Overview of Routing

Hui Chen ${ }^{\text {a }}$
${ }^{\text {a }}$ CUNY Brooklyn College

November 4, 2020

Outline

(1) Routing Problem

(2) Design Consideration

(3) Routing Strategies

Routing Problem

- Routing is the process of designing, discovering, and configuring network paths through the network for individual pairs of communicating end nodes with a set of desired requirements, such as, on
- correctness,
- fairness,
- efficiency,
- stability,
- simplicity, and
- robustness
- Routing vs forwarding
- Forwarding is the sending of packets along a path

Network Model for Routing Optimization

- Model the network as a graph of nodes and links
- Decide what to optimize (e.g., fairness vs. efficiency)
- Decide how to update routes for changes in topology (e.g., failures)

Optimality Principle

- Each portion of a best path is also a best path ${ }^{1}$
- For example, If b_{3} is on the optimal path from a_{2} to a_{5}, the optimal path from a_{2} to b_{3} and that of b_{3} to a_{5} also fall along the same route

[^0] 16.1 (1958), pp. 87-90.

Sink Tree

- The union of best paths to a router is a tree called the sink tree
- Routing \equiv Computing sink trees?
- A sink tree, unrealistic to compute in practice, provides a benchmark against which other routing algorithms can be measured or evaluated
- But what does it mean being the "best"?

Outline

(1) Routing Problem

(2) Design Consideration

(3) Routing Strategies

Efficiency Consideration

An efficient routing algorithms minimizes the consumption of network resources or maximizes desired network performance

- Number of hops (link cost $\equiv 1$)
- Link cost
- Cost of a link and that of attached nodes
- Delay
- Throughput

Design Considerations

Compute a desired route, i.e., make the decision about the routes between any pair of end nodes, but

- Decision time. Compute the route on a packet or on a session basis (the example of a session can be a virtual circuit)
- Decision place. Which node or nodes are responsible for computing the route.
- Network information sources. Based on what data does a routing algorithm compute the routes?
- Update timing. When are the network information updated and when do we recompute the routes?

Decision Time

- Compute the route on a packet or on a session basis (the example of a session can be a virtual circuit)?
- Data structures (e.g., forwarding tables)?

Decision Place

- Which node or nodes are responsible for computing the route.
- Each node (distributed routing algorithms; network information sources?)
- Central node (a designated control node; centralized routing algorithms; cyclic dependency and network information sources?)
- Originating node (i.e., the source node; source routing algorithms; cyclic dependency and network information sources?)

Network Information Sources

- Based on what information (i.e., data) does a routing algorithm compute the routes?
- Types of information
- Topology of the network?
- Traffic load?
- Link cost?
- None at all?
- Sources (nodes) of information
- Local?
- Adjacent node?
- Nodes along the route (cyclic dependency?)?
- All nodes?
- None at all?

Update Timing

Update timing, network information sources, and routing strategies (algorithms) are intertwined.

- Continuous
- Periodic
- Major traffic load change
- Topology change

Additionally, consider

- the amount of network information vs.
- the frequency of network information update vs.
- the quality of routing decision vs.
- the network resources consumed by transmitting the network information (and decisions), and computing the routes at nodes

Outline

(1) Routing Problem

(2) Design Consideration

(3) Routing Strategies

Routing Strategies

- Strategies vs. algorithms vs. protocols?
- Routing strategies
- Fixed. Configure a permanent route.
- Flooding. A node transmits a packet to all its neighbors except the one from which the packet comes.
- Random. A node selects randomly an outputing neighbors (except the one from which the packet comes) to retranmist the incoming packet to. For instance, select a neighbor based on,

$$
\begin{equation*}
P_{i}=\frac{R_{i}}{\sum_{j} R_{j}} \tag{1}
\end{equation*}
$$

- Adaptive. Recompute routing decisions as network conditions change.
- Failure. A node or a link fails.
- Congestion. There is a congestion in a portion of the network.

Example of Flooding

See Figure 19.3 in the textbook.

- All possible routes are tries.
- At least one copy of the packet arrives from the minimum-hop route
- All nodes directly and indirectly connected to the source nodes are visited.

Figure 19.3^{2}

Figure 19.3 Flooding Example (hop count = 3)

[^1]
Example of Adaptive Routing

See Figure 19.4 in the textbook.

- Can be either distributed or centralized

Figure 19.4^{3}

Node 4's Bias
Table for
Destination 6
Next Node

1	Bias
1	9
2	6
3	3
5	0

Figure 19.4 Example of Isolated Adaptive Routing

[^2] Press, 2013. ISBN: 0133506487.

[^0]: ${ }^{1}$ Richard Bellman. "On a routing problem". In: Quarterly of applied mathematics

[^1]: ${ }^{2}$ William Stallings. Data and Computer Communications. 10th. USA: Prentice Hall Press, 2013. ISBN: 0133506487.

[^2]: ${ }^{3}$ William Stallings. Data and Computer Communications. 10th. USA: Prentice Hall

