
CISC 7332X T6

Data Link Protocols
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/23/2019 1CUNY | Brooklyn College

Data Link Layer

• Responsible for delivering frames of

information over a single link

• Handles transmission errors

• Regulates the flow of data

9/23/2019 CUNY | Brooklyn College 2

Physical

Link

Network

Transport

Application

Design Issues in Data Link

Layer

• Discussed

• Concept of frames

• Error control

• Framing methods

• Possible services

• Data link protocols and flow control

9/23/2019 CUNY | Brooklyn College 3

Outline

• Data link protocol (for point-to-point links)

• A utopian simplex protocol

• Stop-and-wait protocols

• Stop-and-wait for an error-free channel

• Stop-and-wait for a noisy channel

• Analysis of stop-and-wait protocols

• Sliding window protocols

• 1-bit sliding window

• Go-Back-N

• Selective repeat

• Data link protocols in practice

9/23/2019 CUNY | Brooklyn College 4

Possible Services

• Unacknowledged connectionless service

• Frame is sent with no connection/error recovery

• Example: Ethernet

• Acknowledged connectionless service

• Frame is sent with retransmissions if needed

• Example: 802.11

• Acknowledged connection-oriented service

• Connection is set up; rare

9/23/2019 CUNY | Brooklyn College 5

Elementary Data Link

Protocols

• Link layer environment

• Utopian Simplex Protocol

• Stop-and-Wait Protocol for Error-free

channel

• Stop-and-Wait Protocol for Noisy channel

9/23/2019 CUNY | Brooklyn College 6

Link Layer Environment

• Commonly implemented as

• Network Interface Cards (NICs) and

Operating Systems (OS) drivers

• Remark

• Network layer (IP) is often a part of the OS

software

9/23/2019 CUNY | Brooklyn College 7

Link Layer Environment:

Example Implementation

9/23/2019 CUNY | Brooklyn College 8

Link Layer: Services

• Link layer protocol implementations use

library functions

• See code (protocol.h) in next slide

9/23/2019 CUNY | Brooklyn College 9

Example: protocol.h

#define MAX_PKT 1024 /* determines packet size in bytes

*/

typedef enum {false, true} boolean; /* boolean type */

typedef unsigned int seq_nr; /* sequence or ack numbers */

typedef struct {unsigned char data[MAX_PKT];} packet;/*packet

definition*/

typedef enum {data, ack, nak} frame_kind; /* frame_kind definition */

typedef struct { /* frames are transported in this layer */

frame_kind kind; /* what kind of frame is it? */

seq_nr seq; /* sequence number */

seq_nr ack; /* acknowledgement number */

packet info; /* the network layer packet */

} frame;

/* Wait for an event to happen; return its type in event. */

void wait_for_event(event_type *event);

/* Fetch a packet from the network layer for transmission on the

channel. */

void from_network_layer(packet *p);

/* Deliver information from an inbound frame to the network layer. */

void to_network_layer(packet *p);

/* Go get an inbound frame from the physical layer and copy it to r. */

void from_physical_layer(frame *r);

/* Pass the frame to the physical layer for transmission. */

void to_physical_layer(frame *s);

/* Start the clock running and enable the timeout event. */

void start_timer(seq_nr k);

/* Stop the clock and disable the timeout event. */

void stop_timer(seq_nr k);

/* Start an auxiliary timer and enable the ack_timeout event. */

void start_ack_timer(void);

/* Stop the auxiliary timer and disable the ack_timeout event. */

void stop_ack_timer(void);

/* Allow the network layer to cause a network_layer_ready event. */

void enable_network_layer(void);

/* Forbid the network layer from causing a network_layer_ready event.

*/

void disable_network_layer(void);

/* Macro inc is expanded in-line: increment k circularly. */

#define inc(k) if (k < MAX_SEQ) k = k + 1; else k = 0

9/23/2019 CUNY | Brooklyn College 10

Example: protocol.h:

Services

9/23/2019 CUNY | Brooklyn College 11

Group Library Function Description

Network

layer

from_network_layer(&packet)

to_network_layer(&packet)

enable_network_layer()

disable_network_layer()

Take a packet from network layer to send

Deliver a received packet to network layer

Let network cause “ready” events

Prevent network “ready” events

Physical

layer

from_physical_layer(&frame)

to_physical_layer(&frame)

Get an incoming frame from physical layer

Pass an outgoing frame to physical layer

Events &

timers

wait_for_event(&event)

start_timer(seq_nr)

stop_timer(seq_nr)

start_ack_timer()

stop_ack_timer()

Wait for a packet / frame / timer event

Start a countdown timer running

Stop a countdown timer from running

Start the ACK countdown timer

Stop the ACK countdown timer

Physical

Link

Network

Transport

Application

Questions?

• Link layer environment

• Link layer services

9/23/2019 CUNY | Brooklyn College 12

Data Link Protocols

• Examine three protocols

• Utopian Simplex Protocol (p1)

• Stop-and-Wait Protocol in an Error-Free

Channel (p2)

• Stop-and-Wait Protocol in a Noisy Channel

(p3)

9/23/2019 CUNY | Brooklyn College 13

Utopian Simplex Protocol

• An optimistic protocol (p1) to start

• Assumes no errors, and receiver as fast as

sender

• Considers one-way data transfer

• That’s it, no error or flow control …

• Flow control

• Prevent (fast) sender overwhelms (slow) receiver

9/23/2019 CUNY | Brooklyn College 14

Utopian Simplex Protocol:

Peer Interface and

Implementation
• Unrealistic

• Error can occur

• Sender may be faster than receiver

9/23/2019 CUNY | Brooklyn College 15

Sender loops blasting frames Receiver loops eating frames

}

Stop-and-Wait in Error-free

Channel
• Error won’t happen, no error control; but

senders may be too fast

• Adding flow control to protocol p1

• Protocol (p2) ensures sender won’t outpace
receiver:

• Receiver returns a dummy frame called “ack” when
ready

• Stop and wait:

• Only one frame out from the sender at a time

• So, added flow control via the stop-and-wait
mechanism

9/23/2019 CUNY | Brooklyn College 16

Stop-and-Wait: Example

Implementation

9/23/2019 CUNY | Brooklyn College 17

Sender waits to for ack after
passing frame to physical layer

Receiver sends ack after passing
frame to network layer

Send
Ack

Wait for
Ack

Stop-and-Wait in Noisy

Channel
• ARQ (Automatic Repeat reQuest) adds error
control

• Receiver acks frames that are correctly delivered

• Sender sets timer and resends frame if no ack)

• For correctness, frames and acks must be
numbered

• Else receiver can’t tell retransmission (due to lost
ack or early timer) from new frame

• For stop-and-wait, 2 numbers (1 bit) are
sufficient

9/23/2019 CUNY | Brooklyn College 18

Stop-and-Wait/ARQ:

Example: Sender

9/23/2019 CUNY | Brooklyn College 19

Sender loop (p3):

Send frame (or retransmission)
Set timer for retransmission
Wait for ack or timeout

If a good ack then set up for the next
frame to send (else the old frame
will be retransmitted)

{

Stop-and-Wait/ARQ:

Example: Receiver

9/23/2019 CUNY | Brooklyn College 20

Wait for a frame

If it’s new then take
it and advance
expected frame

Ack current frame

Questions

• ARQ

• Error control via stop-and-wait

• Flow control via stop-and-wait

9/23/2019 CUNY | Brooklyn College 21

Analysis of Stop-and-Wait

• How well does the stop-and-wait

protocols perform?

• Metrics

• Throughput (effective bandwidth) and link

utilization

9/23/2019 CUNY | Brooklyn College 22

9/23/2019 23

Throughput
• Q: what is the maximum

throughput (effective

bandwidth)?

• Best case

• No error, no retransmission

• Send and receiver are equally

fast

• Note: tp = p1 + p2 = 1 RTT

• Transfer time = tx1 + tx2 +
tp

• Throughput =

Transfer size/Transfer time

frame

ack

1 RTT + …

p2

p1

CUNY | Brooklyn College

tp

tx1

tx2

Link Utilization

• How much capacity of a channel is being

used?

• Link utilization

• Throughput / Max Data Rate of the Channel

9/23/2019 CUNY | Brooklyn College 24

Timeout?

• How long should the receiver wait?

• Timeout: 2 x RTT or more …

9/23/2019 CUNY | Brooklyn College 25

Exercise 1

• Data frame size (data) = 1500 bytes

• Acknowledgement frame size (ack) = 64 bytes

• Stop-and-Wait protocol: receiver is forced to wait 2 RTT before
transmitting acknowledgement frame after having received data
frame. No additional processing and queueing delay

• Draw timeline diagram first, and then compute throughputs and
link utilization for one of the following,

• Dial-up

• RTT = 87 s; Link bandwidth: 56 Kbps

• Satellite

• RTT = 230 ms; Link bandwidth: 45 Mbps

9/23/2019 CUNY | Brooklyn College 26

Questions?

• Estimating link utilization at best-case

scenario

• What if the simple stop-and-wait protocol

yields poor link utilization ratio?

9/23/2019 CUNY | Brooklyn College 27

Sliding Window Protocols

• Sliding Window concept

• One-bit Sliding Window

• Go-Back-N

• Selective Repeat

9/23/2019 CUNY | Brooklyn College 28

Concept of Sliding Window

• Sender maintains window of frames it can

send

• Needs to buffer them for possible retransmission

• Window advances with next acknowledgements

• Receiver maintains window of frames it can

receive

• Needs to keep buffer space for arrivals

• Window advances with in-order arrivals

9/23/2019 CUNY | Brooklyn College 29

Concept of Sliding Window:

Example

• A sliding window advancing at the sender

and receiver

• Ex: window size is 1, with a 3-bit sequence

number.

9/23/2019 CUNY | Brooklyn College 30

Concept of Sliding Window:

Example

9/23/2019 CUNY | Brooklyn College 31

At the start First frame is
sent

First frame is
received

Sender gets
first ack

Sender

Receiver

Sliding Window: Advantage

• Larger windows enable pipelining for
efficient link use

• Stop-and-wait (w=1) is inefficient for long links

• Best window (w) depends on bandwidth-delay
(BD)

• Want w ≥ 2BD+1 to ensure high link utilization

• Pipelining leads to different choices for
errors/buffering

• We will consider Go-Back-N and Selective Repeat

9/23/2019 CUNY | Brooklyn College 32

Questions?

• Concept of sliding window

9/23/2019 CUNY | Brooklyn College 33

One-Bit Sliding Window

• Transfers data in both directions with

stop-and-wait

• Piggybacks acks on reverse data frames for

efficiency

• Handles transmission errors, flow control,

early timers

9/23/2019 CUNY | Brooklyn College 34

One-bit Sliding Window:

Example: Sender

9/23/2019 CUNY | Brooklyn College 35

. . .

{

Prepare first frame

Launch it, and set timer

One-bit Sliding Window:

Example: Receiver

9/23/2019 CUNY | Brooklyn College 36

. . .

If a frame with new data
then deliver it

Wait for frame or timeout

(Otherwise it was a timeout)

If an ack for last send then
prepare for next data frame

Send next data frame or
retransmit old one; ack the
last data we received

One-Bit Sliding Window:

Interactions

• Two scenarios show subtle interactions

exist in p4:

• Simultaneous start [right] causes correct but slow

operation compared to normal [left] due to duplicate

transmissions.

9/23/2019 CUNY | Brooklyn College 37

Simultaneous Start

9/23/2019 CUNY | Brooklyn College 38

Time

Normal case
Simultaneous Start (Correct,
but poor performance)

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

Go-Back-N

• Receiver only accepts/acks frames that

arrive in order:

• Discards frames that follow a

missing/errored frame

• Sender times out and resends all outstanding

frames

9/23/2019 CUNY | Brooklyn College 39

Go-Back-N: Example

9/23/2019 CUNY | Brooklyn College 40

Go-Back-N: Discussion

• Tradeoff made for Go-Back-N:

• Simple strategy for receiver; needs only 1

frame

• Wastes link bandwidth for errors with large

windows; entire window is retransmitted

9/23/2019 CUNY | Brooklyn College 41

Selective Repeat

• Receiver accepts frames anywhere in

receive window

• Cumulative ack indicates highest in-order

frame

• NAK (negative ack) causes sender

retransmission of a missing frame before a

timeout resends window

9/23/2019 CUNY | Brooklyn College 42

Selective Repeat: Example

9/23/2019 CUNY | Brooklyn College 43

Selective Repeat: Discussion

• Tradeoff made for Selective Repeat:

• More complex than Go-Back-N due to

buffering at receiver and multiple timers at

sender

• More efficient use of link bandwidth as only

lost frames are resent (with low error rates)

9/23/2019 CUNY | Brooklyn College 44

Selective Repeat: Sequence

Number

• For correctness, we require:

• Sequence numbers (s) at least twice the

window (w)

9/23/2019 CUNY | Brooklyn College 45

Selective Repeat: Sequence

Number

9/23/2019 CUNY | Brooklyn College 46

Originals OriginalsRetransmits Retransmits

Error case (s=8, w=7) – too
few sequence numbers

Correct (s=8, w=4) – enough
sequence numbers

New receive window overlaps
old – retransmits ambiguous

New and old receive window
don’t overlap – no ambiguity

Data Link Protocols:

Examples in Practice

• Packet over SONET

• PPP (Point-to-Point Protocol)

• ADSL (Asymmetric Digital Subscriber

Loop)

9/23/2019 CUNY | Brooklyn College 47

Packet over SONET

• Packet over SONET is the method used

to carry IP packets over SONET optical

fiber links

• Uses PPP (Point-to-Point Protocol) for

framing

9/23/2019 CUNY | Brooklyn College 48

Packet over SONET

9/23/2019 CUNY | Brooklyn College 49

Protocol stacks PPP frames may be split over
SONET payloads

PPP

• PPP (Point-to-Point Protocol) is a general

method for delivering packets across

links

• Framing uses a flag (0x7E) and byte stuffing

• “Unnumbered mode” (connectionless

unacknowledged service) is used to carry IP

packets

• Errors are detected with a checksum

9/23/2019 CUNY | Brooklyn College 50

PPP Frame

9/23/2019 CUNY | Brooklyn College 51

IP packet0x21 for IPv4

Link Control Protocol

• A link control protocol brings the PPP link

up/down

9/23/2019 CUNY | Brooklyn College 52

Link Control

9/23/2019 CUNY | Brooklyn College 53

State machine for link control

ADSL

• Widely used for broadband Internet over

local loops

• ADSL runs from modem (customer) to

DSLAM (ISP)

• IP packets are sent over PPP and AAL5/ATM

(over)

9/23/2019 CUNY | Brooklyn College 54

ADSL: Protocol Stack

9/23/2019 CUNY | Brooklyn College 55

ADSL and PPP

• PPP data is sent in AAL5 frames over ATM

cells:

• ATM is a link layer that uses short, fixed-size

cells (53 bytes); each cell has a virtual circuit

identifier

• AAL5 is a format to send packets over ATM

• PPP frame is converted to a AAL5 frame

(PPPoA)

9/23/2019 CUNY | Brooklyn College 56

ADSL Frame

9/23/2019 CUNY | Brooklyn College 57

AAL5 frame is divided into 48 byte pieces, each of which
goes into one ATM cell with 5 header bytes

Questions

• Data link protocols in practice

9/23/2019 CUNY | Brooklyn College 58

