
Experimenting Internetworking using Linux Virtual Machines –

Part II

Hui Chen

October 27, 2014

Contents

1 Overview

This document is Part II of the series of experiments to plan and implement internetworks
on Linux platforms. To make this document self-contained, portions of Part I are reproduced
in this docoument.

Sections are largly duplicated from the documentation for Part I are, Sections 1, 2.1, 2.2,
and ??. You may skip those sections if you are familiar with the documentation for Part I.
However, if you did complete the steps in Part I, make sure that you undo all the changes in
the Linux virtual machines since this document assumes that you have a fresh Linux virtual
machines.

Virtualization software such as Oracle VM VirtualBox and VMware Player makes it conveniently
for one to experiment with internetworks, i.e., experiment with network planning and net imple-
mentation.

Through a series of experiments, we will practice to plan a few networks, to connect the networks
to form an internetwork, and to implement the internetwork using a few Linux virtual machines.
The series of experiments, consisting of Part I, Part II, Part III, and Part IV, has the following
main objectives, respectively,

1. plan and implement a standalone IPv4 internetwork of linear topology where standalone means
that the internetwork is not configured to connected to the Internet and can be considered
as an isolated intranet (in Part I);

2. connect the IPv4 internetwork to the Internet using IPv4 Masquerading (in Part II);

3. repeat experiment 1, however, in IPv6 (in Part III); and

4. repeat experiment 2, however, in IPv6 (in Part IV).

1

Ethernet

Ethernet

H1 (VM 3)

The Internet

Network: 172.22.199.0/255.255.255.192

172.20.136.224/255.255.255.248

Ethernet

Network: 10.0.2.0/255.255.255.0

R1 (VM 1) R2 (VM 2)

R0 (VirtualBox NAT Engine)

Figure 1: Layout of planned network and existing network infrastructure. The existing network
infrastructure consists of VirtualBox NAT engine and host network setup.

2 Part II: Connecting IPv4 Internetwork to the Internet

In Part I of this series, we design an intenetwork as shown in Figure 1 and demonostrates the
implementation using 3 VirtualBox virtual machines as shown in Figure 2. Although the hosts in
the internetwork can communication with each other, the implementation has a few shortcomings.
Below are two most important shortcomings,

• When we ping VM 3 from VM 1 or ping VM 1 from VM 3, we observe large amount of
duplicated ICMP echo reply packets, which appears to be the result that VirtualBox internal
networking mode has only one Ethernet while we are trying to divide it into a few IPv4
networks.

To address the issue, one solution is to divide the virtual Ethernet into a few Virutual Local
Area Networks (VLANs). In this experiment of the series, we will divide the single Ethernet
into two VLANs.

• We find that ping will not be successful if we ping adapter eth0’s address on VM 1. Moreover,
we cannot connect to any hosts other than the three hosts from any of the three hosts. This
is also an important item that we will address in this part.

The main objectives of this experiment are,

• to plan and implement Virtual LANs (or VLANs) on Linux platforms; and

• to plan and implement IP Masquerading.

2

The Internet

Host Platform

Host NIC: 10.45.44.127

VirtualBox NAT Engine

Provides DHCP Server

Gateway 10.0.2.2

VirtualBox Networking Engine

Guest Platform (VM 1)

Virtual Adapter eth0

NAT Network

IPv4: 10.0.2.15

Network: 10.0.2.0/255.255.255.0

Virtual Adapter eth1

Host✄only Network

IPv4: 172.22.199.1

Network: 172.22.199.0/255.255.255.192

Guest Platform (VM 2)

Virtual Adapter eth1

Host✄only Network

IPv4: 172.20.136.225

Network: 172.20.136.224/255.255.255.248

Virtual Adapter eth0

Host✄only Network

IPv4: 172.22.199.62

Network: 172.22.199.0/255.255.255.192

Guest Platform (VM 3)

Virtual Adapter eth0

Host✄only Network

IPv4: 172.20.136.230

Network: 172.20.136.224/255.255.255.248

VLAN 100

Virtual Ethernet VLAN 200

Figure 2: An internetwork consisting of 3 virtual Linux hosts.

2.1 Software

Although the principal of this instruction is applicable to different virtualization software, e.g.
VMware Player and different Linux distributions, e.g., Fedora Linux, this instruction is tested on
the following software,

• Oracle VM VirtualBox version 4.2.16 and above

• Ubuntu Linux 14.04 (Trusty)

The Linux commands will be used in this experiment are, ifconfig, route, ip, ping, sysctl, tcp-
dump, vconfig, modprobe, and lsmod.

The Ubuntu Linux system configuration files that of our concern are /etc/network/interfaces,
/etc/sysctl.conf, and /etc/NetworkManager/NetworkManager.conf.

2.2 Preparation

Before we begin actual work, we will prepare and configure 3 virtual machines.

3

Figure 3: Configurations of VirtualBox virtual machine 1 (VM 1)

2.2.1 Linux Virtual Machines Settings

The 3 virtual machines will run on a single host computer. Therefore, you host computer must
have sufficient RAM and hard drive space. Each virtual machine is configured with 64MB RAM
and this instruction is tested on a Windows 8.1 host with 4GB RAM.

The network settings of the 3 Linux virtual machine images in VirtualBox are as follows,

• VM 1 has two Ethernet adapters, one in the NAT mode, and the other in the Internal Network
mode;

• VM 2 has two Ethernet adapters and both are in the Internal Network mode and the name
of the Ethernet the two adapters are on is ineten1; and

• VM 3 has one Ethernet adapter that is in the Internal network mode and the name of the
Ethernet of the adapter is on is ineten1.

Figure 3 shows the settings of the two adapters in VM 1.
We choose the Internal Network mode because as indicated in [?],

“The internal network (in this example ineten1) is a totally isolated network and so is
very ‘quiet’. This is good for testing when you need a separate, clean network, and you
can create sophisticated internal networks with vm’s that provide their own services to

4

Listing 1: Statements in /etc/sysctl.conf that Disables IPv6

d i s ab l e IPv6
net . ipv6 . conf . a l l . d i s a b l e i p v 6 = 1
net . ipv6 . conf . d e f au l t . d i s a b l e i p v 6 = 1
net . ipv6 . conf . l o . d i s a b l e i p v 6 = 1

the internal network. (e.g. Active Directory, DHCP, etc). Note that not even the Host
is a member of the internal network, but this mode allows vm’s to function even when
the Host is not connected to a network (e.g. on a plane).”

Note that it also implies that you cannot reach the host, let alone the outside network from
using the adapters put on the internal network mode without some “additional” help from other
nodes. An objective of this experiment is to connect these adapters on Ethernet ineten1 via a
gateway node, i.e., VM 1.

We install Debian Linux 8 on each of the virtual machines. You can download the base virtual
machine image from from either Dropbox or OneDrive.

2.2.2 Installing Tcpdump

Note that the base virtual machine image has not had tcpdump installed. Before you make any
clones, install tcpdump, e.g.,

[frame=single] sudo apt-get install tcpdump

2.2.3 Making Clones

You must change their settings in Oracle Virtual Box to match the required settings. It is rec-
ommended that you create linked clones from the base images and use the lined clones for this
experiment. See the insturctor’s VM Setup document for more information.

2.2.4 Disabling IPv4

Since we are to experiment on IPv6 in later experiments, we would desire a clean setup by config-
uring the network adapters to be IPv4 only, for which, we add the following statements to the end
of /etc/sysctl.conf as shown in Listing ??,

To make it effective without a reboot, execute the following command,

sudo s y s c t l −p / etc / s y s c t l . conf

To check if IPv6 is disabled, execute ip address show command and the result should not
contain any reference to inet6.

2.3 Network Planning

Let us assume that we would like to set up two new networks for an organization. One needs to
support about 60 hosts on the network and the other needs about 6 hosts.

5

https://www.dropbox.com/s/0hls6x6421o920g/VM_Base_Debian_8.x_en.7z?dl=0
http://1drv.ms/1Ze02D9
https://huichen-cs.github.io/course/CSCI445/lecture/vmsetup.pdf

• Network 1. It can support about 60 hosts on the network. Since 26 = 64, the network mask
can be 0xffffffc0, or 255.255.255.192 in dot-decimal notation. Examining the available
blocks of IPv4 address within the organization, you may conclude that the network can
be 172.22.199.0/255.255.255.192, or 172.22.199.0/26, i.e., network 172.22.199.0 with network
mask 255.255.255.192. The network can actually suport 26 − 2 = 64 − 2 = 62 hosts. Two
addresses must be excluded from the count as explained below,

– 172.22.199.0 must be excluded from the available addresses to be allocated to hosts to
avoid a confusion because 172.22.199.0 is reserved as the network number.

– 172.22.199.63 must be exluced from the available addresses to be allocated to hosts
because 172.22.199.63 whose bits for host numbers are all 1’s is reserved as the broadcast
address for the network.

• Network 2. It can support about 6 hosts on the network. Since 23 = 8, the network mask
can be 0xfffffff8, or 255.255.255.248 in dot-decimal notation. Examining the available
blocks of IPv4 addresses within the organization, you may conclude that the network can be
172.20.136.224/255.255.255.248, or 172.20.136.224/29. Similarly as Network 1, The number
of hosts on the network can be 23 − 2 = 8− 2 = 6.

Based on the above, we plan the internet as in Figure 1. Network 1 and Network 2 are connected
by Router R2; and Network 1 and the existing infrastructure network is connected by Router R1.

2.4 Implementation using Linux Virtual Machines

The implementation of the above internetwork design can be demonstrated using Linux virtual
machines. As described in subsection 2.2, we prepare 3 Ubuntu 14.04 virtual machines, i.e., VM 1,
VM 2, and VM 3. VM 1 is serving as R1, VM 2 is serving as R2, and VM 3 a host on Network 2,
i.e., H1. The result will be Figure 2.

2.4.1 VLAN Setup

VirtualBox appears to make its internal network to be a single Ethernet. We can create two logically
separated LANs using VLAN out of the single Ethernet. We plan to have 2 VLANs, VLAN 100
and VLAN 200, as shown in Figure 2.

• VLAN 100. Adapter eth1 in VM 1 and adapter eth0 in VM 2 belong to VLAN 100.

• VLAN 200. Adapter eth1 in VM 2 and adapter eth0 in VM 3 belong to VLAN 200.

To set up VLAN on Ubuntu Linux hosts, we need to install the vlan package as shown below
from the command line on each Linux virtual machine.

sudo apt−get i n s t a l l v lan

Note that the host must have the Internet access to install the package. You can temporary set
up one network adapter to the NAT mode and switch it back to the internal network mode after
you finish installing the package.

You will set up the Linux hosts to load 8021q kernel module. IEEE 802.1Q historically has
been the standard specifying Virtual LANs and VLAN Bridges. See [?] for more detail.

First, we check if the module has been been loaded using lsmod.

6

Listing 2: Output Showing Module 8021q is Loaded

user@VM−1:˜$ lsmod | grep 8021q
8021q 23920 0
garp 14019 1 8021q
mrp 18357 1 8021q
user@VM−1:˜$

Listing 3: Adding Adapter eth1 in VM 1 to VLAN 100

user@VM−1:˜$ sudo vcon f i g add eth1 100
Added VLAN with VID == 100 to IF −: eth1 :−
user@VM−1:˜$ ip addr
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 8 3 : 1 1 : cc brd f f : f f : f f : f f : f f : f f
i n e t 10 . 0 . 2 . 15/24 brd 1 0 . 0 . 2 . 2 5 5 scope g l oba l eth0

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
3 : eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 6 f : 2 c : 53 brd f f : f f : f f : f f : f f : f f

4 : eth1 . 100@eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group
de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : 6 f : 2 c : 53 brd f f : f f : f f : f f : f f : f f

lsmod | grep 8021q

If nothing is returned, module 8021q was not loaded. We then load the module using modprobe.

sudo modprobe 8021q

You can now use lsmod shown as before to check if module 8021q is loaded. Listing ?? is a
sample output that shows the module is loaded.

We can now assign adapter eth1 in VM 1 to VLAN 100 using vconfig and check if the assignment
is successful. The steps and the results are shown in Listing ??, In the result, you will find a new
Ethernet adapter called eth1.100@eth1, that indicates that eth1 is a member of VLAN 100.

We now move to assign adapter eth0 in VM 2 to VLAN 100 and assign adapter eth1 in VM 2
and adapter eth0 in VM 3 to VLAN 200. Listing ?? shows the steps and the results for assigning
adapter eth0 to VLAN 100 and assigning adapter eth1 to VLAN 200 in VM 2. Listing ?? is the
steps and the results for assigning eth0 to VLAN 200 in VM 3.

2.4.2 IPv4 Address Setup

We now consider the two items, (1) to assign IPv4 addresses to the adapters on the Linux hosts,
i.e., the 3 virtual machines; and (2) to configure routing tables and necessary packet forwarding for
IPv4.

As we pointed out in Part I, commands ifconfig and route are considered to be deprecated and
provide a minimum exposure on how one may configure IP networks using the ip command. In

7

Listing 4: Adding Adapters eth0 & eth1 in VM 2 Respectively to VLANs 100 & 200

user@VM−2:˜$ lsmod | grep 8021q
user@VM−2:˜$ sudo modprobe 8021q
user@VM−2:˜$ lsmod | grep 8021q
8021q 23920 0
garp 14019 1 8021q
mrp 18357 1 8021q
user@VM−2:˜$ sudo vcon f i g add eth0 100
Added VLAN with VID == 100 to IF −: eth0 :−
user@VM−2:˜$ sudo vcon f i g add eth1 200
Added VLAN with VID == 200 to IF −: eth1 :−
user@VM−2:˜$ ip addr
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f

3 : eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t
q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 8 4 : f 8 : e3 brd f f : f f : f f : f f : f f : f f

4 : eth0 . 100@eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group
de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f

5 : eth1 . 200@eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group
de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : 8 4 : f 8 : e3 brd f f : f f : f f : f f : f f : f f

Listing 5: Adding Adapter eth0 in VM 3 to VLAN 200

user@VM−3:˜$ lsmod | grep 8021q
user@VM−3:˜$ sudo modprobe 8021q
user@VM−3:˜$ lsmod | grep 8021q
8021q 23920 0
garp 14019 1 8021q
mrp 18357 1 8021q
user@VM−3:˜$ vcon f i g add eth0 200
WARNING: Could not open /proc /net / vlan/ con f i g . Maybe you need to load the 8021q module , or

maybe you are not us ing PROCFS??
ERROR: t r y i ng to add VLAN #200 to IF −: eth0 :− e r r o r : Operation not permitted
user@VM−3:˜$ sudo vcon f i g add eth0 200
Added VLAN with VID == 200 to IF −: eth0 :−
user@VM−3:˜$ ip addr
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f

3 : eth0 . 200@eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group
de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f

this part, we will use the ip command only with intention to introduce more on the usage of ip.
VM 1. According to the design in Figure 2, we assign address 172.22.199.1 to network interface

8

Listing 6: Setting IPv4 Address in VM 1

user@VM−1:˜$ sudo ip addr add 172 . 22 . 199 . 1/255 . 255 . 255 . 192 broadcast 172 . 22 . 199 . 63 dev eth1
. 100 l a b e l eth1 . 1 0 0 : 1

user@VM−1:˜$ ip addr show eth1 . 1 0 0 : 1
4 : eth1 . 100@eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group

de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : 6 f : 2 c : 53 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 22 . 199 . 1/26 brd 172 . 22 . 199 . 63 scope g l oba l eth1 . 1 0 0 : 1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r

Listing 7: Setting IPv4 Addresses in VM 2

user@VM−2:˜$ sudo ip addr add 172 . 22 . 199 . 62/255 . 255 . 255 . 192 broadcast 172 . 22 . 199 . 63 dev eth0
. 100 l a b e l eth0 . 1 0 0 : 1

user@VM−2:˜$ ip addr show eth0 . 1 0 0 : 1
4 : eth0 . 100@eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group

de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 22 . 199 . 62/26 brd 172 . 22 . 199 . 63 scope g l oba l eth0 . 1 0 0 : 1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
user@VM−2:˜$ ip route show
172 . 22 . 199 . 0/26 dev eth0 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 62
user@VM−2:˜$ sudo ip addr add 172 . 20 . 136 . 225/255 . 255 . 255 . 248 broadcast 172 . 20 . 136 . 232 dev

eth1 . 200 l a b e l eth1 . 2 0 0 : 1
user@VM−2:˜$ ip addr show eth1 . 2 0 0 : 1
5 : eth1 . 200@eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group

de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : 8 4 : f 8 : e3 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 20 . 136 . 225/29 brd 172 . 20 . 136 . 232 scope g l oba l eth1 . 2 0 0 : 1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
user@VM−2:˜$ ip route show
172 .20 . 136 . 224/29 dev eth1 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 225
172 . 22 . 199 . 0/26 dev eth0 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 62

eth1.100, a VLAN 100’s interface in VM 1. The address 172.22.199.1 is an address in Network
172.22.199.1/255.255.255.192 whose broadcast address is 172.22.199.63. We can now use ip to
make the IPv4 address assignment in VM 1 as shown in Listing ??.

VM 2. In VM 2, we have configured has two network interfaces that belong to VLAN 100 and
VLAN 200, resepctively.

As illustrated in Figure 2, we assign address 172.22.199.62 to network interface eth0.100, a
VLAN 100’s interface in VM 2. The address 177.22.199.62 is in Network 172.22.199.1/255.255.255.192
whose broadcast address is 172.22.199.63.

Likewise, we assign address 172.20.136.225 to network interface eth1.200, a VLAN 200’s interface
in VM 2. The address 172.20.136.225 is in Network 172.20.136.224/255.255.255.248 whose broadcast
address is 172.20.136.232.

The steps and the results of assigning the two addresses are shown in Listing ??.
Since network interface eth1.100 in VM 1 and network interface eth0.100 in VM 2 are in the same

Ethernet, a direct-link network, the two hosts should reach other via the direct-link network. It is a
good practice to verify the connectivity between the two hosts via the direct-link network because
in turn we can check if we make any mistake during the set up as described before. Listing ??

shows such an example using ping. The example shows that the two hosts can reach each other via

9

Listing 8: Pinging VM 1 from VM 2 via VLAN 100

user@VM−2:˜$ ping −c 1 172 . 22 . 199 . 1
PING 172 . 22 . 199 . 1 (1 7 2 . 2 2 . 1 9 9 . 1) 56(84) bytes o f data .
64 bytes from 172 . 2 2 . 1 9 9 . 1 : i cmp seq=1 t t l =64 time=0.362 ms

−−− 172 . 22 . 199 . 1 ping s t a t i s t i c s −−−
1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.362/0 . 362/0 . 362/0 . 000 ms
user@VM−2:˜$

Listing 9: Setting IPv4 Address for VM 3

user@VM−3:˜$ sudo ip addr add 172 . 20 . 136 . 230/255 . 255 . 255 . 248 broadcast 172 . 20 . 136 . 232 dev
eth0 . 200 l a b e l eth0 . 2 0 0 : 1

user@VM−3:˜$ ip addr show eth0 . 2 0 0 : 1
3 : eth0 . 200@eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c noqueue s ta t e UP group

de f au l t
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 20 . 136 . 230/29 brd 172 . 20 . 136 . 232 scope g l oba l eth0 . 2 0 0 : 1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
user@VM−3:˜$ ip route show
172 .20 . 136 . 224/29 dev eth0 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 230
user@VM−3:˜$

Listing 10: Testing Connectivity between VM 2 and VM 3

user@VM−3:˜$ ping −c 1 172 . 20 . 136 . 225
PING 172 . 20 . 136 . 225 (172 . 20 . 136 . 22 5) 56(84) bytes o f data .
64 bytes from 172 . 2 0 . 1 3 6 . 2 2 5 : i cmp seq=1 t t l =64 time=0.435 ms

−−− 172 . 20 . 136 . 225 ping s t a t i s t i c s −−−
1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.435/0 . 435/0 . 435/0 . 000 ms
user@VM−3:˜$

the direct-link network, i.e., VLAN 100.
VM 3. Finally, we assign the planned IPv4 address to network interface eth0.200 in VM 3. The

address is 172.20.136.230, an address in network 172.20.136.224/255.255.255.248. The network’s
broadcast address is 172.20.136.232. Listing ?? shows the assignment and the result.

Similar as before, we can now test the connectivity between VM 2 and VM3 via VLAN 200, a
direct-link network. Listing ?? shows the test result using ping.

2.4.3 Routing Table Setup

Similar to Part I, to allow hosts in network 172.22.199.1/255.255.255.192 and those in network
172.20.136.224/255.255.255.248 communicate with each other, we must update routing tables on
the network gateway, i.e., VM 2 and the hosts, i.e., VM 1 and VM 3. Since VM 2 is a network
gateway and is reponsible for forwarding IPv4 packets on behalf of the other network, we will enable
packet forwarding for IPv4 on VM 2 as well. The steps and the resulting routing tables are shown
Listings ??, ??, and ??.

10

Listing 11: Steps and Results for Routing Table Update in VM 1

user@VM−1:˜$ ip route show
de f au l t v i a 1 0 . 0 . 2 . 2 dev eth0 proto s t a t i c
10 . 0 . 2 . 0/24 dev eth0 proto ke r ne l scope l i n k s r c 1 0 . 0 . 2 . 1 5 metr ic 1
172 . 22 . 199 . 0/26 dev eth1 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 1
user@VM−1:˜$ sudo ip route add 172 .20 . 136 . 224/29 v ia 172 . 22 . 199 . 62
user@VM−1:˜$ ip route show
de f au l t v i a 1 0 . 0 . 2 . 2 dev eth0 proto s t a t i c
10 . 0 . 2 . 0/24 dev eth0 proto ke r ne l scope l i n k s r c 1 0 . 0 . 2 . 1 5 metr ic 1
172 . 20 . 136 . 224/29 v ia 172 . 22 . 199 . 62 dev eth1 . 100
172 . 22 . 199 . 0/26 dev eth1 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 1
user@VM−1:˜$

Listing 12: Enabling Packet Forwarding for IPv4 in VM 2

user@VM−2:˜$ sudo s y s c t l −w net . ipv4 . i p f orward=1
net . ipv4 . i p f orward = 1
user@VM−2:˜$

Listing 13: Steps and Results for Routing Table Update in VM 3

user@VM−3:˜$ sudo ip route show
172 .20 . 136 . 224/29 dev eth0 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 230
user@VM−3:˜$ sudo ip route add 172 . 22 . 199 . 0/255 . 255 . 255 . 192 v ia 172 . 20 . 136 . 225
user@VM−3:˜$ sudo ip route show
172 .20 . 136 . 224/29 dev eth0 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 230
172 . 22 . 199 . 0/26 v ia 172 . 20 . 136 . 225 dev eth0 . 200
user@VM−3:˜$

Listing 14: Testing Connectivity between VM 1 and VM 2 using ping

user@VM−3:˜$ ping −c 2 172 . 22 . 199 . 1
PING 172 . 22 . 199 . 1 (1 7 2 . 2 2 . 1 9 9 . 1) 56(84) bytes o f data .
64 bytes from 172 . 2 2 . 1 9 9 . 1 : i cmp seq=1 t t l =63 time=0.696 ms
64 bytes from 172 . 2 2 . 1 9 9 . 1 : i cmp seq=2 t t l =63 time=1.92 ms

−−− 172 . 22 . 199 . 1 ping s t a t i s t i c s −−−
2 packets transmitted , 2 r ece i ved , 0% packet l o s s , time 1000ms
r t t min/avg/max/mdev = 0.696/1 . 312/1 . 929/0 . 617 ms
user@VM−3:˜$

To test the setting, we can ping the hosts in network 172.20.136.224/255.255.255.248 from a
host in 172.22.199.1/255.255.255.192. We then ping 172.22.199.1, the address allocated to network
interface eth1.100 in VM 1 from VM 3. The result is shown in Listing ??

2.4.4 Connecting to VirtualBox Internal Network

Although the hosts in the two networks 172.22.199.1/255.255.255.192 and 172.20.136.224/255.255.255.248
can communicate with each other, you will quickly find that the networks cannot reach network
10.0.2.0/255.255.255.0, the network that adapter eth0 in VM 1 belongs to. For instance, Listing ??

shows that 10.0.2.15, a host on network 10.0.2.0/255.255.255.0 is not reachable from VM 3.

11

Listing 15: Showing Network 10.0.2.0/255.255.255.0 Not Reachable on VM 3

user@VM−3:˜$ ping 1 0 . 0 . 2 . 1 5
connect : Network i s unreachable
user@VM−3:˜$

Listing 16: Adding Network 10.0.2.0/255.255.255.0 in Routing Table in VM 2

user@VM−2:˜$ sudo ip route add 10 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 22 . 199 . 1
user@VM−2:˜$ ip route show
10 . 0 . 2 . 0/24 v ia 172 . 22 . 199 . 1 dev eth0 . 100
172 . 20 . 136 . 224/29 dev eth1 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 225
172 . 22 . 199 . 0/26 dev eth0 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 62

Listing 17: Adding Network 10.0.2.0/255.255.255.0 in Routing Table in VM 3

user@VM−3:˜$ sudo ip route add 10 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 20 . 136 . 225
user@VM−3:˜$ sudo ip route show
10 . 0 . 2 . 0/24 v ia 172 . 20 . 136 . 225 dev eth0 . 200
172 . 20 . 136 . 224/29 dev eth0 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 230
172 . 22 . 199 . 0/26 v ia 172 . 20 . 136 . 225 dev eth0 . 200

Listing 18: Testing Connectivity to Network 10.0.2.15/255.255.255.0 in VM 3

user@VM−3:˜$ ping −c 2 1 0 . 0 . 2 . 1 5
PING 10 . 0 . 2 . 1 5 (1 0 . 0 . 2 . 1 5) 56(84) bytes o f data .
64 bytes from 1 0 . 0 . 2 . 1 5 : i cmp seq=1 t t l =63 time=1.08 ms
64 bytes from 1 0 . 0 . 2 . 1 5 : i cmp seq=2 t t l =63 time=2.18 ms

−−− 1 0 . 0 . 2 . 1 5 ping s t a t i s t i c s −−−
2 packets transmitted , 2 r ece i ved , 0% packet l o s s , time 1003ms
r t t min/avg/max/mdev = 1.081/1 . 632/2 . 184/0 . 552 ms
user@VM−3:˜$

Examining the routing tables in VM 2 and VM 3 as included in Listings ?? and ??, we know
that no entry for network 10.0.2.0/255.255.255.0 in the routing tables. Therefore, we shall add the
entries for network 10.0.2.0/255.255.255.0 in the routing tables, as illustrated in Listings ?? and ??.

Now we can show that host 10.0.2.15 is reachable from either VM 2 or VM 3 as in Listing ??.

2.4.5 Connecting to Outside Networks

Next stage is to connect to host platform and outside network. If the host has connectivity to the
Internet, we would like to connect to the Internet from the two networks we created, i.e., networks
172.22.199.1/255.255.255.192 and 172.20.136.224/255.255.255.248 as well. Since VM 1 is the single
gateway between the two networks we created, we shall add an entry to routing tables in VM 2
and VM 3 to forward traffic to any networks other than the two networks and the VirtualBox
Internal Network, i.e., networks 172.22.199.1/255.255.255.192 and 172.20.136.224/255.255.255.248
and 10.0.2.15/255.255.255.0 to VM 1. To achieve the above, we will add a default network entry to
the routing tables as shown in Listings ?? and ??.

12

Listing 19: Adding Default Gateway in VM 2

user@VM−2:˜$ sudo ip route add 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 22 . 199 . 1
user@VM−2:˜$ ip route show
de f au l t v i a 172 . 22 . 199 . 1 dev eth0 . 100
10 . 0 . 2 . 0/24 v ia 172 . 22 . 199 . 1 dev eth0 . 100
172 . 20 . 136 . 224/29 dev eth1 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 225
172 . 22 . 199 . 0/26 dev eth0 . 100 proto ke r ne l scope l i n k s r c 172 . 22 . 199 . 62

Listing 20: Adding Default Gateway in VM 3

user@VM−3:˜$ sudo ip route add 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 20 . 136 . 225
user@VM−3:˜$ ip route show
de f au l t v i a 172 . 20 . 136 . 225 dev eth0 . 200
10 . 0 . 2 . 0/24 v ia 172 . 20 . 136 . 225 dev eth0 . 200
172 . 20 . 136 . 224/29 dev eth0 . 200 proto ke r ne l scope l i n k s r c 172 . 20 . 136 . 230
172 . 22 . 199 . 0/26 v ia 172 . 20 . 136 . 225 dev eth0 . 200

Listing 21: Enabling Packet Forwarding for IPv4 in VM 2

user@Ubuntu−VM−1:˜$ sudo s y s c t l −w net . ipv4 . i p f orward=1
net . ipv4 . i p f orward = 1
user@Ubuntu−VM−1:˜$

Since VM 1 is now serving as a network gateway and forwarding packets for the two networks,
i.e., networks 172.20.136.224/255.255.255.248 and 172.22.199.1/255.255.255.192, we shall enable
packet forwarding for IPv4 in VM 1 as shown in Listing ??.

However, the above steps are insufficient — the observation shown in Listing ?? indicates that al-
though the packets from networks 172.22.199.1/255.255.255.192 and 172.20.136.224/255.255.255.248
are indeed being forwarded into adapter eth0, VM 1 does not appear to know how to forward packets
back to the two networks, i.e., when we ping IPv4 address 10.0.2.15 from any of the two networks
(any hosts on the two networks) (such as, run ping 10.0.2.15 in either VM 2 or VM 3), we do
observe ICMP echo requests being transmitted to the outside networks; however, no ICMP echo
reply requests were forwarded back.

The above result is not surprising, giving that all IPv4 addresses are private internet addresses.
Private internet addresses are specified in RFC 1918 [?] and private internet addresses are not
globally unique. We must use Network Address Translation (NAT) to enable the private networks to
connect to outside networks. For more information on NAT, readers are referred to RFC 3022 [?], [?,
p. 439–442].

In Ubuntu Linux, we can configure IPv4 Masquerading in VM 1 and VM 1 becomes a NAT
gateway. IPv4 Masquerading is a functionality of Ubuntu network firewall, called Uncomplicated
Firewall or ufw [?].

Following the instruction in [?], we make changes to ufw.

• Packet forwarding needs to be enabled in ufw. We shall change DEFAULT FORWARD POLICY
to “ACCEPT” from “DROP” in /etc/default/ufw. We then uncomment net.ipv4.ip forward=1
in /etc/ufw/sysctl.conf

13

Listing 22: Testing Connectivity to Outside Networks Showing No Return Packets

user@VM−1:˜$ sudo tcpdump − i eth1 . 100
tcpdump : WARNING: eth1 . 1 0 0 : no IPv4 addres s as s i gned
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth1 . 100 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
20 : 42 : 29 . 948343 IP 172 . 22 . 199 . 62 > www. vsu . edu : ICMP echo request , i d 2776 , seq 21 , l ength

64
20 : 42 : 34 . 948391 IP 172 . 22 . 199 . 62 > www. vsu . edu : ICMP echo request , i d 2776 , seq 26 , l ength

64
ˆC
2 packets captured
4 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
user@VM−1:˜$ sudo tcpdump − i eth0
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth0 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
20 : 43 : 38 . 134916 IP 172 . 22 . 199 . 62 > p i l o t . vsu . edu : ICMP echo request , i d 2776 , seq 89 , l ength

64
20 : 43 : 38 . 137005 ARP, Request who−has 172 . 22 . 199 . 62 (Broadcast) t e l l 1 0 . 0 . 2 . 2 , l ength 46
20 : 43 : 38 . 445532 IP 10 . 0 . 2 . 1 5 . 4 7 3 2 6 > ldap2 . vsu . edu . domain : 42636+ PTR? 15 . 3 3 . 1 7 4 . 1 5 0 . in−addr

. arpa . (44)
20 : 43 : 38 . 445857 IP 10 . 0 . 2 . 1 5 . 4 7 3 2 6 > ldap1 . vsu . edu . domain : 42636+ PTR? 15 . 3 3 . 1 7 4 . 1 5 0 . in−addr

. arpa . (44)
20 : 43 : 38 . 446061 IP 10 . 0 . 2 . 1 5 . 4 7 3 2 6 > 1 5 0 . 1 7 4 . 7 . 8 5 . domain : 42636+ PTR? 15 . 3 3 . 1 7 4 . 1 5 0 . in−addr .

arpa . (44)
20 : 43 : 38 . 446249 IP 10 . 0 . 2 . 1 5 . 4 7 3 2 6 > ex t e r na l . vsu . edu . domain : 42636+ PTR? 15 . 3 3 . 1 7 4 . 1 5 0 . in−

addr . arpa . (44)
20 : 43 : 38 . 448039 IP ex t e r na l . vsu . edu . domain > 1 0 . 0 . 2 . 1 5 . 4 7 3 2 6 : 42636∗ 3/0/0 PTR p i l o t . vsu . edu

. , PTR vsu . edu . , PTR www. vsu . edu . (103)
20 : 43 : 38 . 448973 IP 15 0 . 1 7 4 . 7 . 8 5 . domain > 1 0 . 0 . 2 . 1 5 . 4 7 3 2 6 : 42636∗ 3/0/0 PTR p i l o t . vsu . edu . ,

PTR www. vsu . edu . , PTR vsu−webcs−02v . vsu . edu . (117)
20 : 43 : 38 . 449014 IP 10 . 0 . 2 . 1 5 > 1 5 0 . 1 7 4 . 7 . 8 5 : ICMP 10 . 0 . 2 . 1 5 udp port 47326 unreachable ,

l ength 153
20 : 43 : 38 . 449252 IP 10 . 0 . 2 . 1 5 . 5 5 8 8 5 > ex t e r na l . vsu . edu . domain : 33668+ PTR? 62 . 1 9 9 . 2 2 . 1 7 2 . in−

addr . arpa . (44)
20 : 43 : 38 . 451702 IP ex t e r na l . vsu . edu . domain > 1 0 . 0 . 2 . 1 5 . 5 5 8 8 5 : 33668 NXDomain 0/1/0 (96)
.

• We will add rules to the /etc/ufw/before.rules file, for which, we add the following to the top
of the file just after the header comments,

nat Table r u l e s
∗nat
:POSTROUTING ACCEPT [0 : 0]

Forward t r a f f i c from eth1 through eth0 .
−A POSTROUTING −s 172 . 22 . 199 . 0/26 −o eth0 −j MASQUERADE
−A POSTROUTING −s 172 . 20 . 136 . 224/29 −o eth0 −j MASQUERADE

don ’ t d e l e t e the ’COMMIT’ l i n e or these nat tab l e r u l e s won ’ t be proces s ed
COMMIT

• Then, we shall restart ufw.

sudo ufw d i s a b l e && sudo ufw enable

We now test the connectivity to outside network by pinging Google’s webserver as in Listing ??.

14

Listing 23: Testing Connectivity to Outside Network on VM 3

user@VM−3:˜$ ping −c 5 74 . 125 . 131 . 106
PING 74 . 125 . 131 . 106 (74 . 125 . 131 . 10 6) 56(84) bytes o f data .
64 bytes from 74 . 1 2 5 . 1 3 1 . 1 0 6 : i cmp seq=1 t t l =44 time=107 ms
64 bytes from 74 . 1 2 5 . 1 3 1 . 1 0 6 : i cmp seq=2 t t l =44 time=110 ms
64 bytes from 74 . 1 2 5 . 1 3 1 . 1 0 6 : i cmp seq=3 t t l =44 time=107 ms
64 bytes from 74 . 1 2 5 . 1 3 1 . 1 0 6 : i cmp seq=4 t t l =44 time=98.2 ms
64 bytes from 74 . 1 2 5 . 1 3 1 . 1 0 6 : i cmp seq=5 t t l =44 time=106 ms

−−− 74 . 125 . 131 . 106 ping s t a t i s t i c s −−−
5 packets transmitted , 5 r ece i ved , 0% packet l o s s , time 4009ms
r t t min/avg/max/mdev = 98 .275/106 . 273/110 . 812/4 . 242 ms
user@VM−3:˜$

Listing 24: Testing Name Resolution in VM 3

user@VM−3:˜$ nslookup
> www. yahoo . com
Server : 8 . 8 . 8 . 8
Address : 8 . 8 . 8 . 8#53

Non−au th o r i t a t i v e answer :
www. yahoo . com canon i ca l name = fd−fp3 . wg1 . b . yahoo . com .
Name : fd−fp3 . wg1 . b . yahoo . com
Address : 98 . 139 . 180 . 149
Name : fd−fp3 . wg1 . b . yahoo . com
Address : 98 . 139 . 183 . 24
> www. espn . com
Server : 8 . 8 . 8 . 8
Address : 8 . 8 . 8 . 8#53

Non−au th o r i t a t i v e answer :
www. espn . com canon i ca l name = r ed i r . espn . gns . go . com .
Name : r e d i r . espn . gns . go . com
Address : 68 . 71 . 212 . 159
> e x i t
user@VM−3:˜$

The last, not the least, is to add domain name server to VM 2 and VM 3. We can add the
following lines to /etc/resolv.conf in both VM 2 and VM 3.

nameserver 8 . 8 . 8 . 8
nameserver 8 . 8 . 4 . 4

Note that hosts 8.8.8.8 and 8.8.4.4 are Google’s public domain name servers (DNS) [?]. To test
the name resolution, you can use either dig or nslookup. Listing ?? is an example of using nslookup
to look up www.yahoo.com and www.espn.com.

2.5 Making Changes Permanent

The configuration changes we have made are not permanent and do not survive a reboot. To make
the configuration changes permanent, i.e., to survive a reboot, we need to make changes to a few
Linux configuration files.

Different Linux distributions may have different layout of configuration files. Ubuntu Linux can

15

Listing 26: Enabling IPv4 Packet Forwarding in /etc/sysctl on VM 1

Uncomment the next l i n e to enable packet forwarding f o r IPv4
net . ipv4 . i p f orward=1

be considered as a derivative of Debian Linux distribution [?]. The changes to the configuration
files referred in this section are tested on Ubuntu 14.04 and are mostly applicable to Debian Linux
distributions and other Linux distributions derived from Debian Linux.

The loadable kernerl modules can be specified in /etc/modules. The IPv4 address assignment
and other configuration settings can be manually added in configuration file /etc/network/in-
terfaces. The Linux kernel packet forwarding can be enabled by modifying configuration file
/etc/sysctl.conf.

2.5.1 Configuration in VM 1

We first summarize the configuration changes as follows,

• loading kernel module 8021q [?,?],

• enabling packet forwarding for IPv4 and item disabling IPv6 [?,?],

• creating desired VLAN, assigning IPv4 address to the VLAN interface eth1.100 [?], and

• setting NAT gateway by enabling IP Masqerading [?].

When the configuration, described in detail below is completed, reboot the Linux virtual ma-
chine.

Loading Kernel Module 8021q We modifiy /etc/modules to load module 8021q. The content
of /etc/modules on VM 1 is shown as Listing ??. The content of the configuration file may be
different on your machine; however, it must contains a line 8021q that informs Linux to load
module 8021q— during system startup.

Listing 25: Content of /etc/modules on VM 1

/ etc /modules : k e r ne l modules to load at boot time .
#
This f i l e conta ins the names o f k e r ne l modules that should be loaded
at boot time , one per l i n e . Lines beginning with ”#” are i gnor ed .
Parameters can be s p e c i f i e d a f t e r the module name .

lp
8021q

Enabling Packet Forwarding for IPv4 To enable pacekt forwarding for IPv4 on VM 1, we will
uncomment the line net.ipv4.ip foward=1 in /etc/sysctl.conf. The line should resemble Listing ??

after the change.

Disabling IPv6 To disable IPv6 on VM 1, we will add a few lines /etc/sysctl.conf. Conveniently,
we add the lines to the end of the configuration file. The lines are shown in Listing ??

16

Listing 27: Enabling IPv4 Packet Forwarding in /etc/sysctl on VM 2

d i s ab l e ipv6
net . ipv6 . conf . a l l . d i s a b l e i p v 6 = 1
net . ipv6 . conf . d e f au l t . d i s a b l e i p v 6 = 1
net . ipv6 . conf . l o . d i s a b l e i p v 6 = 1

Listing 28: Content of /etc/network/interfaces on VM 1

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth1 . 100
i f a c e eth1 . 100 i n e t s t a t i c

vlan−raw−dev i ce eth1
addres s 172 . 22 . 199 . 1
netmask 255 . 255 . 255 . 192
post−up ip route add 172 . 20 . 136 . 224/255 . 255 . 255 . 248 v ia 172 . 22 . 199 . 62
pre−down ip route de l 172 . 20 . 136 . 224/255 . 255 . 255 . 248 v ia 172 . 22 . 199 . 62

Configuring VLAN and Network Interface To configure VLAN, IPv4 address assignment,
and domain name service, we resort to /etc/network/interfaces. The content of /etc/network/in-
terfaces on VM 1 is shown as Listing ??.

2.5.2 Configuration in VM 2

Similarly, we will make the following configuration changes,

• loading kernel module 8021q [?,?],

• enabling packet forwarding for IPv4 and item disabling IPv6 [?,?], and

• creating desired VLAN, assigning IPv4 address to the VLAN interface eth1.100 [?], and
setting up name resoultion [?].

Note that VM 2 is not a NAT gateway and no configuration change is necessary for the network
firewall. When the configuration, described in detail below is completed, reboot the Linux virtual
machine.

Loading Kernel Module 8021q This is identical to Section ??, i.e., we need to add the line
8021q to /etc/modules. The content of the file is identical to that for VM 1.

Enabling Packet Forwarding for IPv4 This is identical to Section ??, i.e., we need to un-
comment the line net.ipv4.ip forward=1 in /etc/sysctl.conf.

Disabling IPv6 This is identical to Section ??.

17

Listing 29: Content of /etc/network/interfaces on VM 2

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth0 . 100
i f a c e eth0 . 100 i n e t s t a t i c

addres s 172 . 22 . 199 . 62
netmask 255 . 255 . 255 . 192
dns−nameservers 8 . 8 . 8 . 8 8 . 8 . 4 . 4
post−up ip route add 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 22 . 199 . 1
pre−down ip route de l 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 22 . 199 . 1
post−up ip route add 10 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 22 . 199 . 1
pre−down ip route de l 1 0 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 22 . 199 . 1

auto eth1 . 200
i f a c e eth1 . 200 i n e t s t a t i c

addres s 172 . 20 . 136 . 225
netmask 255 . 255 . 255 . 248

Configuring VLAN, Network Interface, and Name Resolution The difference bwteen the
configuration in VM 2 and that in VM 1 lies here since we need to confgiure two VLANs and assign
different addresses to the two network interfaces. The same as in Section ??, the configuration is
defined in /etc/network/interfaces. However, the content of the file is different. The content of
/etc/network/interfaces on VM 2 is shown as Listing ??.

Note that in the configuration file, we specify two domain name servers. The two are Google’s
public domain name servers [?]. We may use others, such as those made avaiable by a nearby
network.

2.5.3 Configuration in VM 3

Similarly, we will make the following configuration changes,

• loading kernel module 8021q [?,?],

• diabling IPv6 [?],

• creating desired VLAN, assigning IPv4 address to the VLAN interface eth1.100 [?], and
setting up name resolution [?].

Note that VM 2 is not a NAT gateway and no configuration change is necessary for the network
firewall. In addition, VM 3 is not serving as a network gateway and there is no need to enable
packet forwarding for IPv4. When the configuration, described in detail below is completed, reboot
the Linux virtual machine.

Loading Kernel Module 8021q This is no different from Section ??, i.e., we need to add the
line 8021q to /etc/modules. The content of the file is identical to that for VM 1.

Disabling IPv6 This is the same as Section ??.

18

Listing 30: Content of /etc/network/interfaces on VM 3

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth0 . 200
i f a c e eth0 . 200 i n e t s t a t i c

addres s 172 . 20 . 136 . 230
netmask 255 . 255 . 255 . 248
dns−nameservers 8 . 8 . 8 . 8 8 . 8 . 4 . 4
post−up ip route add 172 . 22 . 199 . 0/255 . 255 . 255 . 192 v ia 172 . 20 . 136 . 225
pre−down ip route de l 172 . 22 . 199 . 0/255 . 255 . 255 . 192 v ia 172 . 20 . 136 . 225
post−up ip route add 10 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 20 . 136 . 225
pre−down ip route de l 1 0 . 0 . 2 . 0 / 2 5 5 . 2 5 5 . 2 5 5 . 0 v i a 172 . 20 . 136 . 225
post−up ip route add 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 20 . 136 . 225
pre−down ip route de l 0 . 0 . 0 . 0 / 0 . 0 . 0 . 0 v i a 172 . 20 . 136 . 225

Listing 31: Example: Unassign IPv4 Address Using ifconfig

sudo i f c o n f i g eth1 0

Listing 32: Example: Unassign IPv4 Address Using ifconfig

sudo i f c o n f i g eth1 . 100 0

Configuring VLAN and Network Interface We need to configure a VLAN and assign an
IPv4 address to the network interface. The configuration is specified in /etc/network/interface.
The content of /etc/network/interfaces on VM 3 is shown as Listing ??.

Note that in the configuration file, we specify two domain name servers. The two are Google’s
public domain name servers [?]. We may use others, such as those made avaiable by a nearby
network.

2.6 Dealing with Regrets

Everyone makes mistakes. We will make mistakes when we configure the networks. It is important
that we know how to undo a change that is considered a mistake or is not shown to be working.
If we assigned a wrong IPv4 address, we can undo the change using either ifconfig and ip. If we
created a wrong routing table entry, we can undo the change using either route and ip. As we
mentioned before, many consider that ifconfig and route are deprecated.

Listings ?? and ?? show two examples that you can use ifconfig to unset IPv4 address by setting
the IPv4 address to 0. You may have to repeat the command for a few times if more than one
wrong IPv4 address was assigned to the adapter. You must run the command and verify the setting
of the network adapter, and repeat the command until no IPv4 address is present.

Listings ?? and ?? are two examples of deleting a previously added IPv4 address using the
ip command. The essence is that to delete an address, simply replace the “add” keyword in the
command that you use to add the address by “del” and run the new command. Similar as before,
you may have to repeat the command with different IPv4 addresses if more than one IPv4 addresses

19

Listing 33: Example: Deleting an IPv4Address using ip

sudo ip addr de l 172 . 22 . 199 . 1/26 dev eth1

Listing 34: Example: Deleting an IPv4Address using ip

sudo ip addr de l 172 . 22 . 199 . 1/255 . 255 . 255 . 192 dev eth0 . 200

Listing 35: Exmaple: Deleting an Entry from a Routing Table using route

sudo route de l −net 172 . 22 . 199 . 0 netmask 255 . 255 . 255 . 192 gw 172 . 20 . 136 . 225

Listing 36: Example: Deleting an Entry from a Routing Table using ip

sudo ip route de l 172 . 22 . 199 . 0 255 . 255 . 255 . 192 v ia 172 . 20 . 136 . 225

were assigned to the adapter.
To delete an entry from a routing table, you may use the route command as shown in Listing ??

or use the ip command as shown in Listing ??.

3 Remaining Issues

Although we have completed the configuration for the internetwork, the network appears to be
working. One minor issue that we may address is to merge unnecessary routing table entries —
the objective is to make the routing table as small as possible while the routing table is in effect
the same, which speeds up routing table lookup when a IPv4 packet arrarive. For instance, in VM
3, regardless which network the packet’s destination may be, the only possible network gateway is
172.20.136.225. The task to make the routing table smaller will be an exercise of the readers.

4 Practice Assignment

You are required to complete the following items.

• Following the instruction in this document, implement the internetwork as illustrated in
Figure 2 in 3 virtual machines.

• Design and implement an internetwork using 4 virtual machines as shown in Figure ??.

• Connect the internetwork to the outside network.

Show steps, the results of configuration, and testing results in a brief report.

20

��������

��������

��������

��	
��	�

���	��������

�������	�	
��	��	����		������

�������	�	
��	��	���	������

��������

��������	����������������������

��	
��	�� ��	
��	��

��	
����� !"�#	�$�	��%����

��	
��	&�

�������		
��	��	'�		������

Figure 4: Layout of a planned network and existing network infrastructure. The existing network
infrastructure consists of VirtualBox NAT engine and host network setup.

References

[1] Debian Linux Developers. Network configuration: Multiple ip addresses on one in-
terface. https://wiki.debian.org/NetworkConfiguration#Multiple_IP_addresses_on_

One_Interface, retrieved on October 27, 2014.

[2] Google Developers. Google public dns. https://developers.google.com/speed/

public-dns/docs/using, retrieved on October 27, 2014.

[3] Ubuntu Linux Developers. https://wiki.ubuntu.com/uncomplicatedfirewall. https://wiki.

ubuntu.com/UncomplicatedFirewall, retrieved on October 27, 2014.

[4] Ubuntu Linux Developers. Ipv6. https://wiki.ubuntu.com/IPv6, retrieved on October 27,
2014.

[5] Ubuntu Linux Developers. Loadable modules. https://help.ubuntu.com/community/

Loadable_Modules, retrieved on October 27, 2014.

[6] Ubuntu Linux Developers. Network configuration: Name resolution. https://help.ubuntu.
com/14.04/serverguide/network-configuration.html#name-resolution, retrieved on
October 27, 2014.

[7] Ubuntu Linux Developers. Ubuntu 14.04: Ubuntu server guide: Security: Firewall. https://
help.ubuntu.com/lts/serverguide/firewall.html, retrieved on October 27, 2014.

[8] Ubuntu Linux Developers. Ubuntu and debian. http://www.ubuntu.com/about/

about-ubuntu/ubuntu-and-debian, retrieved on October 27, 2014.

21

https://wiki.debian.org/NetworkConfiguration#Multiple_IP_addresses_on_One_Interface
https://wiki.debian.org/NetworkConfiguration#Multiple_IP_addresses_on_One_Interface
https://developers.google.com/speed/public-dns/docs/using
https://developers.google.com/speed/public-dns/docs/using
https://wiki.ubuntu.com/UncomplicatedFirewall
https://wiki.ubuntu.com/UncomplicatedFirewall
https://wiki.ubuntu.com/IPv6
https://help.ubuntu.com/community/Loadable_Modules
https://help.ubuntu.com/community/Loadable_Modules
https://help.ubuntu.com/14.04/serverguide/network-configuration.html#name-resolution
https://help.ubuntu.com/14.04/serverguide/network-configuration.html#name-resolution
https://help.ubuntu.com/lts/serverguide/firewall.html
https://help.ubuntu.com/lts/serverguide/firewall.html
http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian
http://www.ubuntu.com/about/about-ubuntu/ubuntu-and-debian

[9] Ubuntu Linux Developers. Vlan. https://wiki.ubuntu.com/vlan, retrieved on October 27,
2014.

[10] Blog: The Fat Bloke Sings: Thoughts from a Fat Bloke. Networking in virtualbox. https://
blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1, posted on October 15,
2013 and retrieved on October 27, 2014.

[11] IEEE. 802.1q – virtual lans. http://www.ieee802.org/1/pages/802.1Q.html, retrieved on
October 27, 2014.

[12] Charles Kozierok. The TCP/IP Guide: A Comprehensive, Illustrated Internet Protocols Ref-
erence. No Starch Press, San Francisco, CA, USA, 2005.

[13] Mark0978. How to disable ipv6 on ubuntu? http://askubuntu.com/a/381623, retrieved on
October 27, 2014.

[14] Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear. Address Allocation
for Private Internets. RFC 1918 (Best Current Practice), February 1996.

[15] P. Srisuresh and K. Egevang. Traditional ip network address translator (traditional nat). RFC
3022, RFC Editor, January 2001. http://www.rfc-editor.org/rfc/rfc3022.txt.

22

https://wiki.ubuntu.com/vlan
https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1
https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1
http://www.ieee802.org/1/pages/802.1Q.html
http://askubuntu.com/a/381623
http://www.rfc-editor.org/rfc/rfc3022.txt

	Overview
	Part II: Connecting IPv4 Internetwork to the Internet
	Software
	Preparation
	Linux Virtual Machines Settings

