The Internet Protocol

Hui Chen a

^aCUNY Brooklyn College

September 21, 2023

Outline

- Overview of Internetworks
- Overview of Internet Protocol
- 3 IPv4
 - IPv4 Address
 - IPv4 Packet Forwarding
 - IPv4 Packet Format
 - Control and Error Reporting
 - IP and Network Access Protocol
 - Host Configuration
- 4 IPv6

The Internet and Internetworking

The Internet is a network of networks, i.e., an internetwork.

- What are the motivation to build such a network?
- What are the requirements?
- What are the problems?

TCP/IP Internetworks

Challenges

- ► (Heterogeneity) The networks in an internwork are heterogenous.
- (Scability) There are a lot of hosts and networks on an internetwork.
- (Surviablity) Hosts on part of networks should still be able to communicate when others fail.
- **.**...

Outline

- Overview of Internetworks
- Overview of Internet Protocol
- IPv4
 - IPv4 Address
 - IPv4 Packet Forwarding
 - IPv4 Packet Format
 - Control and Error Reporting
 - IP and Network Access Protocol
 - Host Configuration
- 4 IPv6

Internet Protocol Operation

The Internet Protocol (IP) provides a connectionless service (or datagram service) between two end systems (e.g., two hosts, or two routers, or a router and a host)

- ▶ It is easy to deal with variety of networks as it does not require much for these networks, and it is simple by itself.
- ► The connectionless service delivers packets with the best effort approach and there is no centralized control, which makes IP service is highly robust.
- It is best for connectionless transport protocols, as it does not impose unnecessary overhead.
- ▶ IP realizes a network of networks, which allows a network (i.e., an internetwork) to scale.

Design Issues

- Routing
- Datagram lifetime
- Fragmentation and assembly
- Error control
- Flow control
- Congestion control

Outline

- Overview of Internetworks
- Overview of Internet Protocol
- IPv4
 - IPv4 Address
 - IPv4 Packet Forwarding
 - IPv4 Packet Format
 - Control and Error Reporting
 - IP and Network Access Protocol
 - Host Configuration
- 4 IPv6

IPv4 Address

An IPv4 address is 4 bytes (or 32 bits).

- ▶ Unicast address $(00000000_h/1 \text{ , } 80000000_h/2 \text{, and } C0000000/3)$
- Multicast address $(E0000000_h/4)$
- Reserved address $(F0000000_h/5)$
- Broadcast address

IPv4 Unicast Address

- Private network
 - **▶** 192.168.0.0/16
 - ► 172.16.0.0/12
 - **1**0.0.0.0/8
- ► Loopback. 127.0.0.0/8
- ► Link-local unicast. 169.254.0.0/16
- Documentation (TEST-NET-1). 192.0.2.0/24
- Documentation (TEST-NET-2). 198.51.100.0/24
- Documentation (TEST-NET-3). 203.0.113.0/24
- ▶ Global unicast. Everything else with exceptions.

IPv4 Unicast Address: Network and Host Parts

An IPv4 address consists of two parts:

- Network part
- ► Host part

To understand this, let's look at the IP forwarding algorithm

IPv4 Packet Forwarding

Conceptually, we can describe the IPv4 packet forwarding (unicast packet forwarding) algorithm as follows,

```
D = destination IP address // D = < Network Number, Host Number>
Selected = \{\}
for each entry of <NetworkNumber, NextHop> in forwarding table
  // Get_Network_Number returns the entry
  // if D. Network Number = Network Number
  Ds = Get_Network_Number(D) // \{Ds\} can be \emptyset if not a match
  Selected = Selected \cup \{Ds\}
endfor
Ds = Longest_Match (Selected)
if \{Ds\} != \emptyset
  if Ds. NextHop is an interface
    deliver datagram directly to destination
  else
    deliver datagram to Ds. NextHop (a router)
else
  drop the packet
```

Forwarding Table

- ▶ A forwarding table consists of entries of network and next hop entity where a next hop entity is either a network interface or a next hop router.
- Run these to observe examples.

ip route show

Listing: Linux

netstat -n -r

Listing: Unix and Windows

Fragmentation and Reassembly

- Different network can have different MTU
- ► MTU. Maximum transmission unit is the maximum sized datagram that can be transmitted through the next network is called the maximum transmission unit.
 - ▶ IPv4 over Ethernet V2. MTU = 1500 bytes.
 - ► IPv4 over IEEE 802.11 Wi-Fi (WLAN). MTU = 2304 bytes before encryption.
 - ▶ IPv4 over FDDI. MTU = 4352 bytes.
- But how big an IPv4 packet can be?
- ► Fragmentention (https://tools.ietf.org/html/rfc791#page-26)
- ► Reassembly (https://tools.ietf.org/html/rfc791#page-28)

IPv4 Packet Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=4	IHL	DS	ECN ¹	Total Length			
Identification				Flags	lags Fragment Offset		
Time	Го Live	Protocol	2	Header Checksum			
Source Address							
Destination Address							
Options + Paddings							
(32 bits \times n, n = 0, 1, 2,)							

H. Chen (CUNY)

¹See RFC 3168

²https://www.iana.org/assignments/protocol-numbers

Internet Control and Message Protocol (ICMP)

► ICMP is a network layer protocol, is also a user of IP, i.e., an ICMP packet is the pay load of an IP packet. (RFCs 792, 950, 1250, 1393, 1475, 1788)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Type Code		Checksum					
Varying based on Type							

H. Chen (CUNY) CISC 7334X-EW8 September 21, 2023 14 / 24

Example ICMP Message Types

- Type 0. Echo Reply Message
- Type 8. Echo (Request) Message
- Type 3. Destination Unreachable Message
- Type 5. Redirect Message
- ► Type 30. Traceeroute Message (RFC 1393)
- ► Type 11. Time Exceeded

Address Resolution

- Needs to establish the mapping between IP address of the next-hop node and the hardware (or MAC) address
- Address Resolution Protocol (ARP).
- Let's try,

sudo arp

Listing: Linux

Where do these come from?

Dynamic Host Configuration Protocol (DHCP)

- How do we assign IPv4 addresses?
- We can enable dynamic allocation of IPv4 addresses and supply other configuration parameters to hosts (automatically) via DHCP (RFC 2131).
- ▶ DHCP is a user of UDP, i.e., DHCP uses UDP as its transport protocol.

H. Chen (CUNY) CISC 7334X-EW8 September 21, 2023 17 / 24

Example of DHCP Message Exchange

H. Chen (CUNY) CISC 7334X-EW8 September 21, 2023 18 / 24

Outline

- Overview of Internetworks
- Overview of Internet Protocol
- 3 IPv4
 - IPv4 Address
 - IPv4 Packet Forwarding
 - IPv4 Packet Format
 - Control and Error Reporting
 - IP and Network Access Protocol
 - Host Configuration
- 4 IPv6

Comparing with IPv4

- ► IPv6 address
- Packet format
- Address translation and host configuration?

IP Next Generation to IPv6

To apply a few important findings from IPv4 experience and research,

- ▶ IPv4 Address space (32 bits) is too mall. IPv6 address space is 128 bits.
- ▶ Routers often do not handle optional fields in IPv4 headers. IPv6 options (extension headers) are placed in separated optional headers, which simplifies processing delay at routers
- ▶ Do away with DHCP? IPv6 has address autoconfiguration capability and can assign addresses without an application layer server like DHCP.
- Support a few innovations? IPv6 introduces anycast address to support anycase, and addes a scope field to multicast address to improve scalability of multicast routing.
- ▶ Resource allocation is difficult in IPv4. IPv6 can label packets for different traffic flow, which aids resource allocation for specialized traffic (e.g., real-time video)

IPv6 Address

Divided into a few categories, e.g.,

- ► Embedded IPv4 Address (:: *FFFF*/96)
- ► Loopback (:: 1/128)
- ▶ Link-local unicast (FE80 :: /10)
- Private network. (FC00 :: /7)
- ▶ Documentation (2001 : 0DB8 :: /32)
- ► Multicast (*FF*00 :: /8)
- Global unicast (Everything else with exceptions)

IPv6 Packet Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=6 DS ECN	Flow Label			
Payload Length	Next Header	Hop Limit		

Source Address

Destination Address

IPv6 Packet Structure

ID 6 hazalan	Extension	 Extension	Transport
IPv6 header	header	 header	Layer PDU

H. Chen (CUNY) CISC 7334X-EW8 September 21, 2023 23 / 24

IPv6 Stateless Address Autoconfiguration

- Assign IPv6 addresses to hosts without a server? (RFC 4862)
 - 1. Generate a link-local address.
 - 2. Test the uniqueness of a link-local address.
 - 3. Assign a link-local address.
 - 4. Contact the router.
 - 5. Provide direction to the node.
 - 6. Configure the global address.