CISC 7332X T6
CO8a: Data Link Protocols

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Data Link Layer

» Responsible for delivering frames of

information over a single link
« Handles transmission errors

* Regulates the flow of data

Application

Transport

Network

Link

Physical

Design Issues in Data Link
Layer

 Discussed
» Concept of frames

* Error control
* Possible services
* Framing methods

* Flow control

Outline

« Possible services
* Framing methods
* Data link protocol
« A utopian simplex protocol
+ Stop-and-wait protocols
« Stop-and-wait for an error-free channel
Stop-and-wait for a noisy channel
* Analysis of stop-and-wait protocols
+ Sliding window protocols
« 1-bit sliding window
Go-Back-N
+ Selective repeat

 Data link protocols in practice

Possible Services

» Unacknowledged connectionless service
* Frame is sent with no connection/error recovery
« Example: Ethernet
» Acknowledged connectionless service
* Frame is sent with retransmissions if needed
« Example: 802.11
« Acknowledged connection-oriented service

 Connection is set up; rare

Framing Methods

* Framing
* Breaking up bit streams into frames

* Methods

* Byte count

* Flag bytes with byte stuffing
* Flag bits with bit stuffing

* Physical layer coding violations

* Use non-data symbol to indicate frame

Byte Count

 Frame begins with a count of the number of
bytes in it

 Simple, but difficult fo resynchronize after an
error

* Rarely used by itself

Byte Count: Example

/ / \ Byte count \ C”{iﬁe

Expected T rarsTaTsTer TeTolalo 1234 slele 7 Talolol 2] 3
case . y " y " y 3 .
Frame 1 Frame 2 Frame 3 Frame 4
5 bytes o bytes 8 bytes 8 bytes

Error

Case - ¥ ol ¥ o \
Frame 1 Frame 2 Now a byte
(Wraong) count

10/16/2018 CUNY | Brooklyn College

Byte Stuffing

» Special flag bytes (or sentinel) delimit
frames
* "Data” cannot contain the flat bytes

* i.e., occurrences of flags in the data must be stuffed
(escaped)

* Longer (due to stuffing), but easy to
resynchronize after error

Byte Stuffing: Example

Frame
format

Stuffing
examples

FLAG

Header

Payload field

Trailer |FLAG

Original bytes

A FLAG B

A ESC B

A ESC | [FLAG
A ESC | | ESC

" After stuffing

/ Need to

— MM R escape extra
ESCAPE bytes
e A ESC ESC B l
too!
—_— A ESC ESC ESC | |FLAG B
—_— A ESC ESC ESC ESC B

Bit Stuffing

» Stuffing done at the bit level:
« Example:
* frame flag has six consecutive 1s

« On transmit, after five 1s in the data, a O is added

* On receive, a O after five 1s is deleted

Bit Stuffing: Example

Databits 011011111111111111110010

Transmitted bits 011011111011111011111010010

with stuffing NG T 7

Stuffed bits

Questions?

» Concept of framing

* Framing methods
* Byte count
* Byte stuffing
» Bit stuffing

Elementary Data Link Protocols

* Link layer environment
» Utopian Simplex Protocol

» Stop-and-Wait Protocol for Error-free
channel

» Stop-and-Wait Protocol for Noisy channel

Link Layer Environment

» Commonly implemented as

 Network Interface Cards (NICs) and Operating
Systems (OS) drivers

* Remark

* Network layer (IP) is often a part of the OS
software

Link Layer Environment:
Example Implementation

«—— Computer

Application

4— Operating System
Network
' Driver
Link
Link Network Interface

,— Card(NIC)

~— Cable (medium)

Link Layer: Services

» Link layer protocol implementations use
library functions

« See code (protocol .h) in next slide

Example: protocol.h

#define MAX_PKT 1024 /* determines packet size in bytes */ /* 6o get an inbound frame from the physical layer and copy it for. */
typedef enum {false, true} boolean; /* boolean type */ void from_physical_layer(frame *r);
typedef unsigned int seq_nr; /* sequence or ack numbers */ /* Pass the frame to the physical layer for transmission. */
typedef struct {unsigned char data[MAX_PKT];} packet;/*packet definition*/ void to_physical_layer(frame *s);
typedef enum {data, ack, nak} frame_kind; /* frame_kind definition */ /* Start the clock running and enable the timeout event. */
typedef struct{ /* frames are transported in this layer */ void start_timer(seq_nr k);
frame_kind kind; /* what kind of frame is it? */ /* Stop the clock and disable the timeout event. */
seq_nr seq; /* sequence number */ void stop_timer(seq_nr k);
seq_nr ack; /* acknowledgement number */ /* Start an auxiliary timer and enable the ack_timeout event. */
packet info; /* the network layer packet */ void start_ack_timer(void);
} frame; /* Stop the auxiliary timer and disable the ack_timeout event. */
/* Wait for an event o happen; return its type in event. */ void stop_ack_timer(void);
void wait_for_event(event_type *event); /* Allow the network layer to cause a network_layer_ready event. */
/* Fetch a packet from the network layer for transmission on the channel. */ void enable_network_layer(void);
void from_network_layer(packet *p): /* Forbid the network layer from causing a network_layer_ready event. */
/* Deliver information from an inbound frame to the network layer. */ void disable_network_layer(void);
void to_network_layer(packet *p): /* Macro inc is expanded in-line: increment k circularly. */

#define inc(k) if (k< MAX_SEQ)k=k+1; elsek=0

Application
[] [}
Example' prOTOCOIQh' Transport
Services Network
Link
: : . Physical
Group Library Function Description
from_network_layer(&packet) Take a packet from network layer to send
Network | to_network layer(&packet) Deliver a received packet to network layer
layer enable_network_layer() Let network cause “ready” events
disable network layer() Prevent network “ready” events
Physical | from_physical layer(&frame) Get an incoming frame from physical layer
layer to_physical_layer(&frame) Pass an outgoing frame to physical layer
wait_for_event(&event) Wait for a packet / frame / timer event
start_timer(seq_nr) Start a countdown timer running
Events & : : :
fimers stop_timer(seq_nr) Stop a countdown timer from running

start_ack_timer()
stop_ack_timer()

Start the ACK countdown timer
Stop the ACK countdown timer

10/16/2018

CUNY | Brooklyn College 19

Questions?

* Link layer environment

* Link layer services

Data Link Protocols

» Examine three protocols
« Utopian Simplex Protocol (p1)

» Stop-and-Wait Protocol in an Error-Free Channel
(p2)
 Stop-and-Wait Protocol in a Noisy Channel (p3)

Utopian Simplex Protocol

* An optimistic protocol (pl) to start

« Assumes ho errors, and receiver as fast as
sender

» Considers one-way data transfer

* That's it, no error or flow control ...

* Flow control

* Prevent (fast) sender overwhelms (slow) receiver

Utopian Simplex Protocol: Peer
Interface and Implementation

e Unrealistic
e Error can occur

 Sender may be faster than receiver

void sender1(void) void receiveri(void)
{ {
frame s; frame r;
packet buffer; event type event;
while (true) { while (true) {
from network layer(&buffer); wait for event(&event);
s.info = buffer; from physical layer(&r);
to physical layer(&s); to network layer(&r.info);
} }
} }

Sender loops blasting frames Receiver loops eating frames

Stop-and-Wait in Error-free
Channel

 Error won't happen, no error control; but senders
may be too fast

* Adding flow control to protocol pl
* Protocol (p2) ensures sender won't outpace receiver:

* Receiver returns a dummy frame called "ack” when ready
« Stop and wait:
* Only one frame out from the sender at a time

 So, added flow control via the stop-and-wait mechanism

Stop-and-Wait: Example
Implementation

‘E‘Oid sender2(void) void receiver2(void)
{
frame s; framer, s:
packet buffer; event type event;
event type event; while (true) {
wait for event(&event);
while (true) { from physical layer(&r);
from network layer(&buffer); to network layer(&r.info); Send
s.info = buffer; to physical layer(&s);
Wait for to physical layer(&s); } Ack
wait for event(&event); }
Ack }
¥
Sender waits to for ack after Receiver sends ack after passing
passing frame to physical layer frame to network layer

10/16/2018 CUNY | Brooklyn College 25

Stop-and-Wait in Noisy Channel

« ARQ (Automatic Repeat reQuest) adds error
control

* Receiver acks frames that are correctly delivered

« Sender sets timer and resends frame if no ack)

* For correctness, frames and acks must be
numbered

 Else receiver can't tell retransmission (due to lost
ack or early timer) from new frame

* For stop-and-wait, 2 numbers (1 bit) are sufficient

Stop-and-Wait/ARQ: Example:
Send er void sender3(void) {

10/16/2018

seq nr next frame to send;
frame s;

packet buffer;

event type event;

next frame to send = 0;
from network layer(&buffer);
Sender loop (p3): while (true] {
s.info = buffer;
s.seq = next frame to send;

Send frame (or retransmission) to physical layer(&s);
Set timer for retransmission start timer(s.seq);
Wait for ack or timeout wait for event(&event);

if (event == frame arrival) {

from physical layer(&s);
If a good ack then set up for the next if (s.ack == next frame to send) {

frame to send (else the old frame stop timer(s.ack);

will be retransmitted) from network layer(&buffer);
inc(next frame to send);

}
}
}

CUNY | Brooklyn College 27

Stop-and-Wait/ARQ: Example:
Receiver

10/16/2018

Wait for a frame

If it’s new then take
it and advance
expected frame

Ack current frame

void receiver3(void)

{
seq nr frame expected;
framer, s;
event type event;

frame expected = 0;
while (true) {
wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);
if (r.seq == frame expected) {
to network layer(&r.info);
inc(frame expected);
}
s.ack = 1 — frame expected;
to physical layer(&s);

CUNY | Brooklyn College

28

Questions

* ARQ
* Error control via stop-and-wait

* Flow control via stop-and-wait

Analysis of Stop-and-Wait

* How well does the stop-and-wait protocols
perform?

 Metrics

 Throughput (effective bandwidth) and link
utilization

Throughput

Q: what is the maximum
throughput (effective
bandwidth)?

Best case
* No error, no retransmission

 Send and receiver are equally
fast

Note: tp = pl + p2 = 1 RTT

1Tr'cmsfer' time = tx1+ tx2 +
P

Throughput =

Transfer size/Transfer
time

Link Utilization

» How much capacity of a channel is being
used?

« Link utilization
* Throughput / Max Data Rate of the Channel

Tirme

Timeout?

* How long should the receiver wait?

Sender Receiver Sender Receiver Sender Receiver
—Tame |~ Fran,, T Frap,,
= T e - 4l el
5 e ;] e 5 .
o T g i E =
z o S E pCk — &
fam -~ = ‘. = -
—— fr
= f'f':-; L

—___5 B -____

g -
E ME— - ¥k —

e Timeout: 2 x RTT or more ...

9/2/2015 CSCI 445 - Fall 2015

Timeout

Timeout

Sender

o

sl
~T2me
B
aCE _—
L
" Frany,
szl
ACK —
-

33

Receiver

Exercise CO8a-1

« Data frame size (data) = 1500 bytes
« Acknowledgement frame size (ack) = 64 bytes

« Stop-and-Wait protocol: receiver is forced to wait 2 RTT before
transmitting acknowledgement frame after having received data
frame. No additional processing and queueing delay

* Draw timeline diagram first, and then compute throughputs and link
utilization for one of the following,

* Dial-up

« RTT =87 ps; Link bandwidth: 56 Kbps
« Satellite

« RTT =230 ms; Link bandwidth: 45 Mbps

Questions?

» Estimating link utilization at best-case
scenario

* What if the simple stop-and-wait protocol
yields poor link utilization ratio?

Sliding Window Protocols

» Sliding Window concept
* One-bit Sliding Window
* Go-Back-N

* Selective Repeat

Concept of Sliding Window

 Sender maintains window of frames it can send
* Needs to buffer them for possible retransmission

« Window advances with next acknowledgements

« Receiver maintains window of frames it can
receive

* Needs to keep buffer space for arrivals

« Window advances with in-order arrivals

Concept of Sliding Window:
Example

» A sliding window advancing at the sender and
receiver

 Ex: window size is 1, with a 3-bit sequence
number.

Concept of Sliding Window:
Example

7,0 7, 0 ; N 0
o XX XD« P TN
Sender + -+ £ + {1 / +
5 / 2 5 2 5 ’ 2 5 L 2
X X \<)(X Xz osx A
. 4 3 4 3
7 0 7 +
, < Dx X D& x
Receiver b [° i jﬁ 6_,_% A
5 2 5 2 5 2 5 2
>< >/ x >< 1% —t x »/\4 X
At the start First frame is First frame is Sender gets

sent received first ack

Sliding Window: Advantage

* Larger windows enable pipelining for efficient
link use

» Stop-and-wait (w=1) is inefficient for long links
* Best window (w) depends on bandwidth-delay (BD)
« Want w > 2BD+1 to ensure high link utilization

» Pipelining leads to different choices for
errors/buffering

« We will consider Go-Back-N and Selective Repeat

Questions?

» Concept of sliding window

One-Bit Sliding Window

» Transfers data in both directions with stop-
and-wait

* Piggybacks acks on reverse data frames for
efficiency

 Handles transmission errors, flow control, early
timers

One-bit Sliding Window:
Example: Sender

void protocold (void) {
seq nr next frame to send;
seq nr frame expected;
framer, s:
packet buffer;
event type event;

next frame to send = 0;
frame expected = 0;

from network layer(&buffer);
s.info = buffer;

s.seq = next frame to send;
s.ack = 1 — frame expected;
to physical layer(&s);

start timer(s.seq);

Prepare first frame

Launch it, and set timer

10/16/2018 CUNY | Brooklyn College 43

One-bit Sliding Window:
Example: Receiver -

Wait for frame or timeout

If a frame with new data
then deliver it

If an ack for last send then
prepare for next data frame

(Otherwise it was a timeout)

Send next data frame or
retransmit old one; ack the
last data we received

10/16/2018 CUNY | Brookl

while (true) {
wait for event(&event);
if (event == frame arrival) {
from physical layer(&r);
if (r.seq == frame expected) {
to network layer(&r.info);
inc(frame expected);

}

if (r.ack == next frame to send) {
stop timer(r.ack);
from network layer(&buffer);
inc(next frame to send);

}
}

s.info = buffer;

s.seq = next frame to send;
s.ack = 1 — frame expected;
to physical layer(&s);

start timer(s.seq);

44

One-Bit Sliding Window:
Interactions

« Two scenarios show subtle interactions exist
in p4:
« Simultaneous start [right] causes correct but slow

operation compared to normal [left] due to duplicate
Transmissions.

10/16/2018

Simultaneous Start

Normal case

A sends (0, 1, AD

)

T~ B gets (0, 1, AD)*
/ B sends (0, 0, BO)
A gets (0, O, BO)*

ﬁ.sends(’l,D,ML______ﬂ B gets (1. 0, A1)
gets (1,0, A

Agets (1.1, Bl = B sends (1, 1, B1)
A sends (0, 1, AE}I*H-._____* B gets (0, 1, A2)*
A gets (0,0, B2)' = B sends (0, 0, B2)
A sends (1, 0, ’6‘3}&“""‘—--... B gets (1, 0, A3)*

/ B sends (1, 1, B3)

Time

Simultaneous Start (Correct,
but poor performance)

A sends (0, 1, AD) B sends (0, 1, BO)

B gets (0, 1, AD)*
B sends (0, 0, BO)

A gets (0, 1, BO)*
A sends (0, 0, AD)
B gets (0, 0, AO)

B sends (1, 0, B1)
A gets (0, 0, BO)
Asends (1,0, AT)
B gets (1, 0, A1)*
B sends (1, 1, B1)

U

Agets (1,0, B1)"
Asends (1,1, Al)
B gets (1, 1, A1)

B sends (0, 1, B2)

Notation is (seq, ack, frame number). Asterisk indicates frame accepted by network layer .

CUNY | Brooklyn College

46

Go-Back-N

» Receiver only accepts/acks frames that
arrive in order:

» Discards frames that follow a missing/errored
frame

« Sender times out and resends all outstanding
frames

Go-Back-N: Example

- [Imeout interval——

9 61 |7 8

0 1 i 3 4 5 6 7 8 2 3 4
r)
/ / / ’ / / / /
VX ™ ’}\h oX AW
ﬂ?\fkﬁ:”f \aa}\‘ﬁh\i-f e N
\‘QE'” ?;\\\\ \\?{jf ?EJI ?Eu ?Eu ?gu ?SJ;
/! 7 /! ! ! ! ! !
SAVAN ANAVANANANAN
E D D D D D |2

0 1 D 3| |4 2] |6 A E::

P v

Error Frames discarded by data link layer

w

Timg —=

10/16/2018 CUNY | Brooklyn College 48

Go-Back-N: Discussion

* Tradeoff made for Go-Back-N:

 Simple strategy for receiver; needs only 1 frame

« Wastes link bandwidth for errors with large
windows; entire window is retransmitted

Selective Repeat

* Receiver accepts frames anywhere in
receive window

 Cumulative ack indicates highest in-order frame

* NAK (negative ack) causes sender retransmission
of a missing frame before a timeout resends
window

Selective Repeat: Example

ol [11 E [3][4] [5] [2] |6| [7] [8] [9] [10] [1

Error Frames buffered
by data link layer

10/16/2018 CUNY | Brooklyn College 51

Selective Repeat: Discussion

* Tradeoff made for Selective Repeat:

* More complex than Go-Back-N due to buffering
at receiver and multiple timers at sender

* More efficient use of link bandwidth as only lost
frames are resent (with low error rates)

Selective Repeat: Sequence
Number

* For correctness, we require:

« Sequence numbers (s) at least twice the window

(w)

Selective Repeat: Sequence
Number

Error case (s=8, w=7) — too Correct (s=8, w=4) — enough
few sequence numbers sequence numbers
Sender 0123456(7 |[01234586|7 0123/4567|0123|4567
l Originals l Retransmits l Originals l Retransmits
Receiver | 01234 56|7 0123455 0123|4567 01234567
1 1
New receive wierow overlaps New and old receive window

old — retransmits ambiguous don’t overlap — no ambiguity

Data Link Protocols: Examples in
Practice

* Packet over SONET
 PPP (Point-to-Point Protocol)
» ADSL (Asymmetric Digital Subscriber Loop)

Packet over SONET

* Packet over SONET is the method used to
carry IP packets over SONET optical fiber
links

» Uses PPP (Point-to-Point Protocol) for framing

Packet over SONET

ot | IP packet |
outer. P IP i
PPP PPP |jl PPPﬂamelL|
. Y L |
SONET Optical | soNET [SONET payload |[SONET payload

fiber
N e %

Protocol stacks

PPP frames may be split over

SONET payloads

10/16/2018 CUNY | Brooklyn College

57

PPP

* PPP (Point-to-Point Protocol) is a general
method for delivering packets across links

* Framing uses a flag (Ox7E) and byte stuffing

« "Unnumbered mode" (connectionless
unacknowledged service) is used to carry IP
packets

* Errors are detected with a checksum

PPP Frame

Bytes 1 1 1 1o0r2 Variable 20r4 1
F Add Control - F
ag ress ontro ag
01111110 | 11111111 | 00000011 | Frotocol Pay:?ad Checksum | 1111110
))
0x21 for IPv4 IP packet
10/16/2018 CUNY | Brooklyn College 59

Link Control Protocol

* A link control protocol brings the PPP link
up/down

Link Control

Carrier Both sides Authentication
detected agree on options successful

/—- ESTABLISH -\—*}AUTHENTICATE /

Failed

DEAD NETWORK

Failed

/\ TERMINATE / OPEN \

Carrier Done NCP
dropped configuration

State machine for link control
10/16/2018 CUNY | Brooklyn College 61

ADSL

» Widely used for broadband Internet over
local loops

« ADSL runs from modem (customer) to DSLAM
(ISP)

* IP packets are sent over PPP and AAL5/ATM
(over)

ADSL: Protocol Stack

P DSL P DSLAM
PPP /modem PPP /{with router)
o FC AALS5 AAL5)
Ethernet Link T
ATM ATM A it t
' nterne
= Ethernet ADSL Local ADSL N
loop N —
N < S — N
L J \ J
Y Y
Customer's home ISP’'s office
10/16/2018 CUNY | Brooklyn College 63

]
F

ADSL and PPP

e PPP data is sent in AALD frames over ATM
cells:

* ATM is a link layer that uses short, fixed-size
cells (53 bytes); each cell has a virtual circuit
identifier

* AALS is a format to send packets over ATM
* PPP frame is converted to a AALS frame (PPPoA)

ADSL Frame

Bytes lTor2 Variable 0 to 47 2 2 4
PPP protocol PPP payload Pad Unused Length CRC
‘ T v
AALS payload AALS trailer

AALS frame is divided into 48 byte pieces, each of which
goes into one ATM cell with 5 header bytes

10/16/2018 CUNY | Brooklyn College

65

Questions

* Data link protocols in practice

