Congestion Control

Hui Chen ^a

^aCUNY Brooklyn College

November 16, 2023

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
- 3 Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
 - Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- **TCP Congestion Control**

Congestion

- Congestion occurs when the number of packets being transmitted through a packeted switched network begins to approach the packet-handling capability of the network
- What happens when the network is congested?

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
- Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
 - Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- 6 TCP Congestion Control

Input and Output Queues at a Forwarding Node¹

¹William Stallings. *Data and Computer Communications*. 10th. USA: Prentice Hall Press, 2013. ISBN: 0133506487.

Queueing Perspective

Model a packet switched network as a network of *queues* (i.e., service nodes with queues)

Service Nodes with Queues

From: "Dear Mona, Which Is The Fastest Check-Out Lane At The Grocery Store?" by Mona Chalabi, originally appeared in Operations Management, 5th Edition by "R. Dan Reid, Nada R. Sanders", 2013

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 5 / 51

Single-Server Queue (SSQ)

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 6 / 51

Specifying Single-Server Queue (SSQ)²

- Arrival time: a;
- Delay in queue (queuing delay): d_i
- ightharpoonup Time that service begins: $b_i = a_i + d_i$
- Service time: si
- ▶ Wait in the node (total delay): $w_i = d_i + s_i$
- **Departure** (completion) time: $c_i = a_i + w_i$

²Lawrence M Leemis and Stephen Keith Park. Discrete-event simulation: A first course. Pearson Prentice Hall Upper Saddle River, NJ, 2006.

Computational Model for SSQ

Algorithm 1: Computing delays of SSQ

```
Function ssq()
      c_0 \leftarrow 0.0
      i \leftarrow 0
      while more jobs to process do
              i \leftarrow i + 1
              a_i \leftarrow \texttt{GetArrival}()
             if a_i < c_{i-1} then
              d_i \leftarrow c_{i-1} - a_i
             else
              d_i \leftarrow 0.0
             s_i \leftarrow \texttt{GetService}()
             c_i \leftarrow a_i + d_i + s_i
       n \leftarrow i
      return c,d
```

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023

M/M/1 Queue

Arrivals follow a Poisson process and service times have an exponential distribution (both are Markovian or memoryless). Because arrivals follow a Poisson process, inter-arrival times also have an exponential distribution.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 9/51

Computational Model for M/M/1 Queue: Exponential

Algorithm 2: Drawing from an Exponential distribution

```
Input : m, the mean, m=\frac{1}{\mu}
Output: t, a sample
Function Exponential (m)
t \leftarrow m \ln(1 - \text{Uniform}(0., 1.))
return t
```


From: https://www.explainxkcd.com/wiki/index.php/1374:_Urn

Computational Model for M/M/1 Queue: GetArrival

Algorithm 3: Computing arrival times

```
Input : \lambda, the rate of arrival
Input: a_p, the previous arrival time
Output: a, the arrival time
Function GetArrival(a_p, \lambda)
      t \leftarrow \texttt{Exponential}(1/\lambda)
     a \leftarrow a_p + t
     return a
```

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 11 / 51

Computational Model for M/M/1 Queue: GetService

Algorithm 4: Computing service times

```
Input: m, the mean of the service times, m = \frac{1}{n}
Output: s, the service time
Function GetService(m)
     s \leftarrow \texttt{Exponential}(m)
     return s
```

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 12 / 51

Some Job (Packet)-Averaged Statistics of SSQ (1 of 2)

Average inter-arrival time (e.g., per packet)

$$\bar{r} = \frac{1}{n} \sum_{i=1}^{n} r_i = \frac{a_n}{n} \tag{1}$$

For M/M/1 queue,

$$\bar{r} = \frac{1}{\lambda}$$
 (2)

Average service time

$$\bar{s} = \frac{1}{n} \sum_{i=1}^{n} s_i \tag{3}$$

For M/M/1 queue,

$$\bar{s} = \frac{1}{u} \tag{4}$$

H. Chen (CUNY)

Some Job (Packet)-averaged Statistics of SSQ (2 of 2)

Average delay

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i \tag{5}$$

Average wait

$$\bar{w} = \frac{1}{n} \sum_{i=1}^{n} w_i \tag{6}$$

ightharpoonup Since $w_i = d_i + s_i$,

$$\bar{w} = \frac{1}{n} \sum_{i=1}^{n} d_i + s_i = \frac{1}{n} \sum_{i=1}^{n} d_i + \frac{1}{n} \sum_{i=1}^{n} s_i = \bar{d} + \bar{s}$$
 (7)

H. Chen (CUNY) CISC 7334X-R6

Traffic Intensity (Normalized Load)

Traffic intensity is the ratio of average service time to average inter-arrival time

$$\rho = \frac{\overline{s}}{\overline{r}} \tag{8}$$

For M/M/1 queue,

$$\rho = \frac{\frac{1}{\mu}}{\frac{1}{\lambda}} = \frac{\lambda}{\mu} \tag{9}$$

Time-Averaged Statistics: Server Utilization

 Server utilization (the time-averaged packets served, i.e., normalized throughput)

$$\bar{x} = \frac{\sum_{i=1}^{n} s_i}{c_n} = \frac{\frac{1}{n} \sum_{i=1}^{n} s_i}{\frac{1}{n} c_n} = \frac{n}{c_n} \bar{s}$$
 (10)

When the node is saturated (i.e., the server is always busy), $c_n/n = \bar{s}$, i.e.,

$$\bar{x} = 1 \tag{11}$$

When the node is not saturated (i.e., sometimes idle) but at the steady state $(n \to \infty)$,

$$\lim_{n \to \infty} \frac{c_n}{n} = \lim_{n \to \infty} \frac{a_{n-1} + r_n}{n} = \lim_{n \to \infty} \frac{a_{n-1}}{n} + \lim_{n \to \infty} \frac{r_n}{n} = \frac{1}{\lambda}$$
 (12)

$$\bar{x} = \frac{n}{c_n} \bar{s} = \frac{\lambda}{\mu} = \rho \tag{13}$$

H. Chen (CUNY)

Time-Average Statistics: Waiting Time and Delay

► Time-averaged delay in queue

$$\bar{q} = \frac{\sum_{i=1}^{n} d_i}{c_n} = \frac{\frac{1}{n} \sum_{i=1}^{n} d_i}{\frac{1}{n} c_n} = \frac{n}{c_n} \bar{d}$$
 (14)

Time-averaged waiting time

$$\bar{I} = \frac{\sum_{i=1}^{n} w_i}{c_n} = \frac{\frac{1}{n} \sum_{i=1}^{n} w_i}{\frac{1}{n} c_n} = \frac{n}{c_n} \bar{w}$$
 (15)

ightharpoonup Since $w_i = d_i + s_i$,

$$\bar{l} = \bar{q} + \bar{x} \tag{16}$$

H. Chen (CUNY)

Time-Average Statistics: Unsaturated Node

When the node isn't saturated $(\rho < 1)$ but at the steady state $(n \to \infty)$,

$$\lim_{n \to \infty} \frac{c_n}{n} = \frac{1}{\lambda} \tag{17}$$

Time-averaged delay in queue

$$\bar{q} = \lim_{n \to \infty} \frac{n}{c_n} \bar{d} = \lambda \bar{d} \tag{18}$$

Time-averaged waiting time

$$\bar{I} = \lim_{n \to \infty} \frac{n}{c_n} \bar{w} = \lambda \bar{w} \tag{19}$$

ightharpoonup Since $w_i = d_i + s_i$,

$$\bar{w} = \bar{d} + \bar{s} = \bar{d} + \frac{1}{mu} \tag{20}$$

Also,

$$\bar{l} = \bar{q} + \bar{x} = \bar{q} + \rho \tag{21}$$

Time-Average Statistics: Unsaturated Node

Rewrite these four equations in the following matrix form,

$$\begin{bmatrix} \mu & 0 & -\mu & 0 \\ 0 & 1 & 0 & -1 \\ \lambda & -1 & 0 & 0 \\ 0 & 0 & \lambda & -1 \end{bmatrix} \begin{bmatrix} \bar{w} \\ \bar{l} \\ \bar{d} \\ \bar{q} \end{bmatrix} = \begin{bmatrix} 1 \\ \rho \\ 0 \\ 0 \end{bmatrix}$$
 (22)

- \blacktriangleright Can we solve it (λ and μ are knowns)? However, there are only 3 independent rows.
- Cannot, but we only need to determine one of the four statistics.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 19 / 51

Some Results of M/M/1 (Steady State, Unsaturated)

With some efforts (we skip the derivation here, or via simulation),

$$\bar{r} = \frac{1}{\lambda} \tag{23}$$

$$\bar{s} = \frac{1}{\mu} \tag{24}$$

$$\bar{x} = \frac{\lambda}{\mu} \tag{25}$$

$$\bar{I} = \frac{\rho}{1 - \rho} \tag{26}$$

$$\bar{w} = \frac{1}{\mu - \lambda} \tag{27}$$

$$\bar{d} = \frac{q}{\lambda} = \frac{\rho}{\mu - \lambda} \tag{28}$$

$$\bar{q} = \bar{l} - \rho = \frac{\rho^2}{1 - \rho} \tag{29}$$

H. Chen (CUNY) CISC 7334X-R6

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
- 3 Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
 - Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- **TCP Congestion Control**

Interaction of Queues in a Data Network³

³William Stallings. *Data and Computer Communications*. 10th. USA: Prentice Hall Press, 2013. ISBN: 0133506487.

Ideal Network Utilization⁴

⁴William Stallings. *Data and Computer Communications*. 10th. USA: Prentice Hall Press, 2013. ISBN: 0133506487.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023

Effects of Congestion⁵

⁵William Stallings. *Data and Computer Communications*. 10th. USA: Prentice Hall Press, 2013. ISBN: 0133506487.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 23 / 51

Control Collapse and Need for Congestion Control

- Goodput. The rate at which useful packets are delivered by the network.
- Congestion collapse. A prolonged period during which goodput dropped precipitously (i.e., by more than a factor of 100) due to congestion in the network.
 - Starting in 1986, the growing popularity of the early Internet led to the first occurrence of congestion collapse.
 - ▶ Research on congestion control followed.

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
 - Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
 - 5 Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- **TCP Congestion Control**

General Approaches

- Network provisioning, e.g., building network with sufficient bandwidth, upgrading routers and links.
- ➤ Traffic-aware routing, e.g., changing routes to shift traffic away from heavily used paths (by changing the shortest path weights), splitting traffic across multiple paths.
- Admission control, e.g., decreasing the load by refusing new connection.
- Traffic throttling, i.e., telling the senders to throttle back their transmissions and slow down.
- Load shedding, i.e., discarding packets that it cannot deliver.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 25 / 51

Traffic-aware Routing

Figure 19.7 Packet-Switching Network Subject to Oscillations

- Taking traffic load into consideration when computing link costs
 - Example. Let the link cost to be a function of the (fixed) link bandwidth, propagation delay, measured load or average queuing delay.
 - Problem. Oscillation, leading to erratic routing and many potential problems.
- ➤ Solution. Multipath routing. Traffic engineering (adjustments are made outside the routing protocol by slowly changing its inputs.)

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 26 / 51

Admission Control

- ► To decrease load by refusing connections, but which connection to refuse?
- Need to be able to characterize a potential incoming traffic
 - Data rate isn't sufficient, e.g., Web traffic (bursty) vs. streaming video (continuous)
 - A common traffic descriptor is the leaky bucket or token bucket
 - ▶ Based on the descriptor, determine whether a congestion would happen if admitted, and then admit or refuse.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 27 / 51

Traffic Shapping and Policying via Token Bucket⁶

⁶William Stallings. *Data and Computer Communications*. 10th. USA: Prentice Hall Press. 2013. ISBN: 0133506487.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 28 / 51

Traffic Throttling

- Based on "periodical" feedback, ask the senders to throttle back their transmissions and slow down.
- Signals?
 - Averages of utilization do not directly account for the burstiness of most network traffic; while the queueing delay inside routers directly captures any congestion experienced by packets.
 - Measuring queuing delay via an Exponentially Weighted Moving Average (EWMA).

$$d_{k+1} = \alpha d_k + (1 - \alpha)s \tag{30}$$

29 / 51

Feedback mechanisms?

Feedback Mechanisms

Examples of feedback mechanisms.

- Choke packets. Tell the sender directly by sending to it a packet containing informatino about the congested packet.
- Explicit Congestion Notification (ECN).
 - 1. Tag any packet it forwards (by setting a bit in the packet's header) to signal that it is experiencing congestion.
 - 2. The destination will then echo any marks back to the sender as an ECN in its next reply packet.
- Hop-by-Hop Backpressure.
 - High speeds network or over long distances, e.g., how many packets a host in San Francisco may have transmitted before a choke packet originated in New York reach it?
 - "Choke" at every router along the path.
 - Provide quick relief at the point of congestion, at the price of using up more buffers upstream, i.e., applying a backpressure

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 30 / 51

IPv4 Packet Header

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

V=4	IHL	DS	ECN ⁷	Total Length			
Identification				Flags	Flags Fragment Offset		
Time 7	Time To Live Protocol ⁸		Header Checksum				
Source Address							
Destination Address							
Options + Paddings							
$(32 \text{ bits} \times n, n = 0, 1, 2, \ldots)$							

⁷See RFC 3168

⁸https://www.iana.org/assignments/protocol-numbers

IPv6 Packet Header

	Flow Label		
Payload Length	Next Header	Hop Limit	

Source Address

Destination Address

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023

Load Shedding

Which packets to drop?

- Varying from application to application, e.g.,
 - Old packets are more valuable for a file transfer application
 - ▶ New packets are more valuable for a real-time control application
- Two simple policies, dubbed names "Wine" and "Milk" (people prefers fresh milk but old wine)
 - Wine. Drop new packets
 - Milk. Drop old packets
- Some protocols/applications are complex, requiring more intelligent solution.
 - Packets carrying routing information.
 - ▶ In MPEG compressed video, I-frames can be independently uncompressed, but not the others.
- Require sends' cooperation, or some incentives to encourage senders' cooperation.

Random Early Detection (RED) for Load Shedding

- Detecting and dealing congestion earlier is a better approach.
- Explicit Consigestion Signal may not be available (Internet hosts may not yet get congestion signals from routers in the form of ECN)
- What's the most reliable indication of congestion that hosts get from the network is packet loss (implicit signal)
 - TCP treats packet loss as the signal of a congestion
- Exploit this to proactively battle congestion, i.e., have routers drop packets early before congestion, e.g., RED.
 - Routers maintain a running average of their queue lengths.
 - When the average queue length on some link exceeds a threshold, drop at random a small fraction of the packets
- ECN or RED. If ECN available. ECN: or. RED.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 34 / 51

Router-Centric versus Host-Centric

Both the routers inside the network and the hosts at the edges of the network participate in resource allocation, where should we place the majority of the burden?

- ► (Router-centric) Routers make decisions.
 - ► When packets are forwarded?
 - Which packets are to be dropped
 - How many packets hosts are allowed to send?
- (Host-centric). Hosts make decisions.
 - Observe the network conditions (e.g., how many packets they are successfully getting through the network);
 - Adjust their behavior accordingly.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 35 / 51

Reservation-Based versus Feedback-Based

Whether they use reservations or feedback for resource allocation. In a

- ► (Reservation-based) Some entity (e.g., the end host) asks the network for a certain amount of capacity to be allocated for a flow.
 - If the request cannot be satisfied at some router, then the router rejects the reservation.
 - Routers then allocates enough resources (buffers and/or percentage of the link's bandwidth) to satisfy this request.
- (Feedback-based approach) End hosts begin sending data without first reserving any capacity and make adjusts according to to the feedback received.
 - Explicit feedback versus implicit feedback
 - Explicit feedback, e.g., a congested router sends a "slow down" message to the host)
 - Implicit feedback, e.g., the end host adjusts its sending rate according to the externally observable behavior of the network, such as packet losses.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 36 / 51

Credit Based versus Rate Based

Both flow-control and resource allocation mechanisms need a way to express, to the sender, how much data it is allowed to transmit.

- (Window based or Credit based) About how much buffer space the receiver has, and it limits how much data the sender can transmit.
 - For instance, in TCP, the receiver advertises a window to the sender.
- (Rate Based) About how many bits per second the receiver or network is able to absorb.
 - Some applications prefer rate-based approach, e.g., a multimedia applications, which tend to generate data at some average rate and which need at least some minimum throughput to be useful.

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 37 / 51

Service Model and Resource Allocation

Best-effort service model versus QoS-based service model

- A best-effort service model usually implies that feedback is being used
 - Does not allow users to reserve network capacity.
 - Burdon for congestion control falls to the end hosts (with some assistance from the routers.)
 - ▶ In practice, such networks use window-based information.
 - Example. The Internet.
- A QoS-based service model probably implies some form of reservation.
 - ▶ Need significant router involvement (e.g., different queues for different level of resource reservation)
 - Often express express such reservations in terms of rate (windows are only indirectly related to how much bandwidth a user needs from the network.)

H. Chen (CUNY) CISC 7334X-R6 November 16, 2023 38 / 51

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
- Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
- **5** Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- **TCP Congestion Control**

Effective Resource Allocation

Congestion control is essentially a resource allocation problem.

- An efficient allocation of bandwidth across transport entities will use all of the network capacity that is available; however, ...
- Recall the relationship among traffic load, delay, and goodput.
- Kleinrock's power

$$power = \frac{load}{delay}$$
 (31)

Fair Resource Allocation

At least, we should give bandwidth to all flows (without starvation). What exactly is fairness?

Max-min Fairness

- An allocation is max-min fair if the bandwidth given to one flow cannot be increased without decreasing the bandwidth given to another flow with an allocation that is no larger.
- Max-min fairness gives equal shares of bottleneck.
- Example.⁹

⁹Andrew S. Tanenbaum and David Wetherall. *Computer Networks*. 5th ed. Boston: Prentice Hall, 2011. ISBN: 978-0-13-212695-3. URL:

https://www.safaribooksonline.com/library/view/computer-networks-fifth/9780133485936/.

Jain's Fairness Index

▶ Given a set of flow throughputs $(x_1, x_2, ..., x_n)$ (measured in consistent units such as bits/second), the following function assigns a fairness index to the flows,

$$f(x_1, x_2, \dots, x_n) = \frac{\left(\sum_{i=1}^n x_i\right)^2}{n \sum_{i=1}^n x_i^2}$$
 (32)

Convergence

How quickly does a congestion control algorithm converge to a fair and efficient allocation of bandwidth.

Controlling Resource Allocation

How do we regulate the sending rates to obtain a desirable bandwidth allocation directly or indirectly.

- ► Flow control. What if there is insufficient buffering at the receiver.
- Congestion control. What if there is insufficient capacity in the network (insufficient buffering at the routers).

Control Law

The way in which the rates are increased or decreased is given.

- Feedback may be explicit or implicit, and may be precise or imprecise.
- Binary congestion feedback and AIMD (Additive Increase Multiplicative Decrease), e.g., ¹⁰

¹⁰Andrew S. Tanenbaum and David Wetherall. Computer Networks. 5th ed. Boston: Prentice Hall. 2011. ISBN: 978-0-13-212695-3. URL:

https://www.safaribooksonline.com/library/view/computer-networksfifth/9780133485936/.

Outline

- Concept of Congestion
- Concept of Queuing Model
 - Single-Server Queue
 - Computational Model
 - Packet-Averaged Statistics
 - Time-Averaged Statistics
- 3 Effect of Congestion
- 4 Congestion Control
 - General Approach
 - Taxonomy
- 5 Transport Congesstion Control
 - Resource Allocation
 - Controlling Resource Allocation
- **6** TCP Congestion Control

TCP Congestion Control

TCP uses AIMD with lossy signal to control congestion

- Implemented as a congestion window (cwnd) for the number of segments allowed in the network
- Uses several mechanisms that work together
 - ACK clock. Using congestion window (cwnd) to smooth out packet bursts
 - Slow-start. Doubling cwnd each RTT to rapidly increase send rate to reach roughly the right level
 - Additive increase. Increasing cwnd by 1 packet each RTT to slowly increase send rate to probe at about the right level
 - ► Fast retransmit. Resending lost packet after 3 duplicate ACKs; sending new packet for each new ACK, to recover from a lost packet without stopping ACK clock

Sending Rate and Congestsion Control Window

Congestion window controls the sending rate

- Rate is cwnd/RTT; window can stop sender quickly
- ACK clock (regular receipt of ACKs) paces traffic and smoothes out sender bursts

RTT Estimation and Retranmission Timer Management

First, need to estimate round-trip time (RTT, denoted as d below)

Simple average.

$$\bar{d}_{k+1} = \frac{1}{K} \sum_{i=1}^{K+1} d_i = \frac{K}{K+1} \bar{d}_k + \frac{1}{K} d_{k+1}$$
 (33)

Exponential average.

$$\bar{d}_{k+1} = \alpha \bar{d}_k + (1 - \alpha) d_{K+1} \tag{34}$$

Then, estimate the retransmission time-out value (T) as,

$$T_{K+1} = \bar{d}_{K+1} + \Delta \tag{35}$$

or,

$$T_{K+1} = \min(U, \max(L, \beta \bar{d}_{K+1})) \tag{36}$$

where U and L are two pre-chosen upper and lower bounds where the time-out value is in, β is a constant.

Improving RTT Estimation and Retransmission Timer

- Jacobson's algorithm
- Karn's algorithm

49 / 51

Window Management

With slow start, we have the following constraint (flow control + congestion control)

$$awnd = min(credit, cwnd)$$
 (37)

where awnd is the number of segments outstanding without being acknowledged, credit TCP flow-control credit allocation, and cwnd congestion window.

Slow Start and Fast Recovery

- Slow start followed by additive increase (TCP Tahoe)
- ► Fast recovery(TCP Reno)