#### CISC 7332X T6 Packet Switching

#### Hui Chen

#### Department of Computer & Information Science

CUNY Brooklyn College

#### Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- The instructor used the following references
  - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010
  - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011

#### Design Issues

- Store-and-forward packet switching
- Connectionless service (datagrams)
- Connection-oriented service (virtual circuits and source routing)
- Comparison of virtual-circuits and datagrams
- Source routing

#### Packet-switched Networks

- Data are divided and sent using *packets* 
  - A packet has a header and trailer which contain control information
    - e.g., destination and source addresses
- Store-and-forward
  - Each packet is passed from node to node along some path through the network
  - At each node, the entire packet is received, stored briefly, and then forwarded to the next node



# Switching Approaches

- Datagram switching
  - Connectionless service
- Virtual circuit switching
  - Connection-oriented service
- Source routing

#### Datagram Packet Switching

- Network nodes process each packet independently
- Two consecutively-sent packets can take different routes.
- Implications:
  - A sequence of packets can be received in a different order than they were sent
  - Each packet header must contain full address of the destination
- Example of networks using packet switching
  - Extended Ethernet LAN, a data link layer protocol
  - The Internet Protocol, a network layer protocol

#### Example



#### Datagram Switching

- Each switch maintains a forwarding table
- · Frame header contains the identifier of destination node
- · Forward packets/frames based on the table
  - Example: if frame header indicates its destination is <u>node B</u>, forward to <u>port 0</u>  $\rightarrow$  done by looking up the table



#### Exercise 1



 Construct the forwarding tables for other switches (switches 1 & 3)

#### Datagram Switching: Discussion

- Each node maintains a forwarding table
- No connection setup
- Hosts/switches sends/forwards packets independently
- Hosts/switches do not know if the network can deliver a packet to its destination
- A switch/link failure might not be catastrophic
  - Find an alternate route and update forwarding table

## Virtual Circuit Switching

- Connection-oriented model
  - Connection setup → establish "virtual circuit (VC)"
  - Data transfer  $\rightarrow$  subsequent packets follow same circuit
  - Tear down VC
- Each switch maintains a VC table
  - An entry (row) in VC table must have
    - VCI: identify connection at this switch <u>within</u> a link → a different VCI will be used for outgoing packets
    - Incoming interface, e.g., a port for receiving packets
    - Outgoing interface, e.g., a port for forwarding packets
- Frame header contains VC number (VCI value) of <u>next link</u> along a VC

#### Virtual Circuit Switching: Example

- Example: host A  $\rightarrow$  host B
  - Switches needed? Switches 1, 2, and 3
  - Network do not explicitly maintain global information about virtual circuits



Two planned virtual circuits in dashed/dotted lines

CUNY | Brooklyn College

#### Virtual Circuit Switching: Example: VC Table

- Setup phase (could be performed manually for a network administrator) → permanent VC→ Establish VC table for each switch
- Example: Switch 1

11/

- When host A sends out a frame, it places the VCI (i.e.
  5) of next link into the frame header
- Switch 1 looks up an entry based on both incoming interface (i.e., 2) and the VCI (i.e., 5) in the frame header to determine outgoing port (i.e., 1) and VCI (i.e., 11)
- The scope of VCI values is links
  - Unused VCI value on the link (Host A to Switch 1)
  - VCI can be duplicated on different link

Virtual circuit table entry for switch 1

|     | Incoming Interface | Incoming VCI            | Outgoing Interface | Outgoing VCI |
|-----|--------------------|-------------------------|--------------------|--------------|
|     | 2                  | 5                       | 1                  | 11           |
| 19/ | 2019               | CUNY   Brooklyn College |                    |              |



#### Virtual Circuit Switching: Example: VC Table

| Incoming Interface | Incoming VCI | Outgoing Interface | Outgoing VCI |
|--------------------|--------------|--------------------|--------------|
| 2                  | 5            | 1                  | 11           |

Virtual circuit table entry for switch 1

| Incoming Interface            | Incoming VCI | Outgoing Interface | Outgoing VCI |  |
|-------------------------------|--------------|--------------------|--------------|--|
| 3                             | 11           | 2                  | 7            |  |
| VC table antique at antique 2 |              |                    |              |  |

VC table entry at switch 2



CUNY | Brooklyn College

#### Virtual Circuit Switching: Example

#### Host A sends a frame to host B



#### Exercise 2

- Construct Virtual Circuit (VC) table entry for all the switches on the Virtual Circuit for both Virtual Circuits (dash or dotted lines)
- List VC tables for switches 1, 2, 3, and 4. You may make necessary assumptions.



#### Virtual Circuit Switching: Connection Setup

- Connection setup
  - Permanent virtual circuit (PVC): manual configured → unmanageable for great number of nodes
  - Switched virtual circuit (SVC): automatically configured via signaling
    - A process similar to datagram model

#### Virtual Circuit: Discussion

- Connection setup takes 1 RTT minimally
- VCI number typically needs less memory space. Per-packet overhead is less than that of the datagram model
- Need VC re-setup in case of a connection failure
- Possible to allocate network resources during VC setup

# Comparison of Virtual-Circuit & Datagram Switching

| Issue                     | Datagram network                                                | Virtual-circuit network                                                |
|---------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------|
| Circuit setup             | Not needed                                                      | Required                                                               |
| Addressing                | Each packet contains the full<br>source and destination address | Each packet contains a<br>short VC number                              |
| State information         | Routers do not hold state<br>information about connections      | Each VC requires router<br>table space per connection                  |
| Routing                   | Each packet is routed<br>independently                          | Route chosen when VC is<br>set up; all packets follow it               |
| Effect of router failures | None, except for packets<br>lost during the crash               | All VCs that passed<br>through the failed<br>router are terminated     |
| Quality of service        | Difficult                                                       | Easy if enough resources<br>can be allocated in<br>advance for each VC |
| Congestion control        | Difficult                                                       | Easy if enough resources<br>can be allocated in<br>advance for each VC |

#### Connectionless Service: Datagram Switching

Different packets may take different paths



CUNY | Brooklyn College

#### Connection-Oriented Service: Virtual Circuit Switching

Packet is forwarded along a virtual circuit



### Source Routing

- Source host knows network topology to deliver a packet/frame
- Source host places output ports of each switch along the route into the frame header

#### Source Routing: Example

• Example: Host A sends a frame to host B



#### Exercise 3

 Assume source routing presented in previous slide is used, show headers of a frame leaves from Host H and arrives at Host D at each switches along the nath



#### Questions?

- Packet switching
- Datagram switching
  - Example in practice?
    - Ethernet and learning bridge
- Virtual circuit switching
- Source routing