CISC 7332X T6 C10a: Channel Allocation and Multi-Access Protocols

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Outline

- Channel allocation problem
- Multiple Access Protocols
 - · Collision
 - ALOHA
 - Carrier sense
 - Collision detection
 - CSMA/CD
 - MACA and CSMA/CA
 - Collision free and limited contention

Medium Access Control

- Two types of network links
 - Point-to-point
 - Multiple access (broadcast)

- Key issue
 - Who gets to use the channel when there is a competition to it?
 - Multiaccess channel/random access channel
 - Medium Access Control (MAC)

The MAC Sublayer

- The protocols used to determine who goes next on a multiaccess channel
- Especially important for LAN, particularly wireless LANs
- In contrast, WANs general use point-to-point links, excepts for satellite networks

Application

Transport

Network

Link

Physical

MAC is in here!

Channel Allocation Problem

- The central problem in MAC is about allocating a single broadcast channel among competing users.
- Static channel allocation
- Dynamic channel allocation
- Multiple access protocols

Static Allocation

- For fixed channel and traffic from N users, divide up the bandwidth using multiplexing schemes, such as, FTM, TDM, and CDMA
- A poor fit for computer systems where data traffic extremely bursty
 - e.g., peak traffic to mean traffic ratios: 1000:1
 - Most of channels will be idle most of the time
 - Allocation to a user will sometimes go unused

Dynamic Allocation

- Dynamic allocation gives the channel to a user when they need it.
- Potentially N times as efficient for N users.

Assumptions of Dynamic Allocation

• Schemes vary with assumptions:

Assumption	Implication
Independent traffic	Often not a good model, but permits analysis
Single channel	No external way to coordinate senders
Observable collisions	Needed for reliability; mechanisms vary
Continuous or slotted time	Slotting may improve performance
Carrier sense	Can improve performance if available

Multiple Access Protocols

- ALOHA
- CSMA (Carrier Sense Multiple Access)
- Collision-free protocols
- Limited-contention protocols
- Wireless LAN protocols

ALOHA

- · Pure ALOHA
- · Slotted ALOHA

Pure ALOHA

Initially developed by Norman Abramson,
 University of Hawaii in 1970's

Pure ALOHA

- Served as a basis for many contention resolution protocols
- In pure ALOHA, users transmit frames whenever they have data; users retry after a random time for collisions
- Efficient and low-delay under low load

Pure ALOHA: Protocol

- Transmit message: A node transmits whenever it has data to send
- Detect collision: The sender waits to see if a collision occurred after the complete frame is sent
 - Note: a collision may occur if multiple nodes transmit at the same time
- Random backoff: If collision occurs, all the stations involved in collision wait a random amount of time, then try again
- Questions
 - Is it a good protocol? (how much can the throughput and latency be?)
 - How do we choose the random amount of waiting time?

Pure ALOHA: Protocol

Pure ALOHA: Throughput Analysis

 Frames are transmitted and retransmitted at completely arbitrary times

Pure ALOHA: Throughput Analysis: Flow Balanced

 The successful transmitted frames equals to the arrived frames

Pure ALOHA: Throughput Analysis: More Details

- Assume
 - Infinite number of nodes
 - · Fixed length frames. Denote length as T
 - Overall arrival of frames is a Poisson process with rate λ frames/second
- Then, denote S as the number of frames arriving in T seconds
 - S = λT
- In case of a collision, retransmission happens
 - New transmission and retransmission combined (all transmissions) is a Poisson process
 - Let the rate be G attempts per T seconds
- Note that
 - $S \le G$, equality only if there are no collisions.
- Assume the system is in a stable state and denote the probability of a successful transmission by P_0
 - $S = GP_0$

Vulnerable Period/Contention Window

 A frame is successfully transmitted, if there are no frames transmitted in the contention window of 2T seconds

10/30/2018

Frames Generated in Vulnerable Period

- Vulnerable Period: 2T seconds
- The rate of all transmissions in 2T seconds: 2G
- The probability that k frames are generated during 2T seconds is given by a Poisson distribution

$$\Pr[k] = \frac{(2G)^k e^{-2G}}{k!}$$

 The probability of no other frames (0 frames) being generated (new transmission and retransmission) during the entire vulnerable period is

$$S = GP_0 = G\frac{(2G)^0 e^{-2G}}{0!} = Ge^{-2G}$$

Throughput of Pure ALOHA

 Let us graph it $S = Ge^{-2G}$

10/30/2018

Throughput of Pure ALOHA

What is the implication?

Maximum Throughput of Pure ALOHA

Maximum Throughput of Pure ALOHA

• The derivative is 0

$$S = Ge^{-2G}$$

$$\frac{dS}{dG} = \frac{dGe^{-2G}}{dG}$$
$$= e^{-2G} - 2Ge^{-2G}$$

$$\frac{dS}{dG} = e^{-2G} - 2Ge^{-2G} = 0$$

$$G^* = \frac{1}{2}$$

$$S = G^* e^{-2G^*}$$
$$= \frac{1}{2} e^{-2\frac{1}{2}} \approx 0.1839$$

Pure ALOHA: Remark

- Considered a simplified analysis of a pure Aloha
 - Found that the maximum throughput is limited to be at most 1/(2e).
 - Not taken into account
 - How the offered load changes with time
 - How the retransmission time may be adjusted.
- Channel utilization of a busy Pure ALOHA system is 18%
- What improvement can we make?

Pure ALOHA: Remark

- What improvement can we make?
 - Collision causes retransmission and reduces throughput
- Can we reduce chance of collisions?
 - Collisions happen within the Vulnerable Period/Contention Window.
 - Can we shorten the Vulnerable Period/Contention Window?
- Slotted ALOHA

Slotted ALOHA

- Improvement to Pure ALOHA
 - Divided time into discrete intervals
 - Each interval corresponds to a frame
 - Require stations agree on slot boundaries

Slotted ALOHA: Protocol

Slotted ALOHA: Throughput Analysis

Time is slotted

Vulnerable Period/Contention Window

 A frame is successfully transmitted, if there are no frames transmitted in the contention window of T seconds

Frames Generated in Vulnerable Period

- Vulnerable Period: T seconds
- The rate of all transmissions in T seconds: G
- The probability that k frames are generated during T seconds is given by a Poisson distribution

$$\Pr[k] = \frac{G^k e^{-G}}{k!}$$

• The probability of no other frames being initiated (new transmission and retransmission) during the entire vulnerable period is $C^{0} = G^{-G}$

$$S = GP_0 = G\frac{G^0 e^{-G}}{0!} = Ge^{-G}$$

Throughput of Slotted ALOHA

•
$$S = Ge^{-2G}$$

VS

•
$$S = Ge^{-G}$$

(Quick) Exercise C10a-1

- Derive the maximum throughput of the Slotted ALOHA protocol
- How much is the maximum throughput?

• Note
$$S = Ge^{-G}$$

(Quick) Exercise C10a-2

In original ALOHA system, packets are of fixed size of 34 ms.
 Assume each active user sending a message packet at an
 average rate of once every 60 seconds. Estimate maximum
 number of users does the system can concurrently support?

• Answer:

- Maximum throughput = maximum channel utilization = $1/(2e) \rightarrow$ channel can only be 1/(2e) full.
- packet rate: $\lambda = 1/60$
- Packet length: $\tau = 34 \text{ ms}$
- Maximum # of concurrent users: k_{max}
- $k_{max}\lambda \tau = 1/(2e)$
- $k = 1/(2e\lambda\tau) \approx 1/(2\times2.7183\times1/60\times0.034) \approx 324$

(Quick) Exercise C10a-3

 In an ALOHA system, packets are 816 bits and link bandwidth is 24 kbps. Assume each active user sending a message packet at an average rate of once every 60 seconds. Estimate maximum number of users does the system can concurrently support?

Answer:

- Maximum throughput = maximum channel utilization = $1/(2e) \rightarrow$ channel can only be 1/(2e) full.
- packet rate: $\lambda = 1/60$
- Packet length: τ = 816/24 kbps = 816/24000 = 0.034 sec = 34 ms
- Maximum # of concurrent users: k_{max}
- $k_{\text{max}}\lambda \tau = 1/(2e)$
- $k = 1/(2e\lambda\tau) \approx 1/(2\times2.7183\times1/60\times0.034) \approx 324$

Making Further Improvements?

Maximum throughputs are small

Making Further Improvements?

Making Further Improvements?

□ ALOHA transmits even if another node is transmitting
 → collision

Carrier Sense

- If another transmits, don't transmit
- i.e., Listen first, transmit when the channel is idle → reduce chance of collision

Carrier Sense (without Collision Detection)

- Non-persistent CSMA
 - Transmit after a random amount of waiting time regardless if channel is idle (from carrier sense)
 - Large delay when channel is idle
- 1-persistent CSMA
 - Transmit as soon as the channel becomes idle
 - Collision happens when two or more nodes all want to transmit
- p-persistent CSMA
 - If idle, transmit the frame with a probability p

1-persistent CSMA

Non-persistent CSMA

p-persistent CSMA

Comparison of Throughput

- · Pure ALOHA
- Slotted ALOHA
- Nonpersistent CSMA
- 1-persistent CSMA
 - Unslotted
 - Slotted
- p-persistent CSMA
 - skipped

$$S = Ge^{-2G}$$

$$S = Ge^{-G}$$

$$S = \frac{Ge^{-aG}}{G(1+2a) + e^{-aG}}$$

$$S = \frac{G\left[1 + G + aG\left(1 + G + aG/2\right)\right]e^{-G(1+2a)}}{G\left(1 + 2a\right) - \left(1 - e^{-aG}\right) + \left(1 + aG\right)e^{-G(1+a)}}$$

$$S = \frac{Ge^{-G(1+a)}\left[1 + a - e^{-aG}\right]}{(1+a)\left(1 - e^{-aG}\right) + ae^{-G(1+a)}}$$

Comparison of Throughput

Fig. 9. Throughput for the various access modes (a = 0.01). From LEONARD KLEINROCK, 1975

Carrier Sense

- Listen first, transmit when the channel is idle → reduce chance of collision
- Can collisions be completely mitigated?

Carrier Sense

- Listen first, transmit when the channel is idle → reduce chance of collision
- Can collisions be completely mitigated?
- Q: Under what condition can Carrier Sense be more beneficial to throughput?

Examining Two Cases

Case 1

$$t_{TX1} = \frac{1000}{100 \times 1000} = \frac{1}{100} \sec = 10 \, ms$$

$$t_{p1} = \frac{10 \times 10^3}{3 \times 10^8} = \frac{1}{3} \times 10^{-4} \approx 0.000033 \sec = 0.033 \, ms$$

$$t_{TX1} >> t_{p1}$$

Case 2

$$t_{TX2} = \frac{1000}{100 \times 1000} = \frac{1}{100} \sec = 10 \, ms$$

$$t_{p2} = \frac{36000 \times 10^3}{3 \times 10^8} = 0.12 \sec = 120 \, ms$$

$$t_{TX\,2} << t_{p2}$$

 Q: which case can be benefited more from "carrier sense"?

Propagation Delay vs. Transmit Time

- Two stations: A and B
 - A begins sending frame 1.
 - Before frame 1 arrives at B, B becomes ready and sense the channel
 - Channel is clear, B sends frame 2
 - Will Frames 1 and 2 collide?
 - Consider a special case: what if propagation delay is 0?
- The longer the propagation delay (versus frame size) is , the more carrier sense helps
- Image there are three or more stations
 - Collision can happen even if propagation delay is 0 when carrier sense is employed
 - · Why?

Propagation Delay vs. Transmit Time

Carrier Sense and Collision

- Even with CSMA there can still be collisions.
- What do Pure ALOHA and Slotted ALOHA do?

Collision Detection

- If nodes can detect collisions, abort transmissions!
 - Requires a minimum frame size ("acquiring the medium")
 - Continues to transmit a jamming signal (called runt) until other nodes detects it
 - Requires a full duplex channel

Complete the Picture

 Carrier Sense Multiple Access and Collision Detection

CSMA/CD

• 1-Persistent CSMA and CD

Collision Detection

- CSMA/CD improvement is to detect/abort collisions
 - Reduced contention times improve performance

Questions?

- ALOHA
- Carrier sense
- Collision detection
- · CSMA/CD