CISC 7332X T6 Multiplexing

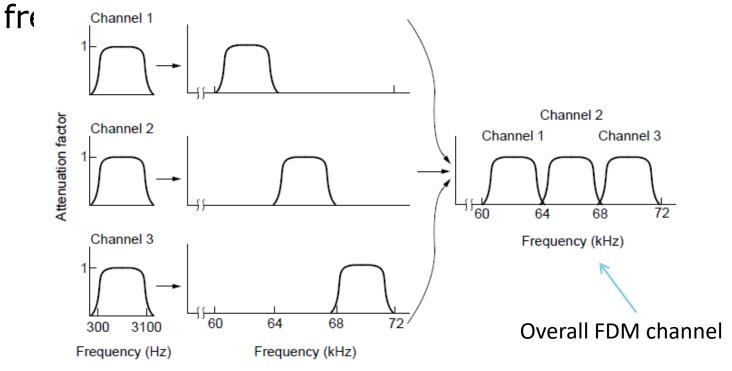
Hui Chen

Department of Computer & Information Science CUNY Brooklyn College

Outline

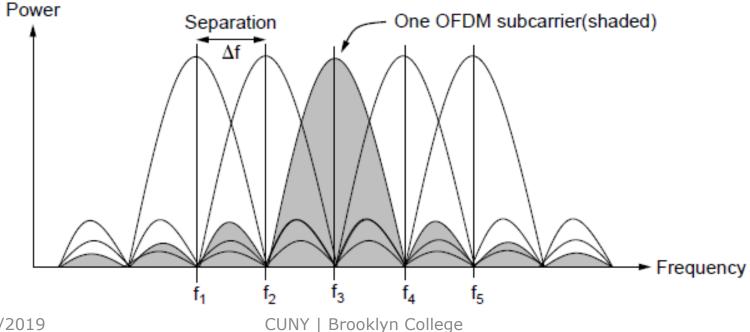
- Multiplexing
 - FDMA, TDMA, and CDMA

Multiplexing

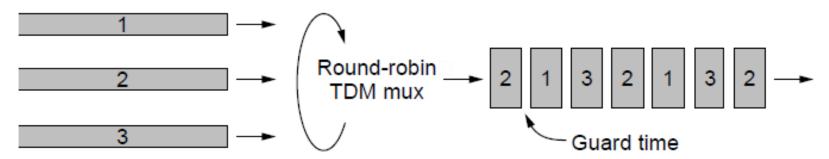

- Channels are often shared by multiple signals
- The schemes that allow multiple signals to share a channel are called multiplexing

Schemes of Multiplexing

- Frequency Division Multiplexing
- Time Division Multiplexing
- Code Division Multiple Access


Frequency Division Multiplexing

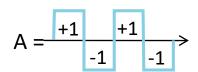
 FDM (Frequency Division Multiplexing) shares the channel by placing users on different

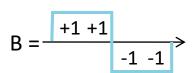

Orthogonal FDM (OFDM)

 an efficient FDM technique used for 802.11, 4G cellular and other communications

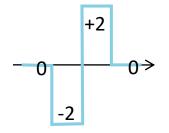
Time Division Multiplexing (TDM)

- Time division multiplexing shares a channel over time:
 - Users take turns on a fixed schedule; this is not packet switching or STDM (Statistical TDM)
 - Widely used in telephone / cellular systems

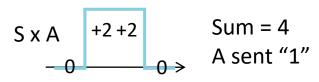

Code Division Multiple Access (CDMA)

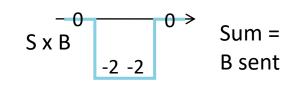

- CDMA shares the channel by giving users a code
 - Codes are orthogonal; can be sent at the same time
 - Widely used as part of 3G+ cellular communication networks

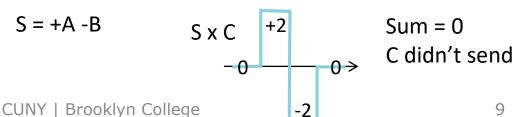
CDMA: Example


- Each user has a chip code/sequence
 - transmit 1 = transmit the chip code; transmit 0 = transmit the negation of the chip code

Sender Chip Codes




Transmitted Signal at Receiver



$$S = +A -B$$

Receiver Decoding

9/17/2019

CDMA: Example

- Each user has a chip code/sequence
 - transmit 1 = transmit the chip code; transmit 0 = transmit the negation of the chip code

Sender Chip Codes

$$A = \begin{array}{|c|c|c|}\hline +1 & +1 \\ \hline -1 & -1 \\ \hline \end{array}$$

A transmits 1
B transmits 0
C does not transmit

Questions?

- Concept of multiplexing
- FDMA and ODMA
- TDMA
- CDMA