## CISC 7332X T6 Digital Modulation

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

#### Outline

- Digital modulation
  - Baseband transmission
    - Line codes
    - Design considerations
  - · Passband transmission
    - Digital modulations
- Multiplexing
  - FDMA, TDMA, and CDMA
- Switching
  - Circuit switching and packet switching

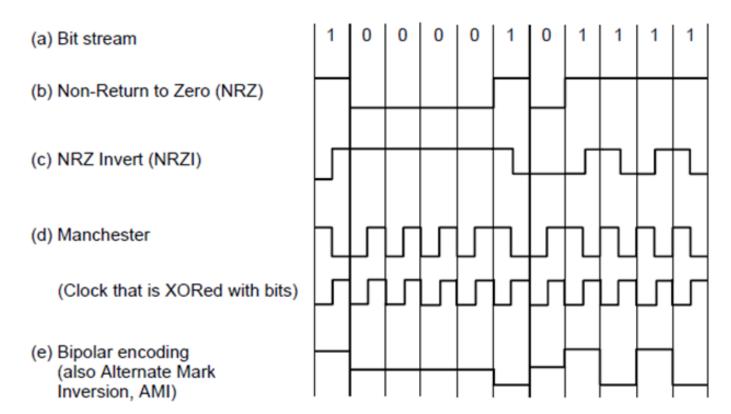
#### Digital Modulation

- Wire and wireless channels carry analog signals
  - Examples of analog signals
    - continuous electrical current varying voltage
    - continuous light emissions with varying intensity
    - continuous sound with varying intensity
- Digital modulation
  - The process that converts between fundamental unit of digital data (e.g., bits) and signals
    - · How do we represent bits in analog signal?
    - How do we extract bits from analog signals?

## Schemes of Digital Modulations

- Baseband transmission
- Passband transmission

# Baseband and Passband Signals


- Review
  - Bandwidth (an <u>overloaded</u> term), based on context,
    - The width of frequency range transmitted without being strongly attenuated
    - A physical property of the transmission medium
  - Max data rate of noiseless and noisy channels
- Signals that run from 0 up to a maximum frequency are called <u>baseband</u> signals
  - 0 ~ B Hz, where B is the bandwidth
- Signals that are shifted to occupy a higher range of frequencies are called <u>passband</u> signals
  - S ~ S + B Hz, where S the frequencies shifted

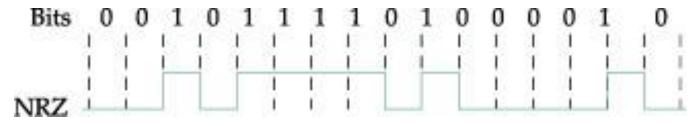
#### **Baseband Transmission**

- A few schemes (also called encoding in the context of baseband transmission, or line codes)
  - Non-Return-to-Zero (NRZ)
  - NRZ Invert (NRZI)
  - Manchester, 4B/5B
  - Bipolar encoding/Alternate Mark Inversion (AMI)
- Issues to consider
  - Bandwidth efficiency
  - Clock recovery
  - Balanced signals
  - Baseline wander

## Line Codes/Encoding Schemes

An overview with an example




## Non-Return-to-Zero (NRZ)

- Low = 0, e.g., negative voltage
- High = 1, e.g., positive voltage
- Difficult to recover clock
  - When long strings of 1s or 0s
- Bandwidth efficiency
  - B/2 bandwidth for B bps data rate for the example below (why?)
  - More than 2 levels? e.g., 4 levels for 00, 01, 10, 11
  - Symbol, symbol rate (baud rate), bit rate



# Bandwidth Efficiency/Spectral Efficiency

Consider the example

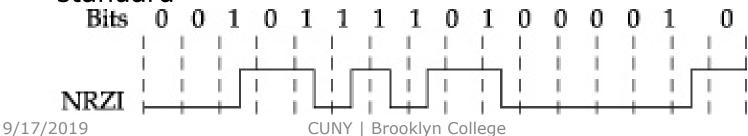


- We observe
  - V = 2
  - If we want max. bit rate to be R bps, what is the required bandwidth B Hz?
    - R = 2 B log 2 V, and B = R/2, i.e., R/B = 2 bps/Hz
  - What if V = 4?

### More Examples on the Web

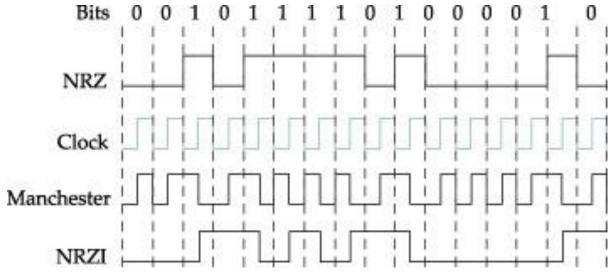
- http://www.techplayon.com/spectralefficiency-5g-nr-and-4g-lte/
- and
- https://www.scribd.com/document/4037
   29934/LTE-to-5G-Cellular-and-Broadband-Innovation-Rysavy-forupload-pdf (slide 21)

## Clock Recovery


- The receiver needs to know when one symbol ends and the next begins to tell bits apart
- Clock is imperfect, a long running of 0 and 1's makes it difficult
- Transmitting clock
  - A dedicated line for clock → wasteful, difficult, and sometimes impossible
  - Recovering clocks
    - Synchronize clocks when detecting transition of signal levels
    - XORing clock and NRZ signal (Manchester encoding)
    - Increasing transitions (NRZI)

## Non-Return-to-Zero Invert (NRZI)

- Signal transition = 1
- No transition = 0
- Solve the clock recovery problem caused by consecutive 1's
- The problem caused by consecutive 0's remains
  - Prohibits sender from transmitting two many 0's in a row, e.g., no more than 15 consecutive 0's on T1 line


12

Application: the popular USB (Universal Serial Bus) standard



#### Manchester

- NRZ signal ⊕ Clock signal
  - low-to-high transition = 0; high-to-low transition = 1
- Application: classic Ethernet
- Solve the problems caused by both consecutive 1's and 0's
- New problem:
  - Clock's frequency is required twice as high, bandwidth efficiency?



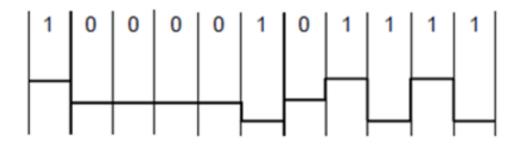
#### 4B/5B

- Addressing clock recovery and bandwidth efficiency
  - Map consecutive 0's or 1's to slightly longer patterns that do not have too many consecutive 0's and 1's
- 4B/5B uses a fixed 4-bits-to-5-bits translation table
  - 4B/5B's (5-4)/4 = 25% overhead, much less than Manchester's (2-1)/1 = 100% overhead
  - Transmit resulting codes using NRZI

## 4B/5B Translation

| 4-Bit Data Symbol | 5-Bit Code |
|-------------------|------------|
| 0000              | 11110      |
| 0001              | 01001      |
| 0010              | 10100      |
| 0011              | 10101      |
| 0100              | 01010      |
| 0101              | 01011      |
| 0110              | 01110      |
| 0111              | 01111      |
|                   |            |

| 4-Bit Data Symbol | 5-Bit Code |
|-------------------|------------|
| 1000              | 10010      |
| 1001              | 10011      |
| 1010              | 10110      |
| 1011              | 10111      |
| 1100              | 11010      |
| 1101              | 11011      |
| 1110              | 11100      |
| 1111              | 11101      |


### Balanced Signals

- Signals that have as much positive voltage even over short period of time
- Balanced signals are desired
  - Balanced signals have no Direct-Current (DC) component
    - Some physical media, such as, coaxial cable strongly attenuate a DC component
    - Some methods of connecting the receiver to the channel pass only the Alternate-Current (AC) portion of the signal, e.g., capacitive coupling
    - Helps clock recovery since balanced signals must be a mix of positive and negative voltages
    - Eases receiver calibration because the average of the signal can be measured and used as a decision threshold to decode symbols
- Example line codes
  - Bipolar encoding, e.g., Alternate Mark Inversion (AMI) in traditional telephone network
  - 8B/10B line code

# Alternate Mark Inversion (AMI)

Bit stream

Bipolar encoding (also Alternate Mark Inversion, AMI)



#### Questions?

- Line codes and issues
- NRZ, NRZI, Manchester, 4B/5B
- Design consideration: bandwidth efficiency, clock recovery, balanced signals

#### In-Class Exercise 1

- Encode bit sequence 01101 using NRZ, NRZI, Manchester encoding
- Draw signals, clocks, and bit boundaries

#### In-Class Exercise 2

- Encode bit sequence 01101100 using NRZ; however, with 2 bits / symbol.
- Draw the signal, clock, symbol boundaries.
- What is the ratio of Max. Data Rate / Required Bandwidth?

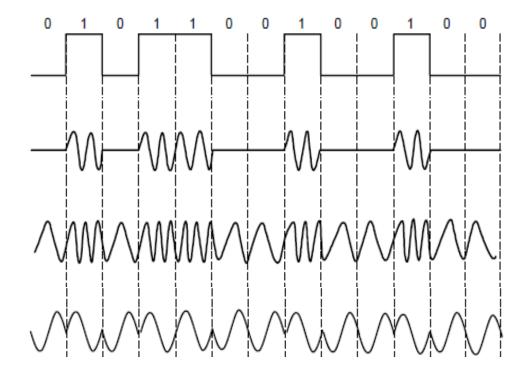
#### Passband Transmission

- Baseband transmission
  - Signal: 0 ~ B Hz. Not always available; low frequency > large size of antenna (antenna size and wave length are comparable, e.g., <a href="https://en.wikipedia.org/wiki/Project Sanguine">https://en.wikipedia.org/wiki/Project Sanguine</a>); need to control attenuation ...
- Passband transmission
  - Signal: S ~ S+B Hz
  - Digital modulation: regulating a carrier signal that sits in the passband with a baseband signal, i.e., modulating the amplitude, frequency, and/or phase of a carrier signal sends bits in a (non-zero) frequency range

## Passband Transmission: Modulation

- Amplitude Shift Keying (ASK)
- Frequency Shift Keying (FSK)
- Phase Shift Keying (PSK)
- Simplest form: Binary Phase Shift Keying (BFSK)

# Modulation: Overview by Example

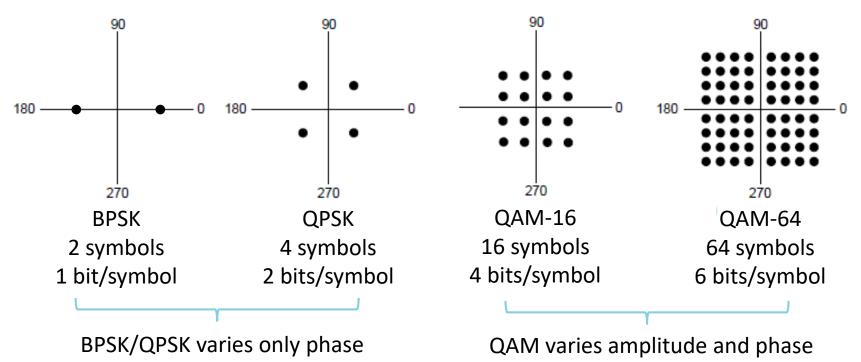

Modulate NRZ with ASK, FSK, and PSK



Amplitude shift keying

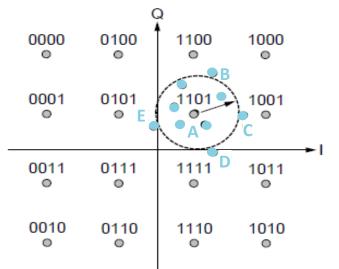
Frequency shift keying

Phase shift keying




#### Modulating Amplitude/Phase

- Binary Phase Shift Keying (BPSK)
  - 2 symbols, each 1 bit (e.g., 0 or 180 degrees)
- Quadrature Phase Shift Keying (QPSK)
  - 4 symbols, each 2 bits (e.g., 45, 135, 225, 315 degrees)
- Quadrature Amplitude Modulation (QAM)
  - Examples: QAM-16, QAM-64


### Constellation Diagram

 A shorthand to capture the amplitude and phase modulations of symbols



# Constellation and Symbol-Bit Mapping

- Design consideration: small burst of noise at the receiver not lead to many bit errors
  - Not to assign consecutive bit values to adjacent symbols
  - Gray-coding assigns bits to symbols so that small symbol errors cause few bit errors



When 1101 is sent:

| Point | Decodes as    | Bit errors |
|-------|---------------|------------|
| Α     | 1101          | 0          |
| В     | 110 <u>0</u>  | 1          |
| С     | 1 <u>0</u> 01 | 1          |
| D     | 11 <u>1</u> 1 | 1          |
| E     | <u>0</u> 101  | 1          |

### Questions?

- Baseband vs. passband transmission
- Modulation
  - ASK, FSK, PSK
  - QAM
  - Symbol
  - Symbol rate and bit rate

#### In-Class Exercise 3

- Motivating example in practice
  - See
     <u>https://documentation.meraki.com/MR/WiFi\_Basics\_a</u>
     <u>nd\_Best\_Practices/802.11\_fundamentals%3A\_Modula</u>
     tion
- Consider BPSK, QPSK, QAM-16, and QAM-64.
   Assume the <u>max. data rate</u> can be obtained when QAM-64 is use at a given S/N denoted as SNR<sub>64</sub>. What would be the required S/N (in relation to SNR<sub>64</sub>) for BPSK, QPSK, and QAM-16 if the same <u>max. symbol rate</u> must be maintained?