CISC 7332X T6 Collision-free and Limitedcontention Protocols

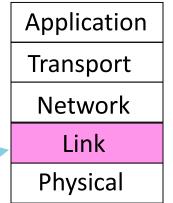
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Outline

- Channel allocation problem
- Multiple Access Protocols
 - Discussed
 - ALOHA
 - CSMA (Carrier Sense Multiple Access)
 - CSMA/CD
 - Collision-free protocols
 - Limited-contention protocols
 - To discuss next week
 - Ethernet protocols
 - Wireless LAN protocols


Medium Access Control

- Two types of network links
 - Point-to-point
 - Multiple access (broadcast)
- Key issue
 - Who gets to use the channel when there is a competition to it?
 - Multiaccess channel/random access channel
 - Medium Access Control (MAC)

The MAC Sublayer

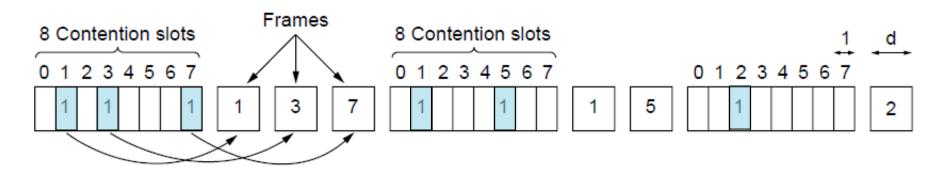
- The protocols used to determine who goes next on a multiaccess channel
- Especially important for LAN, particularly wireless LANs
- In contrast, WANs general use point-to-point links, excepts for satellite networks

MAC is in here!

Multiple Access Protocols

- Discussed
 - ALOHA
 - CSMA (Carrier Sense Multiple Access)
- Collision-free protocols
- Limited-contention protocols
- To discuss next week
 - Ethernet protocols
 - Wireless LAN protocols

Collision Free Protocols

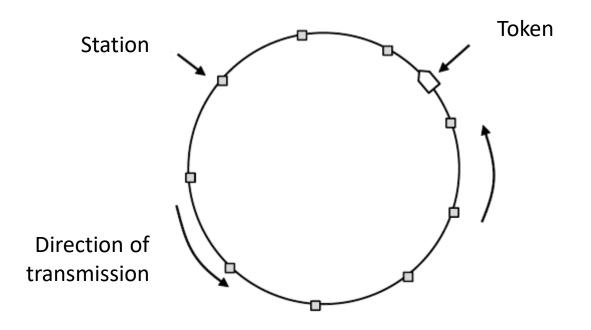

- Collision-free protocols avoid collisions entirely
 - Senders must know when it is their turn to send
- Bitmap

Bitmap

- The basic bit-map protocol:
 - The protocol consists of two phases
 - Contention
 - There are a fixed number of content slots.
 - Sender set a bit in contention slot if they have data
 - Sending frames
 - Senders send in turn; everyone knows who has data
- Protocols like this, in which, the desire to transmit is broadcast before actual transmission is called reservation protocols

Basic Bitmap: Example

- Each station announces whether it has data frame to transmit in <u>its</u> content slot
- After contention slots, transmit if any station has a frame to transmit

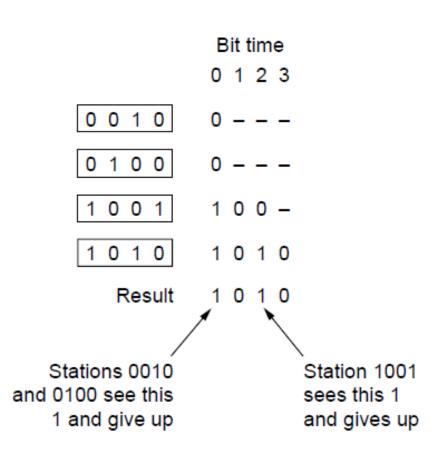

Basic Bitmap: Efficiency

- Channel efficiency/utilization: assume N slots, d bits per frame
 - Low load: $\sim d/(d+N)$
 - High load: $\sim d/(d + 1)$
- Mean delay
 - > (N-1)d/2 + N

Token Passing

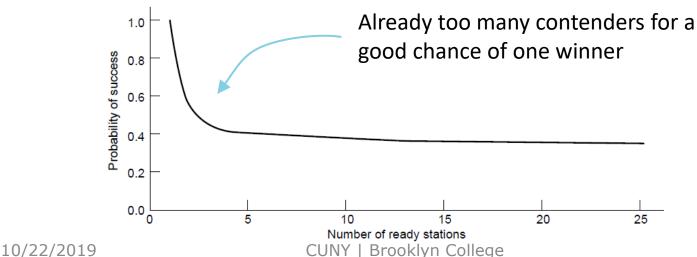
- Token sent round ring defines the sending order
 - Station with token may send a frame before passing
 - Idea can be used without ring too, e.g., token bus

Token Passing: Example


Token Passing: Example Protocols

- IEEE 802.5/Token Ring
- FDDI (Fiber Distributed Data Interface)
- IEEE 802.17/RPR (Resilient Packet Ring)

Count Down

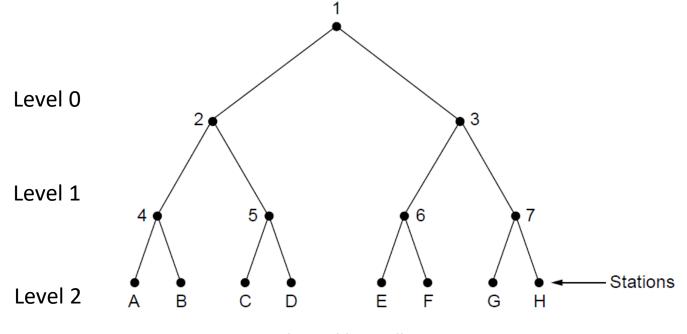

- An improvement over basic Bitmap
- Stations send their address in contention slot (log N bits instead of N bits), one bit at a time
- Medium ORs bits; stations give up when they send a "0" but see a "1"
- Station that sees its full address is next to send
- Requirement on physical layer?
 - Transmitting while receiving ...

Count Down: Example

Limited-Contention Protocols

- To divide stations into groups within which only a very small number are likely to want to send
 - Avoids wastage due to idle periods and collisions

Adaptive Tree Walk: Motivating Example


- U.S. Army adopted a method to test soldiers for syphilis during World War II aiming at reducing tests.
- 1. Took a blood sample from N soldiers
- 2. Pour a portion of each to a test tube
- 3. If the mixed sample is clean with antibodies, the N soldiers are declared healthy
- 4. Otherwise, divided N into two groups, each with N/2 soldiers
- 5. Repeat the testing protocol starting at step 1 (albeit for each group of N/2 soldiers) recursively until the infected soldier is found.

Limited Contention: Adaptive Tree Walk

- Tree divides stations into groups (nodes) to poll
 - Depth first search under nodes with poll collisions
 - Start search at lower levels if >1 station expected

Limited Contention: Adaptive Tree Walk: Example Tree

- 8 stations; time slots conveniently numbered 1, 2, ... 7 as the node numbers in the tree; nodes are grouped accordingly
- If contention fails at time slot 1, nodes under 2 contends at slot 2, and nodes under 3 contends at slot 3 ...

CUNY | Brooklyn College

Questions?

- Collision-free protocols
- Limited-contention protocols