L2: Bandwidth and Latency

Hui Chen, Ph.D.

Dept. of Engineering & Computer Science

Virginia State University

Petersburg, VA 23806

Acknowledgements

- □ Some pictures used in this presentation were obtained from the Internet
- □ The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
 - James F. Kurose and Keith W. Ross, Computer Networking: A Top-Down Approach, 5th Ed., Addison Wesley, 2009
 - Larry L. Peterson's (http://www.cs.princeton.edu/~llp/) Computer Networks class web site

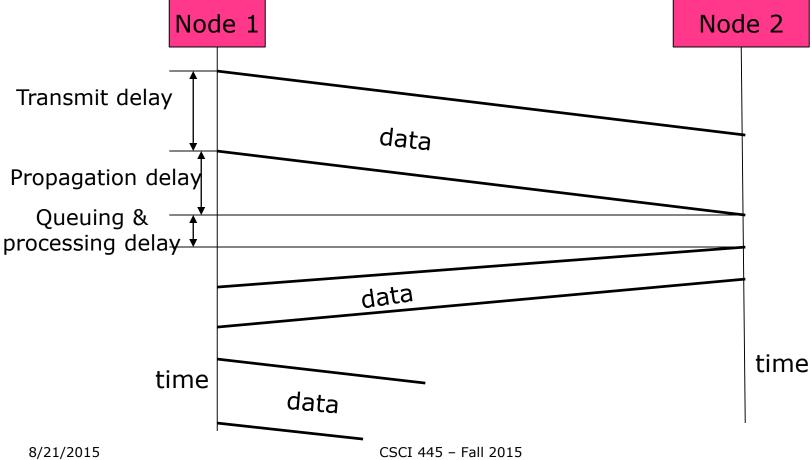
Review

- What to build?
 - Computer Network
 - General purpose
 - Cost-effective network sharing
 - □ Fair network link allocation
 - Robust connectivity
- How to build?
 - Layered architecture
- *How good is it? Does it meet application needs?*
 - Performance Metrics
 - Application performance needs

Performance Metrics

- Bandwidth
 - Data *can* be transmitted per time unit
 - Notation
 - □ Kbps = 10^3 bits per second (bps) Gbps = 10^9 bits per second (bps)
 - Mbps = 10^6 bits per second (bps)
 - Question: how is memory storage capacity (the amount of data) measured?
- Latency (delay)
 - Time to send message from point A to point B
 - Components
 - Latency = propagation + transmit + queue + ...
 - Propagation (i.e., propagation delay or propagation time) = distance / speed of signal
 - Transmit (i.e., transmit time) = size / bandwidth
 - queue (i.e., queueing delay) = the time when the message stays in the buffer before it is forwarded.
 - One-way versus round-trip time (RTT)

Link versus End-to-End

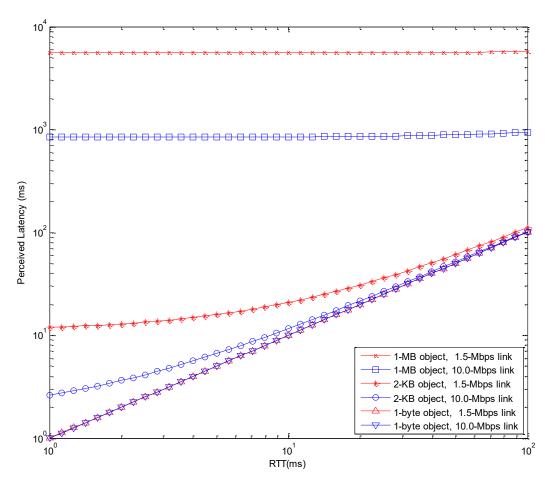

- End-to-End bandwidth
 - Throughput
 - All things considered
- Observations
 - Bits move "fast" but nodes may be slow
 - Fiber optics
 - Routing nodes made by "electronic" processors
 - Bandwidth limited by the nodes: optical routing
 - Bits move "slow" but nodes may be fast
 - □ Plain old telephone line
 - Fast routing nodes
 - Bandwidth limited by the link: replace the link

Latency = Propagation + Transmit + Queue + ...

- Many factors are in play
 - Node
 - Communication channel (link)
 - Interference
 -

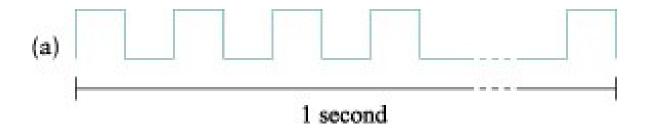
Latency = Propagation + Transmit + Queue + ...

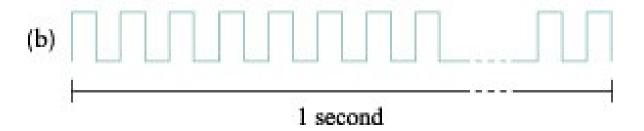
□ Simple scenario: two nodes connected by a link


Exercise L2-1

- □ Consider a fiber optic link 4400 km in length.
 - How much is the propagation delay of the link?
- □ Compute the time for transmitting 4 MB of data
 - Transmit data at the bandwidth of 56 kbps
 - Transmit data at the bandwidth of 100 Mbps
 - Transmit data at the bandwidth of 10 Gbps

Bandwidth versus Latency


- Bandwidth and latency
 - Throughput = Transfer Size / Transfer Time
- Example
 - Ignore queuing & processing delay. Acknowledgement takes no time.
 - Transfer Time = RTT + Transfer Size / Bandwidth
 - Throughput = Transfer Size / Transfer Time
 - Two networks: compute RTT and throughput
 - RTT = 1 ms; bandwidth = 1 Mbps
 - \blacksquare RTT = 100 ms; bandwidth = 100 Mbps
 - Send 1 byte
 - RTT dominates, bandwidth insignificant
 - Send 25 Mbytes
 - Bandwidth dominates, RTT insignificant


Bandwidth & Latency: Relative Importance

How wide is a bit?

□ Consider a link as a pipe full of bits, one after another

Link Utilization

- □ Do bits have "width? How wide is a bit?
- □ Consider following cases: what do you observe, assume the links are of the same?

Delay × Bandwidth Product

□ Amount of data "in flight" or "in the pipe"

 \blacksquare Example: 100 ms \times 45 Mbps = 560 KB

	Bandwidth	Distance		
Link Type	(Typical)	(Typical)	Round-trip Delay	$\text{Delay} \times \text{BW}$
Dial-up	56 Kbps	10 km	87 μs	5 bits
Wireless LAN	54 Mbps	50 m	0.33 μs	18 bits
Satellite	45 Mbps	35,000 km	230 ms	10 Mb
Cross-country fiber	10 Gbps	4,000 km	40 ms	400 Mb

Exercise L2-2

Show step-by-step how delay × bandwidth is calculated in previous slide (also included below). Choose one of the four.

	Bandwidth	Distance		
Link Type	(Typical)	(Typical)	Round-trip Delay	$\text{Delay} \times \text{BW}$
Dial-up	56 Kbps	10 km	87 μs	5 bits
Wireless LAN	54 Mbps	50 m	0.33 μs	18 bits
Satellite	45 Mbps	35,000 km	230 ms	10 Mb
Cross-country fiber	10 Gbps	4,000 km	40 ms	400 Mb

- □ Calculate delay × bandwidth for the following links
 - A wireless link of 56 kbps between Earth and the moon, provided signal travels at the speed of light $(3 \times 10^8 \text{ m/s})$ and the distance between the two is 384,403 km.

Application Performance Needs

- □ Uncompressed video: sequences of frames
 - \blacksquare ½ NTSC = 352 × 240 pixels
 - True color: 24 bits for 1 pixel
 - \blacksquare 1 frame = 352 × 240 × 24 = 2027520 bits
 - 30 fps (frames/second)
 - □ 2027520 bits/frame × 30 fps = 60825600 bits / second = 60825600 bps = 60825.6 Kbps = 60.8256 Mbps
- □ Compressed video: constant rate versus varied rate
 - Average bandwidth requirement suffices?
- Delay and Jitter

Exercise L2-3

- Assume no compression is done. Calculate the bandwidth necessary for transmitting in real time
 - High-definition video at resolution of 1920 x 1080,
 24bits/pixel, 30 frames/seconds

Summary

- □ Performance metrics
 - Bandwidth
 - Latency
 - Relative importance
 - Delay × Bandwidth Product
- □ Application needs
 - Bandwidth requirement
 - Delay requirement