
Experimenting Internetworking using Linux Virtual Machines –

Part I

Hui Chen

Previous Release on October 27, 2014

Lastly revised on November 4, 2015

Revision:

Copyright c© 2016. Hui Chen <huichen@ieee.org> Permission is granted to copy, dis-
tribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3 or any later version published by the Free Software Foundation. A
copy of the license can be found at http://www.gnu.org/licenses/fdl.html.

Contents

1 Overview 2

2 Part I: Building an IPv4 Internetwork 2
2.1 Software . 3
2.2 Preparation . 4

2.2.1 Linux Virtual Machines Settings . 4
2.2.2 Installing Tcpdump . 4
2.2.3 Making Clones . 5
2.2.4 Disabling IPv4 . 5

2.3 Network Planning . 6
2.4 Implementation using Linux Virtual Machines . 6

2.4.1 Configuration on R1 (VM 1) . 6
2.4.2 Configuration on R2 (VM 2) . 8
2.4.3 Configuration on H1 (VM 3) . 9

2.5 Reexamining Routing Table Update . 9
2.6 Making Changes Permanent . 13
2.7 Dealing with Regrets . 14

3 Remaining Issues 14

4 Practice Assignment 15

1

Ethernet

Ethernet

H1 (VM 3)

The Internet

Network: 172.22.199.0/255.255.255.192

172.20.136.224/255.255.255.248

Ethernet

Network: 10.0.2.0/255.255.255.0

R1 (VM 1) R2 (VM 2)

R0 (VirtualBox NAT Engine)

Figure 1: The layout of a planned network and its existing network infrastructure. The existing
network infrastructure consists of VirtualBox NAT engine and host network setup.

1 Overview

Virtualization software such as Oracle VM VirtualBox and VMware Player makes it conveniently
for one to experiment with internetworks, i.e., experiment with network planning and net imple-
mentation.

Through a series of experiments, we will practice to plan a few networks, to connect the networks
to form an internetwork, and to implement the internetwork using a few Linux virtual machines.
The series of experiments, consisting of Part I, Part II, Part III, and Part IV, has the following
main objectives, respectively,

1. plan and implement a standalone IPv4 internetwork of linear topology where standalone means
that the internetwork is not configured to connected to the Internet and can be considered
as an isolated intranet (in Part I);

2. connect the IPv4 internetwork to the Internet using IPv4 Masquerading (in Part II);

3. repeat experiment 1, however, in IPv6 (in Part III); and

4. repeat experiment 2, however, in IPv6 (in Part IV).

2 Part I: Building an IPv4 Internetwork

In this experiment, we will plan and implement a simple internetwork as illustrated in Figure 1,
and implement it using Linux virtual machines as shown in Figure 2.

The main objectives of this experiment are,

2

The Internet

Host Platform

Host NIC: 10.45.44.127

VirtualBox NAT Engine

Provides DHCP Server

Gateway 10.0.2.2

VirtualBox Networking Engine

Guest Platform (VM 1)

Virtual Adapter eth0

NAT Network

IPv4: 10.0.2.15

Network: 10.0.2.0/255.255.255.0

Virtual Adapter eth1

Host✄only Network

IPv4: 172.22.199.1

Network: 172.22.199.0/255.255.255.192

Guest Platform (VM 2)

Virtual Adapter eth1

Host✄only Network

IPv4: 172.20.136.225

Network: 172.20.136.224/255.255.255.248

Virtual Adapter eth0

Host✄only Network

IPv4: 172.22.199.62

Network: 172.22.199.0/255.255.255.192

Guest Platform (VM 3)

Virtual Adapter eth0

Host✄only Network

IPv4: 172.20.136.230

Network: 172.20.136.224/255.255.255.248

Virtual Ethernet

Virtual Ethernet Virtual Ethernet

Figure 2: An internetwork consisting of 3 virtual Linux hosts.

• to plan networks by determining IPv4 address spaces including network number and network
mask;

• to assign IPv4 addresses to Linux hosts on the networks using Linux commands;

• to plan and implement routing tables on the Linux hosts using Linux commands;

• to configure packet forwarding for IPv4 on hosts serving network gateways (i.e., routers); and

• to diagnose and test the networks.

2.1 Software

Although the principle of this instruction is applicable to different virtualization software, e.g.
VMware Player and different Linux distributions, e.g., Fedora Linux, this instruction is tested used
the following components,

• Windows 8.1 as host operating systems

• Oracle VM VirtualBox version 4.2.16 and above runing on the host

• Debian Linux 8.x as guest operating systems

3

The Linux commands will be used in this experiment are, route, ip, ping, sysctl, and
tcpdump.

The Linux system configuration files that of our concern are /etc/network/interfaces and
/etc/sysctl.conf.

2.2 Preparation

Before we begin actual work, we will prepare and configure 3 virtual machines.

2.2.1 Linux Virtual Machines Settings

The 3 virtual machines will run on a single host computer. Therefore, you host computer must
have sufficient RAM and hard drive space. Each virtual machine is configured with 64MB RAM
and this instruction is tested on a Windows 8.1 host with 4GB RAM.

The network settings of the 3 Linux virtual machine images in VirtualBox are as follows,

• VM 1 has two Ethernet adapters, one in the NAT mode, and the other in the Internal Network
mode;

• VM 2 has two Ethernet adapters and both are in the Internal Network mode and the name
of the Ethernet the two adapters are on is ineten1; and

• VM 3 has one Ethernet adapter that is in the Internal network mode and the name of the
Ethernet of the adapter is on is ineten1.

Figure 3 shows the settings of the two adapters in VM 1.
We choose the Internal Network mode because as indicated in [1],

“The internal network (in this example ineten1) is a totally isolated network and so is
very ‘quiet’. This is good for testing when you need a separate, clean network, and you
can create sophisticated internal networks with vm’s that provide their own services to
the internal network. (e.g. Active Directory, DHCP, etc). Note that not even the Host
is a member of the internal network, but this mode allows vm’s to function even when
the Host is not connected to a network (e.g. on a plane).”

Note that it also implies that you cannot reach the host, let alone the outside network from
using the adapters put on the internal network mode without some “additional” help from other
nodes. An objective of this experiment is to connect these adapters on Ethernet ineten1 via a
gateway node, i.e., VM 1.

We install Debian Linux 8 on each of the virtual machines. You can download the base virtual
machine image from from either Dropbox or OneDrive.

2.2.2 Installing Tcpdump

Note that the base virtual machine image has not had tcpdump installed. Before you make any
clones, install tcpdump, e.g.,

sudo apt-get install tcpdump

4

https://www.dropbox.com/s/0hls6x6421o920g/VM_Base_Debian_8.x_en.7z?dl=0
http://1drv.ms/1Ze02D9

Figure 3: Configurations of VirtualBox virtual machine 1 (VM 1)

Listing 1: Statements in /etc/sysctl.conf that Disables IPv6

d i s ab l e IPv6
net . ipv6 . conf . a l l . d i s a b l e i p v 6 = 1
net . ipv6 . conf . d e f au l t . d i s a b l e i p v 6 = 1
net . ipv6 . conf . l o . d i s a b l e i p v 6 = 1

2.2.3 Making Clones

You must change their settings in Oracle Virtual Box to match the required settings. It is rec-
ommended that you create linked clones from the base images and use the lined clones for this
experiment. See the insturctor’s VM Setup document for more information.

2.2.4 Disabling IPv4

Since we are to experiment on IPv6 in later experiments, we would desire a clean setup by config-
uring the network adapters to be IPv4 only, for which, we add the following statements to the end
of /etc/sysctl.conf as shown in Listing 1,

To make it effective without a reboot, execute the following command,

sudo s y s c t l −p / etc / s y s c t l . conf

5

https://huichen-cs.github.io/course/CSCI445/lecture/vmsetup.pdf

To check if IPv6 is disabled, execute ip address show command and the result should not
contain any reference to inet6.

2.3 Network Planning

Let us assume that we would like to set up two new networks for an organization. One needs to
support about 60 hosts on the network and the other needs about 6 hosts.

• Network 1. It can support about 60 hosts on the network. Since 26 = 64, the network mask
can be 0xffffffc0, or 255.255.255.192 in dot-decimal notation. Examining the available
blocks of IPv4 address within the organization, you may conclude that the network can
be 172.22.199.0/255.255.255.192, or 172.22.199.0/26, i.e., network 172.22.199.0 with network
mask 255.255.255.192. The network can actually suport 26 − 2 = 64 − 2 = 62 hosts. Two
addresses must be excluded from the count as explained below,

– 172.22.199.0 must be excluded from the available addresses to be allocated to hosts to
avoid a confusion because 172.22.199.0 is reserved as the network number.

– 172.22.199.63 must be exluced from the available addresses to be allocated to hosts
because 172.22.199.63 whose bits for host numbers are all 1’s is reserved as the broadcast
address for the network.

• Network 2. It can support about 6 hosts on the network. Since 23 = 8, the network mask
can be 0xfffffff8, or 255.255.255.248 in dot-decimal notation. Examining the available
blocks of IPv4 addresses within the organization, you may conclude that the network can be
172.20.136.224/255.255.255.248, or 172.20.136.224/29. Similarly as Network 1, The number
of hosts on the network can be 23 − 2 = 8− 2 = 6.

Based on the above, we plan the internet as in Figure 1. Network 1 and Network 2 are connected
by Router R2; and Network 1 and the existing infrastructure network is connected by Router R1.

2.4 Implementation using Linux Virtual Machines

The implementation of the above internetwork design can be demonstrated using Linux virtual
machines. As described in subsection 2.2, we prepare 3 Ubuntu 14.04 virtual machines, i.e., VM 1,
VM 2, and VM 3. VM 1 is serving as R1, VM 2 is serving as R2, and VM 3 a host on Network 2,
i.e., H1. The result will be Figure 2.

2.4.1 Configuration on R1 (VM 1)

The configuration on VM 1 consists of two parts, (1) IPv4 address assignment, and (2) routing table
update. We will discuss item 2 in a greater detail in Section 2.5. This subsection discusses item 1.
Inevitably, we make mistakes when we attempt to implement the network design. Section 2.7 is
dedicated to the discussion on how to undo changes and correct mistakes.

IPv4 address assignment. We will assign an IPv4 address on Network 1, i.e., an address belong-
ing to Network 172.22.199.0/255.255.255.192 to the adapter that is supposed to be on the network,
i.e., eth1 in VM 1. We choose IPv4 address 172.22.199.1. You can also use the ip command as
shown in Listing 2 or shown in Listing 3.

6

Listing 2: Assign IPv4 Address to Adapter eth1 on VM 1

sudo ip addr add 172 . 22 . 199 . 1/255 . 255 . 255 . 192 brd + dev eth1

Listing 3: Assign IPv4 Address to Adapter eth1 on VM 1

sudo ip addr add 172 . 22 . 199 . 1/26 brd + dev eth1

Listing 4: Showing Settings of Network Interfaces at VM 1 Using ip

user@VM−1:˜$ ip addr show eth1
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 8 3 : 1 1 : cc brd f f : f f : f f : f f : f f : f f
i n e t 10 . 0 . 2 . 15/24 brd 1 0 . 0 . 2 . 2 5 5 scope g l oba l eth0

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
3 : eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 6 f : 2 c : 53 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 22 . 199 . 1/26 brd 172 . 22 . 199 . 63 scope g l oba l eth1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
user@VM−1:˜$

Listing 5: Showing Routing Table in VM 1

user@VM−1:˜$ route −n
Kernel IP rout ing tab l e
Des t inat i on Gateway Genmask Flags Metric Ref Use I f a c e
0 . 0 . 0 . 0 1 0 . 0 . 2 . 2 0 . 0 . 0 . 0 UG 0 0 0 eth0
1 0 . 0 . 2 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 1 0 0 eth0
172 . 22 . 199 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 192 U 0 0 0 eth1
user@VM−1:˜$

It is important that you always verify the result of your actions, for which you can display the
result of the IPv4 address assignment. You can use ip as shown in Listing 4.

When you add an IPv4 address to an adapter, the machine’s routing table will also be updated.
You can use either the route command or the ip command to show and manipulate routing tables.
Be aware that many consider that the route command to be deprecated, although this document only
shows examples using the route command when we show and manipulate routing tables. Listing 5
shows that an entry, i.e., Line 6 is inserted for Network 172.22.199.0/255.255.255.192. The line
indicates that the next-hop router or the network gateway is 0.0.0.0, i.e., this network is the
network that the network adapter belongs to, as such, all the hosts in the network would be on the
direct-link network and can reach each other directly without packet forwarding.

7

Listing 6: Assign IPv4 Addresses to Two Adapters Using ip on VM 2

user@VM−2:˜$ sudo ip addr add 172 . 22 . 199 . 62/255 . 255 . 255 . 192 brd + dev eth0
user@VM−2:˜$ sudo ip addr add 172 . 20 . 136 . 225/255 . 255 . 255 . 248 brd + dev eth1
user@VM−2:˜$ ip addr
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 22 . 199 . 62/26 brd 172 . 22 . 199 . 63 scope g l oba l eth0

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
3 : eth1 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : 8 4 : f 8 : e3 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 20 . 136 . 225/29 brd 172 . 20 . 136 . 231 scope g l oba l eth1

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
user@VM−2:˜$

Listing 7: Testing Network Connectivity between VM 1 and VM 2

user@VM−2:˜$ ping −c 1 172 . 22 . 199 . 1
PING 172 . 22 . 199 . 1 (1 7 2 . 2 2 . 1 9 9 . 1) 56(84) bytes o f data .
64 bytes from 172 . 2 2 . 1 9 9 . 1 : i cmp seq=1 t t l =64 time=0.420 ms

−−− 172 . 22 . 199 . 1 ping s t a t i s t i c s −−−

1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.420/0 . 420/0 . 420/0 . 000 ms
user@VM−2:˜$

Listing 8: Showing Routing Table on VM 2 After IPv4 Addresses were Assigned

user@VM−2:˜$ route −n
Kernel IP rout ing tab l e
Des t inat i on Gateway Genmask Flags Metric Ref Use I f a c e
172 . 20 . 136 . 224 0 . 0 . 0 . 0 255 . 255 . 255 . 248 U 0 0 0 eth1
172 . 22 . 199 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 192 U 0 0 0 eth0
user@VM−2:˜$

2.4.2 Configuration on R2 (VM 2)

Similar as before, the configuration on VM 2 consists of two parts, (1) IPv4 address assignment,
and (2) routing table update.

IPv4 Address Assignment. We need to assign addresses to the two adapters, one on Network
172.22.199.0/255.255.255.192 and the other on Network 172.20.136.224/255.255.255.248. Listing 6
shows the steps to assign the addresses.

If you assign IPv4 addresses correctly, you should be able to reach VM 1 since adapter eth1 on
VM 1 and adapter eth0 on VM 2 are on the same direct link network. We can verify it by using
ping as shown in Listing 7.

Two entries were also inserted to the routing table as shown in Listing 8. The same as before,
the gateways’ being 0.0.0.0 indicates that the adapters belong to the two networks, respectively.

8

Listing 9: Assign IPv4 Addresses to Adapters Using ip on VM 3

user@VM−3:˜$ sudo ip addr add 172 . 20 . 136 . 230/255 . 255 . 255 . 248 brd + dev eth0
user@VM−3:˜$ ip addr
1 : l o : <LOOPBACK,UP,LOWERUP> mtu 65536 qd i s c noqueue s ta t e UNKNOWN group de f au l t

l i n k / loopback 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0 brd 0 0 : 0 0 : 0 0 : 0 0 : 0 0 : 0 0
i n e t 127 . 0 . 0 . 1/8 scope host l o

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r
2 : eth0 : <BROADCAST,MULTICAST,UP,LOWERUP> mtu 1500 qd i s c p f i f o f a s t s t a t e UP group de f au l t

q len 1000
l i n k / ether 0 8 : 0 0 : 2 7 : c9 : 2 d : 43 brd f f : f f : f f : f f : f f : f f
i n e t 172 . 20 . 136 . 230/29 brd 172 . 20 . 136 . 231 scope g l oba l eth0

v a l i d l f t f o r e v e r p r e f e r r e d l f t f o r e v e r

Listing 11: Testing Network Connectivity between VM 2 and VM 3

user@VM−3:˜$ ping −c 1 172 . 20 . 136 . 225
PING 172 . 20 . 136 . 225 (172 . 20 . 136 . 22 5) 56(84) bytes o f data .
64 bytes from 172 . 2 0 . 1 3 6 . 2 2 5 : i cmp seq=1 t t l =64 time=0.476 ms

−−− 172 . 20 . 136 . 225 ping s t a t i s t i c s −−−

1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.476/0 . 476/0 . 476/0 . 000 ms
user@VM−3:˜$

2.4.3 Configuration on H1 (VM 3)

We assign an IPv4 address on Network 172.20.136.224/255.255.255.248 to adapter eth0 on VM 3
as shown in Listing 9.

One entry was also inserted to the routing table as shown in Listing 10. The same as before,
the gateway’s being 0.0.0.0 indicates that the adapter belong to the network. You can now verify
that you can reach VM 2 using ping as shown in Listing 11.

Listing 10: Showing Routing Table on VM 3 After IPv4 Address was Assigned

user@VM−3:˜$ route −n
Kernel IP rout ing tab l e
Des t inat i on Gateway Genmask Flags Metric Ref Use I f a c e
172 . 20 . 136 . 224 0 . 0 . 0 . 0 255 . 255 . 255 . 248 U 0 0 0 eth0
user@VM−3:˜$

2.5 Reexamining Routing Table Update

Previously, we show that you can reach VM 2 from VM 3 and vice versa. We can make the same
argument for VM 1 and VM 2 as well. Note that the connectivty is established via the two adapters
on the two machines that are part of a direct-link network, i.e., eth1 on VM 2 and eth0 on VM 3
belong to a direct-link network. Can you reach VM 2 from VM 3 using the IPv4 address belonging
to the other adapter on VM 2, i.e., eth0 on VM 2? The answer is No as shown in List 12.

Why? Examining the routing table shown in Listing 10, we realize that the table does not
contain an entry for Network 172.22.199.62/255.255.255.192. Therefore, VM 3 does not know how
to forward packets to the network, i.e, the network is indeed unreachable. How to fix this problem?
We can fix it by adding the network into the routing table. Listing 13 shows that we added the

9

Listing 12: Testing Network Connectivity between VM 2 and VM 3

user@VM−3:˜$ ping −c 1 172 . 22 . 199 . 62
connect : Network i s unreachable
user@VM−3:˜$

Listing 13: Updating Routing Table on VM 3

user@VM−3:˜$ sudo route add −net 172 . 22 . 199 . 0 netmask 255 . 255 . 255 . 192 gw 172 . 20 . 136 . 225
user@VM−3:˜$ route −n
Kernel IP rout ing tab l e
Des t inat i on Gateway Genmask Flags Metric Ref Use I f a c e
172 . 20 . 136 . 224 0 . 0 . 0 . 0 255 . 255 . 255 . 248 U 0 0 0 eth0
172 . 22 . 199 . 0 172 . 20 . 136 . 225 255 . 255 . 255 . 192 UG 0 0 0 eth0
user@VM−3:˜$ ping −c 1 172 . 22 . 199 . 62
PING 172 . 22 . 199 . 62 (1 7 2 . 2 2 . 1 9 9 . 6 2) 56(84) bytes o f data .
64 bytes from 172 . 2 2 . 1 9 9 . 6 2 : i cmp seq=1 t t l =64 time=0.339 ms

−−− 172 . 22 . 199 . 62 ping s t a t i s t i c s −−−

1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.339/0 . 339/0 . 339/0 . 000 ms
user@VM−3:˜$

network to the routing table and checked the network connectivity. Note that the gateway is IPv4
address of adapter eth1 on VM 2.

You may now ask another question. Can we reach VM 1, in particular, the IPv4 address
assigned to adapter eth1 on VM 1? The answer appears to be positive by examining the routing
table in VM 3 and that in VM 2. Both tables have an entry for the network.

Listing 14: Testing Network Connectivity between VM 1 and VM 3

user@VM−3:˜$ ping −c 1 172 . 22 . 199 . 1

Unfortunately, this is not the case as shown in Listing 14. The ping apparently waits indefinitely.
This, in fact, is not about routing tables. Rather, it is about how Linux kernel is configured.
By default, Linux kernel does not forward packets on behalf of other networks unless explictly
requested. We can verify this by using tcpdump as shown Listing 15. We first run tcpdump for
adapter eth1 on VM 2, we observe that many ICMP echo requests arrive from 172.20.136.230 and
are destined to 172.22.199.1. However, when we then run tcpdump for adapter eth0 on VM 2, we
observe no ICMP echo requests at all, which proves that VM 2 does not forward packets on behalf
of host 172.20.136.230.

We can use sysctl to enable Linux kernel packet forwarding. On VM 2, we run the sysctl
command as shown in Listing 16. When we run tcpdump for adapter eth0 on VM 2, we now
observe many ICMP echo requests, which indicates that VM 2 now forwards packets received from
adapter eth1 to adapter eth0, as shown in Listing 17. However, ping remains waiting indefinitely
on VM 3, the same as Listing 14.

To diagnose the problem, we now run tcpdump for eth1 on VM 1. As shown in Listing 19, we do
observe many ICMP echo requests coming in; however, no ICMP echo replies were sent. Examining
the routing table on VM 1, at present whose content is shown in Listing 5, in which there is no
entry for Network 172.20.136.224/255.255.255.248. Therefore, the solution is to add the entry to

10

Listing 15: Result of Running tcpdump on VM 2 before Enabling IPv4 Packet Forwarding on VM
2

user@VM−2:˜$ sudo tcpdump − i eth1
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth1 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
22 : 34 : 33 . 900705 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 471 ,

l ength 64
22 : 34 : 34 . 909553 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 472 ,

l ength 64
22 : 34 : 35 . 908829 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 473 ,

l ength 64
ˆC
3 packets captured
4 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
user@VM−2:˜$
user@VM−2:˜$ sudo tcpdump − i eth0
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth0 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
ˆC
0 packets captured
0 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l

Listing 16: Enabling IPv4 Packet Forwarding on VM 2

user@VM−2:˜$ sudo s y s c t l −w net . ipv4 . i p f orward=1
net . ipv4 . i p f orward = 1
user@VM−2:˜$

Listing 17: Result of Running tcpdump on VM 2 before Enabling IPv4 Packet Forwarding on VM
2

user@VM−2:˜$ sudo tcpdump − i eth0
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth0 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
22 : 43 : 04 . 024621 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 980 ,

l ength 64
22 : 43 : 05 . 023262 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 981 ,

l ength 64
ˆC
2 packets captured
3 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
user@VM−2:˜$

the routing table as shown in Listing 18.
We now run tcpdump for adapter eth1 on VM 1 before we ping VM 1 from VM 3. As shown

in Listing 20, we can now observe that VM 1 now forwards ICMP echo replies to 172.20.136.230
when we ping VM 1 from VM 3. As shown in Listing 21, ping on VM 3 now happily reports that
it reached VM 1.

11

Listing 18: Updating Routing Table on VM 1

user@VM−1:˜$ sudo route add −net 172 . 20 . 136 . 224 netmask 255 . 255 . 255 . 248 gw 172 . 22 . 199 . 62
user@VM−1:˜$ route −n
Kernel IP rout ing tab l e
Des t inat i on Gateway Genmask Flags Metric Ref Use I f a c e
0 . 0 . 0 . 0 1 0 . 0 . 2 . 2 0 . 0 . 0 . 0 UG 0 0 0 eth0
1 0 . 0 . 2 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 0 U 1 0 0 eth0
172 . 20 . 136 . 224 172 . 22 . 199 . 62 255 . 255 . 255 . 248 UG 0 0 0 eth1
172 . 22 . 199 . 0 0 . 0 . 0 . 0 255 . 255 . 255 . 192 U 0 0 0 eth1

Listing 19: Result of Running tcpdump on VM 1 Before Routing Table Update

user@VM−1:˜$ sudo tcpdump − i eth1
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth1 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
22 : 51 : 02 . 260057 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 1457 ,

l ength 64
22 : 51 : 03 . 259809 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 1458 ,

l ength 64
22 : 51 : 04 . 258984 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2202 , seq 1459 ,

l ength 64
ˆC
3 packets captured
6 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
user@VM−1:˜$

Listing 20: Result of Running tcpdump on VM 1 After Routing Table Update

user@VM−1:˜$ sudo tcpdump − i eth1
tcpdump : verbose output suppressed , use −v or −vv f o r f u l l p r o to co l decode
l i s t e n i n g on eth1 , l i nk−type EN10MB (Ethernet) , capture s i z e 65535 bytes
23 : 00 : 42 . 677493 IP 172 . 20 . 136 . 230 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP echo request , i d 2218 , seq 1 , l ength

64
23 : 00 : 42 . 677537 IP 172 . 22 . 199 . 1 > 1 7 2 . 2 0 . 1 3 6 . 2 3 0 : ICMP echo reply , i d 2218 , seq 1 , l ength 64
23 : 00 : 42 . 686687 IP 172 . 22 . 199 . 62 > 1 7 2 . 2 2 . 1 9 9 . 1 : ICMP time exceeded in−t r an s i t , l ength 92
ˆC
3 packets captured
3 packets r e c e i v ed by f i l t e r
0 packets dropped by ke rne l
user@VM−1:˜$

Listing 21: Testing Network Connectivity between VM 1 and VM 3

user@VM−3:˜$ ping −c 1 172 . 22 . 199 . 1
PING 172 . 22 . 199 . 1 (1 7 2 . 2 2 . 1 9 9 . 1) 56(84) bytes o f data .
64 bytes from 172 . 2 2 . 1 9 9 . 1 : i cmp seq=1 t t l =64 time=0.609 ms

−−− 172 . 22 . 199 . 1 ping s t a t i s t i c s −−−

1 packets transmitted , 1 r ece i ved , 0% packet l o s s , time 0ms
r t t min/avg/max/mdev = 0.609/0 . 609/0 . 609/0 . 000 ms
user@VM−3:˜$

12

Listing 22: Content of /etc/network/interfaces on VM 1

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth1
i f a c e eth1 i n e t s t a t i c

addres s 172 . 22 . 199 . 1
netmask 255 . 255 . 255 . 192
post−up route add −net 172 . 20 . 136 . 224 netmask 255 . 255 . 255 . 248 gw 172 . 22 . 199 . 62
pre−down route de l −net 172 . 20 . 136 . 224 netmask 255 . 255 . 255 . 248 gw 172 . 22 . 199 . 62

Listing 23: Content of /etc/network/interfaces on VM 2

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth0
i f a c e eth0 i n e t s t a t i c

addres s 172 . 22 . 199 . 62
netmask 255 . 255 . 255 . 192

auto eth1
i f a c e eth1 i n e t s t a t i c

addres s 172 . 20 . 136 . 225
netmask 255 . 255 . 255 . 248

Listing 24: Enabling IPv4 Packet Forwarding in /etc/sysctl.conf on VM 2

Uncomment the next l i n e to enable packet forwarding f o r IPv4
net . ipv4 . i p f orward=1

2.6 Making Changes Permanent

The configuration we have made does not survive a reboot. To make the configuration changes
permanent, i.e., to survive a reboot, we need to make changes to a few Linux configuration files.

The IPv4 address assignment and other configuration settings can be manually added in con-
figuration file /etc/network/interfaces. The Linux kernel packet forwarding can be enabled by
modifying configuration file /etc/sysctl.conf.

Be aware that to make the changes described below effective, you must reboot the virtual machines
once you complete the changes.

VM 1. The content of /etc/network/interfaces on VM 1 is shown as Listing 22.
VM 2. The content of /etc/network/interfaces on VM 2 is shown as Listing 23. In /etc/sysctl.conf,

only one line is uncommented to enable IPv4 packet forwarding. The uncommented line is shown
in Listing 24.

VM 3. The content of /etc/network/interfaces on VM 3 is shown as Listing 25

13

Listing 25: Content of /etc/network/interfaces on VM 3

in t e r f a c e s (5) f i l e used by i f up (8) and ifdown (8)
auto l o
i f a c e l o i n e t loopback

auto eth0
i f a c e eth0 i n e t s t a t i c

addres s 172 . 20 . 136 . 230
netmask 255 . 255 . 255 . 248
post−up route add −net 172 . 22 . 199 . 0 netmask 255 . 255 . 255 . 192 gw 172 . 20 . 136 . 225
pre−down route de l −net 172 . 22 . 199 . 0 netmask 255 . 255 . 255 . 192 gw 172 . 20 . 136 . 225

Listing 27: Deleting an Entry from a Routing Table using route

user@VM−3:˜$ sudo route de l −net 172 . 22 . 199 . 0 netmask 255 . 255 . 255 . 192 gw 172 . 20 . 136 . 225
user@VM−3:˜$

2.7 Dealing with Regrets

Everyone makes mistakes. We will make mistakes when we configure the networks. It is important
that we know how to undo a change that is considered a mistake or is not shown to be working. If
we assigned a wrong IPv4 address, we can undo the change using ip.

Listing 26 shows that you can delete an IPv4 address you assigned using the ip command.
Similar as before, you may have to repeat the command with different IPv4 addresses if more than
one IPv4 addresses were assigned to the adapter.

Listing 26: Deleting an IPv4 Address using ip

sudo ip addr de l 172 . 22 . 199 . 1/26 dev eth1

To delete an entry from a routing table, you may use the route command as shown in Listing 27.

3 Remaining Issues

Although we have completed the configuration for the internetwork, the network still has a few
issues.

• When you ping VM 3 from VM 1 or ping VM 1 from VM 3, you will observe large amount of
duplicated ICMP echo reply packets, which appears to be the result that VirtualBox internal
networking mode has only one Ethernet while we are trying to divide it into a few IPv4
networks.

To address the issue, one solution is to divide the virtual Ethernet into a few Virutual Local
Area Networks (VLANs). In next experiment of the series, i.e., Part II, we will do just that.

• You will find that ping will not be successful if you ping adapter eth0’s address on VM 1.
Moreover, you cannot connect to any hosts other than the three hosts from any of the three
hosts. This is also an important item that we will address in next experiment (i.e., Part II).

14

��������

��������

��������

��	
��	�

���	��������

�������	�	
��	��	����		������

�������	�	
��	��	���	������

��������

��������	����������������������

��	
��	�� ��	
��	��

��	
����� !"�#	�$�	��%����

��	
��	&�

�������		
��	��	'�		������

Figure 4: Layout of a planned network and existing network infrastructure. The existing network
infrastructure consists of VirtualBox NAT engine and host network setup.

4 Practice Assignment

You are required to complete the following items.

• Following the instruction in this document, implement the internetwork as illustrated in
Figure 2 in 3 virtual machines.

• Design and implement an internetwork using 4 virtual machines as shown in Figure 4.

Show steps, the results of configuration, and testing results in a brief report.

References

[1] Blog: The Fat Bloke Sings: Thoughts from a Fat Bloke. Networking in virtualbox.
https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1, posted on Oc-
tober 15, 2013 and retrieved on October 27, 2014.

15

https://blogs.oracle.com/fatbloke/entry/networking_in_virtualbox1

	Overview
	Part I: Building an IPv4 Internetwork
	Software
	Preparation
	Linux Virtual Machines Settings
	Installing Tcpdump
	Making Clones
	Disabling IPv4

	Network Planning
	Implementation using Linux Virtual Machines
	Configuration on R1 (VM 1)
	Configuration on R2 (VM 2)
	Configuration on H1 (VM 3)

	Reexamining Routing Table Update
	Making Changes Permanent
	Dealing with Regrets

	Remaining Issues
	Practice Assignment

