\_\_\_\-
— h{:}r_ ____,—'—"'_'_'_
= 2 =
L Lo,
_._\_"'\-_._\_ _E-' =1 -\-\__\__\_\__\_
5 s £ i
% - = ,!:.C-ff-"";
= Ak _— —‘H___F--"”’F
_,_,_,—'-"'_'_'_f‘-'-
S

9/2/2015 CSCI 445 - Fall 2015




Performance

O Performance analysis for the stop-and-wait protocol

with point-to-point links

A

Transmit delay

v Frame
Propagation delay
Queuing & —%
processing delay—x |
Ack

time

time —
9/2/2015 datg  csci 445 - Fall 2015

—




Example

O Link bandwidth: 10 Gbps

O RTT =40 ms

O Frame size = 1500 bytes

O Acknowledgement size = 64 bytes
O Timeout: 2 x RTT

O Assume processing delay 1s 0

O Stop-and-Wait protocol: receiver transmits acknowledge
frame upon receiving the data frame

O Q: what 1s the maximum throughput (effective bandwidth)?

9/2/2015 CSCI 445 - Fall 2015




Throughput

O Q: what 1s the maximum
throughput (effective
bandwidth)?

O Note:tp=pl +p2=1RTT
O Transfer time = tx1 +tx2 + tp
O Throughput=
Transfer size/Transfer time
O Q: Is this a good protocol?

9/2/2015 CSCI 445 - Fall 2015 10




Timeout?

O How long should the receiver wait?

O Timeout: 2 x RTT or more ...

9/2/2015 CSCI 445 - Fall 2015

11



Exercise L5-1

O

Data frame size (data) = 1500 bytes
Acknowledgement frame size (ack) = 64 bytes

Stop-and-Wait protocol: receiver is forced to wait 1 RTT
before transmitting acknowledgement frame after having
received data frame. No additional processing and queueing
delay

O Draw timeline diagram first, and then compute throughputs
and link bandwidth utilization for one of the following,

Dial-up
o RTT =87 us; Link bandwidth: 56 Kbps

Satellite
o RTT =230 ms; Link bandwidth: 45 Mbps

O O

9/2/2015 CSCI 445 - Fall 2015 12



Stop-and-Wait

O Advantage

Simple

Achieve reliable transmission on non-reliable medium
O Disadvantage

Performance 1s poor

Could you give an intuitive explanation why the
performance is poor?

9/2/2015 CSCI 445 - Fall 2015

13



Stop-and-Wait

O Does not keep the pipe full!
Q: How much data are needed to keep the pipe full?

Product of Delay x Link Bandwidth
o (I x RTT) x 10 Gbps =1 x 40 ms x 10 Gbps =400 Mb = 50 MB
o 50 MB/1500 bytes = 33333 frames

1500 bytes << the product =» low link utilization

Bandwidth | Distance
Link Type (Typical) (Typical) | Round-trip Delay | Delay x BW
Dial-up 56 Kbps 10 km 87 s 5 bits
Wireless LAN 54 Mbps 50 m 0.33 s 18 bits
Satellite 45 Mbps 35,000 km | 230 ms 10 Mb
Cross-country fiber | 10 Ghps 4,000 km | 40 ms 400 Mb

Q: How to keep the pipe full?

9/2/2015 CSCI 445 - Fall 2015




How to keep the “pipe” full?

O Free discussion

9/2/2015 CSCI 445 - Fall 2015




Sliding Window Algorithm

O Allow multiple Sender Receiver
unacknowledged frames =
(send a few frames in a i
batch) = try to fill the "“-——-______'_"__'-——-____'_'"_'-——-_!,
pipe . i
O Define a time window = o il i
(threshold, or upper B e e
e T— -
™ i S T ——
bound) on iy iy
unacknowledged frames R
S

Sending window

Receiving window

O Have variations

9/2/2015 CSCI 445 - Fall 2015 16




Sliding Windows Algorithm: Sender

O Assign sequence number to each frame (SeqNum)

O Maintain three state variables:
Send Window Size (SWYS)
Last Acknowledgment Received (LAR)
Last Frame Sent (LFYS)

O Maintain invariant: LFS - LAR <= SWS
O Advance LAR when ACK arrives
O Buffer up to SWS frames

Sender Window Size — < SWS
_ . r o — —_—
: é L e
Last Acknowledge Received t ! Last Frame Sent

——LAR LFS «—
9/2/2015 CSCI 445 - Fall 2015 17




Sliding Windows Algorithm: Receiver

O Maintain three state variables
Receive Window Size (RWS)
Largest Acceptable Frame (LAF)
Last Frame Received (LFR)
O Maintain invariant: LAF - LFR <= RWS
O Frameg,,y,, arrives:
if LFR < SeqNum < = LAF, accept the frame
if SeqNum <= LFR or SeqNum > LAF, discard the frame
O SeqNumToAck: largest sequence number not yet acknowledged
O ACK is cumulative - ACK all frames with less or equal SeqNum

Receiver Window Size _ > <RWS “
ol A
Last Frame Receive 4
— rn @FL@ Acceptable Frame

9/2/2015 CSCI 445 - Fall 2015 18




Example: No Frame “Loss”

9/2/2015

Sender

CSCI 445 - Fall 2015

Receiver

19



Example: Frame “Loss”

O Frame 6 1s lost
Sender

Receiver SeqNumToAck 6

_________

Buffered but no
ACK sent

__________

Time out

_________

Buffered, but no
ACK sent

—— ey

Time out

Time out

_________

Buffered, but no
ACK sent

__________

_________

Acknowledge

accumulated frames
9/2/2015 CSCI 445 - Fall 2015 20




Sliding Window Algorithm: SWS and
RWS

O SWS should be determined by the product of delay x
bandwidth

O RWS does not have to be equal to SWS

RWS =1, does not buffer any frames that arrive out of
order

RWS > SWS 1s meaningless, since it is impossible for more
than SWS frames to arrive out of order

9/2/2015 CSCI 445 - Fall 2015 21




Examples

O Consider following sliding window algorithm

Caution: Parameters chosen for demos only. In reality they need to be
carefully chosen. Check footnote in page 108.

Timeout =2 x RTT
SWS (send window size) =4
o Determined by delay x bandwidth. Again check footnote in page 108.
RWS (receive window size) = 4
O Show timeline diagrams for the following scenarios
Frame 5 lost
Frame 6 lost
Frames 5-8 lost
ACK 6 lost

ACK 8 lost and no more frames to send (for an extended period of
time)

9/2/2015 CSCI 445 - Fall 2015

22



Sliding Window Algorithm:
Implementation — Data Structures

tyvpedef u_char SwpSegno;

tyvpedef struct {
SwpSegqno Seghhun: /* sequence number of this frame */
Swpsegqno AckMham; J* ack of received frame */
1_char Flags; J* up to B bkits worth of flags */

} SwpHAr;

Cyvpedef struct {
/* mender gide state: */

SwpSedqno LAR /* seqno of last ACE received */
SwpSedqno LFS; /¥ last frame =sent */

Semaphores sendWindowlotFull;

SwpHAr hdr; /* pre-initialized header */

struct send) slot {
Event timsout;
/* event associated with send-timeout */
M=aqg mad;
} =sendQ [ SWS] ;

/* receiver gide state: */
SwpSedqno NFE:
Ji* gegno of next frame expected */
atruct recvo _slot {
int received; /* is msg wvalid? */
M=aqg mad;
1 recv [EWS]

9/2/2015 1 SwWpState; CSCI 445 - Fall 2015

23



Sliding Window Algorithm:
Implementation — Sending

static int
sendSWE(SwpState *zstate, Msg *frams)

{

struct sendQ =slot *slot;
hibuf [HLEM] :

/* walt for send window to open */

semWalt (&state-rsendWindowMNotFull) ;

state->hdr.Segqilium = ++stCate-=LFE;

slot = &state-zsendl[state-=hdr. Seglhum % SWES] ;

store swp hdr(state->hdr, hbuf);

msghddHdr (fram=, hlbaf, HLEM) :

megoaveCopy (&slot->msqg, fram=);

slot-=timeocut = evSchedule (swpTimsout, slot,
SWP_SEND TIMEOUT) ;

return send(LINE, frame) ;

¥

9/2/2015 CSCI 445 - Fall 2015 24




Sliding Window Algorithm:
Implementation — Receiving (1

static int
deliverSWP (Swpitate state, Msg *frame)
{

SwpHdr hdr;

char *hbut:

hkuf = megStripHdr (frame, HLEHM) ;
load _swp _hdr{&hdr, hbuf)
if (hdr->Flags & FLAG ACE VALID)
{
/* received an acknowledgment---do SENDER side */
if (swpInWindow (hdr.2okMNum, state-=LAR + 1,
atate-=LFg5))
{
s [w]

{
struct sendQ _slot *slot:

glot = Lestate-»gendQ[++state->LAR % SWS] :
evilancel (slot->timecut) ;
msglestrovi&slot->msg) ;
semSignal (&state-rzendWindowNotFull) ;

} while (state->LAR != hdr.AckMNum) :

9/2/2015 CSCI 445 - Fall 2015




Sliding Window Algorithm:
Implementation — Receiving (2

if (hdr.Flags & FLAG HAS DATA)
{

struct recwvy _slot *slot;

/* received data packet---do RECEIVER side */
glot = &state->recvQ[hdr.Seqgqlium % EWS] :

1f (!'swplnWindow(hdr.Segbhum, =state-=NFE, if (hdr.Seqlum == state->NFE)
atate-=NFE + EWS - 1)) [
{ Mag m;
J* drop the message */
y s ATl (L B while (slot-rreceived)
{
magSavelopy (&slot->msg, frame) ; deliver (HLP, &slot->msg) :
slot->received = TRUE; megDestroy (&slot—>mag) ;

glot->received = FALSE;
glot = Lstate->recv[++state->NFE % EWS]:;
o
/* asend ACE: */
prepare ack(&m, state->NFE - 1) ;
send (LIMNE, &m) :
megDestr oy (&) ;

1
return SUCCESS:

9/2/2015 CSCI 445 - Fall 2015 26




Exercise L5-2

O Draw a timeline diagram for the sliding window
algorithm with SWS=RWS=3 frames in the following
two situations (draw two time diagrams for each
situation). Use a timeout interval of 2 x RTT

Frame 4 1s lost

Frame 4-6 are lost

9/2/2015 CSCI 445 - Fall 2015 27




Discussion

O Alternatives or improvement
Negative Acknowledgement (NAK)
Selective Acknowledgement

O Finite sequence numbers and sliding window

O Frame order and flow control

9/2/2015 CSCI 445 - Fall 2015

28



Summary

O Reliable delivery

Timeout and Acknowledgement
O Stop-and-Wait
O Sliding Window
O Idea: keep the pipe full

Many different algorithms exist, e.g., concurrent logical
channels

O How to implement?
Consult the book

9/2/2015 CSCI 445 - Fall 2015

29



