CISC 7332X T6 C11b: Wireless LAN

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Outline

- Challenges in desiring wireless LANs
- MACA
- Wireless LAN

Medium Access Control

- Two types of network links
 - Point-to-point
 - Multiple access (broadcast)

- Key issue
 - Who gets to use the channel when there is a competition to it?
 - Multiaccess channel/random access channel
 - Medium Access Control (MAC)

The MAC Sublayer

- The protocols used to determine who goes next on a multiaccess channel
- Especially important for LAN, particularly wireless LANs
- In contrast, WANs general use point-to-point links, excepts for satellite networks

Application

Transport

Network

Link

Physical

MAC is in here!

Wireless LAN Protocols

- Wireless has complications compared to wired.
 - Nodes may have different coverage regions
 - Leads to hidden and exposed terminals
- Nodes cannot detect collisions, i.e., sense while sending
 - Makes collisions expensive and to be avoided

Hidden Terminals

- Hidden terminals are senders that cannot sense each other but nonetheless collide at intended receiver
 - Want to prevent; loss of efficiency

Hidden Terminals: Example

 A and C are hidden terminals when sending to B

Exposed Terminals

- Exposed terminals are senders who can sense each other but still transmit safely (to different receivers)
 - Desirably concurrency; improves performance

Exposed Terminals: Example

• B \rightarrow A and C \rightarrow D are exposed terminals

MACA

- Multiple Access with Collision Avoidance (MACA)
- MACA protocol grants access for A to send to B with a pair of messages
 - RTS (Request-To-Send) and CTS (Clear-To-Send)

MACA: Example

 A sends RTS to B [left]; B replies with CTS [right]

A sends RTS to B; C and E hear and defer for CTS

B replies with CTS; D and E hear and defer for data

MACA: Example

 A can send with exposed but no hidden terminals

A sends RTS to B; C and E hear and defer for CTS

B replies with CTS; D and E hear and defer for data

Wireless LAN

- 802.11 architecture/protocol stack
- 802.11 physical layer
- 802.11 MAC
- 802.11 frames

802.11 Architecture

- Infrastructure mode
 - Wireless clients associate to a wired AP (Access Point)
- · Ad-hoc mode
 - No access point

Infrastructure Mode

802.11 Protocol Stack

- MAC is used across different physical layers
 - 802.11ax is under development

802.11 Physical Layer

- NICs are compatible with multiple physical layers
 - E.g., 802.11 a/b/g

Name`	Technique	Max. Bit Rate
802.11b	Spread spectrum, 2.4 GHz	11 Mbps
802.11g	OFDM, 2.4 GHz	54 Mbps
802.11a	OFDM, 5 GHz	54 Mbps
802.11n	OFDM with MIMO, 2.4/5 GHz	600 Mbps
802.11ac	OFDM with MIMO and MU-MIMO, 2.4/5 GHz	1.69 Gbps / station

802.11 MAC

- CSMA/CA inserts backoff slots to avoid collisions
 - A realization of MACA
- MAC uses ACKs/retransmissions for wireless errors

802.11 MAC: Example

802.11 MAC: Virtual Sensing

- Virtual channel sensing with the NAV and optional RTS/CTS avoids hidden terminals
- Optional in the standard, often not used

802.11 MAC: Quality of Service (QoS) Classes

- Different backoff slot times add quality of service
 - Short intervals give preferred access, e.g., control, VoIP
- MAC has other mechanisms too, e.g., power save

802.11 MAC: QoS

- The AIFS Number (AIFSN) values are administrator configurable with default values defined as the following:
 - Voice Queue: 1 SIFS + 2 * slot time (AIFSN = 2)
 - Video Queue: 1 SIFS + 2 * slot time (AIFSN = 2)
 - Best Effort Queue: 1 SIFS + 3 * slot time (AIFSN = 3)
 - Background Queue: 1 SIFS + 7 * slot time (AIFSN = 7)

802.11 MAC: QoS

802.11 Frames

- Frames vary depending on their type (Frame control)
- Data frames have 3 addresses to pass via APs

802.11 Frame and Frame Control

Questions?

- · Challenges in desiring wireless LAN
- · MACA
- · 802.11 Wireless LAN