Routing Algorithms: Examples

Hui Chen
Computer & Information Science
Brooklyn College

Dijkstra's shortest path algorithm: Compute A's sink tree

		C	ost			
Step	В	С	D	Ε	F	visited?
Init	3	2	6	4	-	С
1	3	2	6	3	-	В
2	3	2	6	3	8	E
3	3	2	5	3	7	D
4	3	2	5	3	6	F

visited?

В

	A)3	B
2		5
4	6 _	5
(c) 4		
1	2	1 F
('	= / 4	レース

		C	ost			
Step	В	С	D	Ε	F	visited?
Init	3	2	6	4	-	С
1	3	2	6	3	-	

Exercise 1

 Following the example illustrated and using the Dijkstra's shortest path algorithm, find the shortest path to all the other nodes from node D and show steps

 $\begin{array}{c|c}
 & 5 & B \\
\hline
 & 10 & C \\
\hline
 & 11 & 2 \\
\hline
 & D & C
\end{array}$

Exercise 2

• Distance vector routing is used, and the following vectors have just come in to router *C*: from *B*: (5, 0, 8, 12, 6, 2); from *D*: (16, 12, 6, 0, 9, 10); and from *E*: (7, 6, 3, 9, 0, 4). The cost of the links from *C* to *B*, *D*, and *E*, are 6, 3, and 5, respectively. What is *C*'s new routing table? Give both the outgoing line to use and the cost.

