CISC 7332X T6 LAN Switching

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgements

- Some pictures used in this presentation were obtained from the Internet
- The instructor used the following references
 - Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, 5th Edition, Elsevier, 2011
 - Andrew S. Tanenbaum, Computer Networks, 5th Edition, Prentice-Hall, 2010

Ethernet LAN: How to Expand?

• Expand an Ethernet local area network (LAN)

- Repeaters
- Bridges (or Hubs)
- Switches

Repeaters

- Devices in physical layer
- Receive, amplify (regenerate), and retransmit signal in both directions.
- Example: Ethernet repeaters

Bridges

- Devices in data link layer
- Operates in promiscuous mode
- Forward packets/frames to either connected networks
- Example: Ethernet bridges

Learning Bridges

- Does the bridge need to forward a frame to every port when?
 - $A \rightarrow B$?
 - $A \rightarrow X$?
- Improvement
 - Do not forward unnecessarily
 - Relying on a forwarding table at each switch

Forwarding Algorithm

Destination address in frame header indicates which host a frame is addressed to	Host	Port
Source address in frame header indicates which host a frame is originated	A	1
Each bridge maintains a "forwarding" table	В	1
Algorithm	C	1
• On receiving a frame (src, dst, receiving	Х	2
port), look up dst in the forwarding table	Υ	2
• If <i>dst</i> is found	Z	2
 If port in forwarding table = receiving port, discard the frame; 		
 otherwise, forward to the forwarding port 	Port 1 Bridge	
 <u>Otherwise</u>, forward to all ports (flooding) 		y Z

٠

.

٠

.

Exercise 1

 Build a complete "forwarding" table for the Ethernet switch

Questions?

- Packet switching in extended LAN
- Forwarding table and forwarding algorithm in extended LAN

Learning Bridges and Forwarding Table

- Improvement
 - Forwarding table
 - Do not forward unnecessarily to receiving port.
- How to maintain the table?
 - Manually?
 - Automatically?
- Learning bridges
 - automatically maintain the table without human intervention → "learning" from received frames
 → Ethernet switches = Learning bridges
- How does it learn?

Forwarding Table: Learning from Received Frame

- From a received frame, an Ethernet switch knows
 - Destination address and source address

64	48	48	16	32
Preamble	Dest addr	Src addr	Туре	

 Also knows receiving port number on the switch

Forwarding Table: Learning Algorithm

Host Port Destination address in frame header indicates which host a frame is addressed А 1 to В 1 Source address in frame header indicates which host a frame is originated С 1 Each bridge maintains a "forwarding" Х 2 table, initially empty Y 2 Algorithm (running at each switch) Ζ 2 On receiving a frame (src, dst, С *receiving port*), look up *src* in the forwarding table Port 1 Bridg • If *src* is not found - Port 2 Insert (src, receiving port number) to the forwarding table

Learning Algorithm: Example

- Describe the table built by the switch as the following frames arrives
 - Starting with the table as follows

Host	Port
В	3

- The following frames (indicated by sending hosts) are received by the bridge as time goes
 - I, H, B, F (reads, first I, then H, then B, and then F)
 - Please draw four tables to show the resulting table after each frame is processed

Learning Algorithm: Example: Example: Answer

Host	Port
В	3

1. Frame sent from Host Larrives

Host	Port
В	3
I	2

2. Frame sent from Host H arrives

Host	Port
В	3
T	2
н	2

3. Frame sent from Host B arrives

Host	Port
В	3
I	2
Н	2

4. Frame sent from Host F arrives

Host	Port
В	3
T	2
н	2
F	1

Example: Question 1

0. Initial table

Host	Port
В	3

Q: which hosts will see the frame sent from Host I?

Example: Question 2

0. Initial table

Host	Port
В	3

Q: which hosts will see the frame sent from Host B?

1. Frame sent from Host I arrives

Host	Port
В	3
L	2

2. Frame sent from Host H arrives

Host	Port
В	3
1	2
Н	2

Exercise 2

- Starting with an empty forwarding table at each switch, step-by-step build a forwarding table for each switch of the Ethernet shown as the following transmissions happen
 - A sends to C; C sends to A; E sends to I; I sends to E; E sends to B

Questions?

 Learning algorithm of learning bridge/switch in extended LAN